
A. Full Experimental Results on MVTec, Digits
Dataset and Office-Home Dataset.

In this section, we present the full experiment results on
MVTec AD, digits and Office-Home dataset in the form of
tables and bar plots.

A.1. MVTec Dataset

The full results on MVTec dataset are presented in Ta-
ble 1. The first row denotes the domain adaptation setting.
For example, L→C denotes that the case that the source do-
main is “Leather” and the target domain is “Carpet”. The
full results are also plotted in Fig. 2.

A.2. Digits Anomaly Detection

The full experimental results of MNIST→USPS are
shown in Table 2. The digit in the first column in each row
is regarded as the normal class. Fig. 3 is the corresponding
bar plot.

The full experimental results of MNIST→SVHN are
shown in Table 3. The digit in the first column in each row
is regarded as the normal class. The full results are also
plotted in Fig. 4.

A.3. Objects Recognition Anomaly Detection

Full results of Product→Clipart are presented in Table 4.
The object category in the first column in each row is re-
garded as the normal class. Recall that the evaluation metric
is AUROC. These numbers are also plotted in Fig. 6.

Similarly, full results of Clipart→Product are presented
in Table 5. The results are also plotted in Fig. 5.

B. Proof of Information-Theoretic Lower
Bound:

The proof for Thm. 1 is as follows:

Proof. YS are defined as the labeling function from X to
Y for the source domain and YT as the map for the target
domain. We assume that Y is 1 when the data is anomalous
and 0 otherwise. Since the JS distance is a metric, we have
the following inequality:

dJS(DYS ,DYT ) ≤ dJS(DYS ,DŶ ) + dJS(DŶ ,DYT ) (7)

We define εS(h ◦ g) = εS(Ŷ ) as

εS(h ◦ g) = EX(|YS(X)− h ◦ g(X)|)

and similarly for εT (h ◦ g). We can bound dJS(DYS ,DŶ )

by
√

εS(h ◦ g) ( [19, 34])
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With Eq. (7), we get:

dJS(DYS ,DYT ) ≤
√
εS +

√
εT (8)

This can be rewritten as:

εS (h ◦ g) + εT (h ◦ g) ≥ 1

2
dJS(DYS ,DYT )2

C. Proof of Generalization Upper Bound:
We start with introductions of notations and definitions.

Recall

H̃ := {sgn (|h(x)− h′(x)| − t) |h, h′ ∈ H, t ∈ [0, 1]}

Let D̂ denote the empirical distribution from samples x ∼
D of size n. The empirical Rademacher complexity is de-
fined as follows [34]:

Definition 1 (Empirical Rademacher Complexity). . Let
H be a family of functions mapping from X to [a, b]. Let
S = {xi}ni=1 denote a fixed sample of size n with elements
in X . Then, the empirical Rademacher complexity of H
with respect to the sample X is defined as:

RadS(H) := Eσ

[
sup
h∈H

1

n

n∑
i=1

σih (xi)

]

where σ = {σi}ni=1 and σi are i.i.d. uniform random vari-
ables taking values in {+1,−1}.

We then have the following lemmas [34]:

Lemma 1. Let H ⊆ [0, 1]X , then for all δ > 0, w.p. at
least 1 − δ, the following inequality holds for all h ∈ H:
εS(h) ≤ ε̂S(h) + 2RadS(H) + 3

√
log(2/δ)/2n, where n

is the number of samples in S.

Lemma 2. ∀δ > 0, w.p. at least 1 − δ, the following in-
equality holds:

dH̃(D, D̂) ≤ 2RadS(H̃) + 3
√
log(2/δ)/2n.



Table 1. Experimental results on MVTec dataset. The metric is AUROC(%). The first column denotes the domain adaptation setting, e.g.
L→C denotes that the source domain is “Leather” and the target domain is “Carpet”. Results are also plotted in Fig. 2.

Model DSVDD AGT BiOST OCSVM (S+T) OCSVM (T) IRAD (OC) IF (S+T) IF (T) IRAD (I)

L→C 47.5±2.9 48.1±1.2 47.2±1.9 16.8±2.2 17.0±3.2 44.0±2.1 47.1±1.8 47.4±2.5 51.9±3.1
C→L 45.6±4.1 41.3±2.9 46.5±1.4 32.2±2.3 33.9±2.8 37.6±2.8 35.9±1.4 36.3±3.4 48.0±2.4
L→W 58.1±2.4 59.1±2.8 60.0±3.7 52.5±1.3 56.5±4.5 58.1±3.2 54.9±2.7 58.6±3.1 71.2±2.5
W→L 42.3±2.5 41.3±2.9 42.6±2.4 34.9±2.7 33.9±2.8 38.3±2.4 35.9±2.4 36.3±3.4 44.8±2.5
W→C 46.3±1.9 48.1±1.2 48.9±0.8 19.4±2.8 17.0±3.2 48.2±2.6 43.8±1.9 47.4±2.5 49.5±1.2
C→W 56.9±3.0 59.1±2.8 55.7±1.6 55.5±2.9 56.5±4.5 57.7±1.9 56.1±2.2 58.6±3.1 60.4±2.7

Average 49.4 49.5 50.15 35.2 35.8 47.3 45.6 47.4 54.3

Table 2. Anomaly detection with domain adaptation on MNIST (source domain) and USPS (target domain). The evaluation metric is
AUROC in percent. The highest numbers are in bold. Results are also plotted in Fig. 3.

