A. Full Experimental Results on MVTec, Digits
Dataset and Office-Home Dataset.

In this section, we present the full experiment results on
MVTec AD, digits and Office-Home dataset in the form of
tables and bar plots.

A.1. MVTec Dataset

The full results on MVTec dataset are presented in Ta-
ble 1. The first row denotes the domain adaptation setting.
For example, L—C denotes that the case that the source do-
main is “Leather” and the target domain is “Carpet”. The
full results are also plotted in Fig. 2.

A.2. Digits Anomaly Detection

The full experimental results of MNIST—USPS are
shown in Table 2. The digit in the first column in each row
is regarded as the normal class. Fig. 3 is the corresponding
bar plot.

The full experimental results of MNIST—SVHN are
shown in Table 3. The digit in the first column in each row
is regarded as the normal class. The full results are also
plotted in Fig. 4.

A.3. Objects Recognition Anomaly Detection

Full results of Product—Clipart are presented in Table 4.
The object category in the first column in each row is re-
garded as the normal class. Recall that the evaluation metric
is AUROC. These numbers are also plotted in Fig. 6.

Similarly, full results of Clipart—Product are presented
in Table 5. The results are also plotted in Fig. 5.

B. Proof of Information-Theoretic Lower
Bound:
The proof for Thm. 1 is as follows:
Proof. Yg are defined as the labeling function from X to
Y for the source domain and Y7 as the map for the target
domain. We assume that Y is 1 when the data is anomalous

and 0 otherwise. Since the JS distance is a metric, we have
the following inequality:

dys(DY, D7) < dys(D¥5, DY) + dys(D¥, D7) (7)
We define eg(h o g) = eg(Y) as
es(hog) =Ex(|Ys(X)—hog(X)])

and similarly for e7(h o g). We can bound dys(DYs, DY)

by ves(hog) ([19,34])

dys(DYs, DY) =/ Dys(DYs, DY) < %HDYS — DY,
1 .
- (§(|Pr(Ys = 0) — Pr(Y = 0)]

+ [Pr(Ys = 1) — Pr(¥ = 1)|))%
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= |Pr(Ys =1) - Pr(Y = 1)|* = [Ex(Ys) — Ex(Y)
<es(hog)?

With Eq. (7), we get:

dys(DYs, DY) < /o5 + VEr (8)

This can be rewritten as:

1
es(hog)+er(hog) > 3 dys(DYs,D¥7)?

C. Proof of Generalization Upper Bound:

We start with introductions of notations and definitions.
Recall

H = {sgn (|h(x) — K'(x)| —t) | h, b/ € H,t € [0,1]}

Let D denote the empirical distribution from samples x ~
D of size n. The empirical Rademacher complexity is de-
fined as follows [34]:

Definition 1 (Empirical Rademacher Complexity). . Let
H be a family of functions mapping from X to [a,b]. Let
S = {x;}1_, denote a fixed sample of size n with elements
in X. Then, the empirical Rademacher complexity of H
with respect to the sample X is defined as:

n

1
sup —

Rads(H) =E,
her T

oih (Xi)]

where 0 = {0;},_, and o; are i.i.d. uniform random vari-
ables taking values in {+1,—1}.

We then have the following lemmas [34]:

Lemma 1. Let H C [0,1]%, then for all § > 0, wp. at
least 1 — 0, the following inequality holds for all h € H.:

es(h) < Es(h) + 2Radg(H) + 3+/10g(2/9)/2n, where n

is the number of samples in S.

Lemma 2. V6 > 0, wp. at least 1 — 9, the following in-
equality holds:

d(D, D) < 2Rads(H) + 3\/10g(2/8)/2n.



Table 1. Experimental results on MVTec dataset. The metric is AUROC(%). The first column denotes the domain adaptation setting, e.g.
L—C denotes that the source domain is “Leather” and the target domain is “Carpet”. Results are also plotted in Fig. 2.

Model | DSVDD  AGT BiOST | OCSVM (S+T) OCSVM (T) IRAD (OC) | IF(S+T) IF(T) IRAD(I)
L—C | 475429 48.1+12 472419 | 16.8+22 170432 44.0£2.1 | 471418 474425 51.9+3.1
C—L | 456441 413429 465+14 | 322423 339428  37.642.8 | 359+14 363434 48.0+24
L—W | 581424 59.1+28 60.0+3.7 | 52.5+13 56.54+4.5 581432 | 549427 586+3.1 712+25
WoL | 423425 413429 426424 | 349427 339428 383424 | 359424 36.3+34 44.8+2.5
W—C | 463+1.9 48.1+12 489+0.8 19.4+2.8 170432 482426 | 438419 474425 49.5+1.2
C—W | 56.943.0 59.14£28 557+1.6 | 555429 56.54+4.5 577419 | 56.142.2 58.6+3.1 60.4:+2.7
Average |  49.4 49.5 50.15 | 35.2 358 473 | 456 474 54.3

Table 2. Anomaly detection with domain adaptation on MNIST (source domain) and USPS (target domain).

The evaluation metric is

AUROC in percent. The highest numbers are in bold. Results are also plotted in Fig. 3.

Model | DSVDD AGT BiOST | OCSVM (S+T) OCSVM (T) IRAD (OC) | IF(S+T) IF(T)  IRAD (IF)
0 36.5£10.1 94.3+1.7 75.9+42 74.540.6 13.540.8 94.842.6 | 229414 951404  96.0+0.6
1 743471 99.0+£0.1 97.6+1.8 4.040.2 13.64+0.5 97.5£1.5 | 97.3£0.6 98.7+0.1  99.0+0.2
2 572447 459433 72.849.6 45.140.8 33.1£1.1 63.1£1.2 | 48.6+2.8 74.0+1.8  82.240.7
3 59.549.0 56.14£3.2  69.7+11 61.2+1.1 37.5+1.4 85.34£2.5 | 39.3+1.8 845422 88.7+2.6
4 68.3+9.0 732417 79.1£10 20.6+0.6 30.54+0.9 88.043.6 | 715404 81.3+1.4 88.3+1.4
5 487434 412420 79.5+3.6 66.040.4 41.8+1.1 66.443.8 | 32.3£0.9 70.0+1.6 81.1+2.7
6 65.146.1  65.323.8  90.0£4.0 423407 36.54+0.6 94.0+1.9 | 594414 957408 96.3+1.0
7 627450 69.4+23 66.8+6.6 37.8£1.6 48.342.0 90.8£1.8 | 61.5£1.6 91.8+1.3 95.6+1.6
8 53.1£10.6 68.7+£3.8 78.3+9.5 46.440.5 2874122 837434 | 51.0414 79.1+13  83.7+2.3
9 627444 764423 84.7+11 28.140.7 36.60.7 87.8£1.4 | 69.6£1.6 93.1+0.8  94.9+0.5

Average | 58.8 68.9 794 | 42.6 32.0 851 | 553 86.3 90.6

With Lemma 1 and Lemma 2, we can derive:
Lemma 3. For V6 > 0, w.p. at least 1 — 6, for Vh € H:
dg(Ds,Dr) < dﬂ(ﬁs, ﬁT) + QRads(}z) + QRadT(’}:[)
+ 3+/log(4/6)/2n + 3+/log(4/6) /2n;

Proof. The triangular inequality of d; (-, -) is written as:

dy (D, D) < dyy(D,D) + dyy (D, D') + dyy (D', D).

By Lemma 2, it follows that with probability > 1 — §/2,
the following two inequalities hold:

d;(Ds, Ds) < 2Rads(H) + 3+/log(4/3)/2n
dy;(Dr, Dr) < 2Radp(H) + 3y/log(4/5) /2n;

These two inequalities can be combined as with a union
bound to obtain the inequality in the lemma. O

Lemma 4. Let (Dg, fs) and (D, fr) be the source and
target domains respectively. For any function class H C
[0,1]%, and Vh € H, the following inequality holds:

ST(h) < SS(h) + d’f:L (Ds,DT)
+ min {Epy [|fs — fr|]. Ep, [|fs — frl]}

Finally, the proof of generalization upper bound Thm. 2
is given as:

Proof. Following Lemma 4, we have:

ET(h) < ES(h) + dq_”[ (Ds,DT)
+min{EDs “fS - fT” 7]EDT “fS - fTH}

The probabilistic bounds for eg(h) are given in Lemma 1
and Lemma 3. Applying them to the inequality above fin-

ishes the proof. The term O(y/log(4/0)/2n) goes away
O

since np < n.

D. Training and Implementation Details

The network configurations for MVTec dataset and
Office-Home dataset is stated in section 4.1 and section
4.3. For experiments on digits dataset, the generator net-
work has 5 transpose convolution layers; the discriminator
is a 4-layer CNN followed by an FC layer; the encoder has
5 CNN layers. The training time is ~10 minutes for one
digit experiment and 1 hour for one experiment on Office-
Home/MvTec dataset on an RTX 2080. The optimizer is
Adam with Ir = 10~* and no weight decay. About train-
ing/validation sets: the training set contains normal data



Table 3. Results on MNIST—SVHN with highest numbers in bold. The metric is AUROC in percent. Results are also plotted in Fig. 4.

Model | DSVDD  AGT BiOST | OCSVM (S+T) OCSVM (T) IRAD (OC) | IE(S+T)  IF(T)  IRAD (IF)
0 513413 532405 56.1+1.7 50.40.1 47.140.2 56.5432 | 49.04£0.5 544404  56.7+2.0
1 517412 50.740.5 56.7+1.8 49.540.1 51.0+0.2 525442 | 504404 51.840.6  61.0+2.0
2 51.04£0.8 50.6+0.3 53.8+1.0 49.040.1 49.640.1 527414 | 509404 512402  56.0-+0.2
3 517403 50.040.4 53.7+1.1 48.840.1 49.740.3 54.140.6 | 51.0+0.1 50.6+£0.3  55.8+0.9
4 50.440.7 50.940.5 54.7+1.5 49.740.1 51.340.3 51.742.8 | 49.7+£0.5 51.74£0.5 55.9+1.1
5 50.5404 510402 53.9+1.1 49.8+0.1 49.5+0.2 51.14£0.7 | 429402 513404 54.1+0.8
6 492405 513404 55.9+1.4 50.840.1 49.840.2 533410 | 48.8403 524405 56.6+1.4
7 50.441.1 49.5+0.6 56.3+2.0 50.140.2 51.340.2 494421 | 50.14£0.5 51.9404 57.0+1.3
8 505423  50.7+03 53.0+0.8 50.540.2 50.0+0.3 52.742.1 | 49.14£03 513402  54.2+0.9
9 498404 517405 54.4+1.1 50.740.2 48.840.3 52.640.9 | 492403 523404 55.9+1.4

Average | 50.6 50.9 54.8 49.9 49.8 52.6 49.1 51.9 56.3

Table 4. Experimental results of Product—Clip Art. The evaluation metric is AUROC in percent. Results are also plotted in Fig. 6.

Model | DSVDD  AGT BiOST | OCSVM (S+T) OCSVM (T) IRAD (OC) | IF(S+T)  IF(T)  IRAD (IF)
Bike | 51.1£2.7 557426 52.740.8 50.0-0.1 50.0-£0.1 54.145.1 | 455418 57.7£39 857428
Calculator | 53.4+85 79.7442 652+1.0 | 49.4+0.7 50.0+0.0 521423 | 464415 815439 79.2+1.8
Drill | 53.544.8 545433 47.0405 | 47.1415 482412 51.843.5 | 58.842.8 63.646.0 71.2+5.5
Hammer | 50.3£1.7 64.4423 437409 | 493407 49.2:0.5 60.3£1.6 | 56.8+1.1 619434 77.0+6.0
Kettle | 44346.5 56.3+3.2 47.7+15 48.7+0.7 477417 66.7£0.9 | 57.042.1 57.74£3.3  70.0+4.9
Knives | 64.3£43 689439 63.1£1.5 | 48.7+0.9 49.5£0.6 507423 | 36.142.7 67.8£50 70.3+3.5
Pan 492458 564439 493£15 | 49.9+0.5 50.0-£0.0 57.3£3.5 | 59.8+13 60.0£5.3  72.843.7
Paper | 51.4+19 60.8+43.8 451426 | 49.0+0.8 48.7+0.7 547419 | 584431 61.1456 61.8+0.8
Scissors | 49.0+£8.7 66.5+3.7 38.6+0.8 |  48.5+0.6 48.5+1.3 582402 | 59.041.1 62.9+3.0 70.0+3.3
Soda | 488458 573487 56.9+0.8 | 49.9404 50.0+0.1 542415 | 509418 564+7.8 63.2+4.9
Average | 515 62.0 509 | 49.0 49.1 560 | 528 63.0 72.1

Table 5. Results of Clip Art—Product with the best numbers in bold. The metric is AUROC in percent. Results are also plotted in Fig. 5.

Model | DSVDD AGT BiOST | OCSVM (S+T) OCSVM(T) IRAD(OC) | IF(S+T)  IF(T)  IRAD (D)
Bike | 49.4+£11.6 540425 430406 | 462+12 46.542.2  78.8+59 | 514420 655+3.69 90.3+2.6
Calculator | 48.6+6.7  56.5+52 69.0+£0.6 |  50.0+0.1 50.040.1 58.944.8 | 46.3+3.0 57.6463 82.2+1.8
Drill 52.8+9.5  33.942.1 664+0.7 |  50.0£0.1 50.040.1 54.143.0 | 344413 644451  73.0+54
Hammer | 44.749.0 79.4+12 50.14£07 | 47.84+0.6 487405 53.5+4.1 | 819415 80.0+1.1 84.5+2.8
Kettle | 49.1£11.1 52.043.1 63.0+£1.0 |  50.0£0.1 50.040.1 634427 | 454415 55.6£50 75.8+8.5
Knives | 572418 473433 488422 | 48.1+12 494408  545+1.8 | 487418 36.0+15 63.9+2.4
Pan 50247.6 484436 57.7+14 |  50.040.1 500400  54.6+15 | 450+£20 609424 76.0+4.5
Paper | 48.049.3 749+32 274440 | 50.0+0.1 50.040.1 637432 | 68.042.0 70.6+4.0 674434
Scissors | 51.3£10.1  65.0+1.2  56.4+0.6 |  49.5+0.4 495407  654£19 | 63.0£09 59.0+15 68.9+4.0
Soda | 529+12.0 48.049.0 502+12 | 485+1.0 479412 512421 | 341425 51.0+13  53.3+1.8
Average |  50.4 55.9 532 | 49.0 49.2 598 | 518 60.0 73.5

only; the validation set contains normal and anomalous data
from the source domain only.

E. Experiments with different numbers of
target-domain training data

The full results of experiments with different numbers of
target-domain training data are presented in Fig. 10.

F. Examples of images in Office-Home dataset
for evaluation

Fig. 11 displays some examples of images in the Clip Art

and Product domain from Office-Home dataset.
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Figure 10. AUROC on MNIST-USPS experiments of all ten categories with the number of target-domain training data n; = 10, 20, 50, 100.
The model performance increases as more target-domain data are available for training.
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Figure 11. Examples of ten categories in Clip Art and Product domain from Office-Home dataset.
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