Model DSVDD AGT BiOST OCSVM (S+T) OCSVM (T) IRAD (OC) IF (S+T) IF (T) IRAD (IF)

0 36.5±10.1 94.3±1.7 75.9±4.2 74.5±0.6 13.5±0.8 94.8±2.6 22.9±1.4 95.1±0.4 96.0±0.6
1 74.3±7.1 99.0±0.1 97.6±1.8 4.0±0.2 13.6±0.5 97.5±1.5 97.3±0.6 98.7±0.1 99.0±0.2
2 57.2±4.7 45.9±3.3 72.8±9.6 45.1±0.8 33.1±1.1 63.1±1.2 48.6±2.8 74.0±1.8 82.2±0.7
3 59.5±9.0 56.1±3.2 69.7±11 61.2±1.1 37.5±1.4 85.3±2.5 39.3±1.8 84.5±2.2 88.7±2.6
4 68.3±9.0 73.2±1.7 79.1±10 20.6±0.6 30.5±0.9 88.0±3.6 71.5±0.4 81.3±1.4 88.3±1.4
5 48.7±3.4 41.2±2.0 79.5±3.6 66.0±0.4 41.8±1.1 66.4±3.8 32.3±0.9 70.0±1.6 81.1±2.7
6 65.1±6.1 65.3±3.8 90.0±4.0 42.3±0.7 36.5±0.6 94.0±1.9 59.4±1.4 95.7±0.8 96.3±1.0
7 62.7±5.0 69.4±2.3 66.8±6.6 37.8±1.6 48.3±2.0 90.8±1.8 61.5±1.6 91.8±1.3 95.6±1.6
8 53.1±10.6 68.7±3.8 78.3±9.5 46.4±0.5 28.7±1.2 83.7±3.4 51.0±1.4 79.1±1.3 83.7±2.3
9 62.7±4.4 76.4±2.3 84.7±11 28.1±0.7 36.6±0.7 87.8±1.4 69.6±1.6 93.1±0.8 94.9±0.5

Average 58.8 68.9 79.4 42.6 32.0 85.1 55.3 86.3 90.6

With Lemma 1 and Lemma 2, we can derive:

Lemma 3. For ∀δ > 0, w.p. at least 1− δ, for ∀h ∈ H̃:

dH̃(DS ,DT ) ≤ dH̃(D̂S , D̂T ) + 2RadS(H̃) + 2RadT(H̃)

+ 3
√
log(4/δ)/2n+ 3

√
log(4/δ)/2nt

Proof. The triangular inequality of dH̃(·, ·) is written as:

dH̃ (D,D′) ≤ dH̃(D, D̂) + dH̃(D̂, D̂′) + dH̃(D̂′,D′).

By Lemma 2, it follows that with probability ≥ 1− δ/2,
the following two inequalities hold:

dH̃(DS , D̂S) ≤ 2RadS(H̃) + 3
√

log(4/δ)/2n

dH̃(DT , D̂T ) ≤ 2RadT(H̃) + 3
√

log(4/δ)/2nt

These two inequalities can be combined as with a union
bound to obtain the inequality in the lemma.

Lemma 4. Let ⟨DS , fS⟩ and ⟨DT , fT ⟩ be the source and
target domains respectively. For any function class H ⊆
[0, 1]X , and ∀h ∈ H, the following inequality holds:

εT (h) ≤ εS(h) + dH̃ (DS ,DT )

+ min {EDS
[|fS − fT |] ,EDT

[|fS − fT |]}

Finally, the proof of generalization upper bound Thm. 2
is given as:

Proof. Following Lemma 4, we have:

εT (h) ≤ εS(h) + dH̃ (DS ,DT )

+ min {EDS
[|fS − fT |] ,EDT

[|fS − fT |]}

The probabilistic bounds for εS(h) are given in Lemma 1
and Lemma 3. Applying them to the inequality above fin-
ishes the proof. The term O(

√
log(4/δ)/2n) goes away

since nT ≪ n.

D. Training and Implementation Details

The network configurations for MVTec dataset and
Office-Home dataset is stated in section 4.1 and section
4.3. For experiments on digits dataset, the generator net-
work has 5 transpose convolution layers; the discriminator
is a 4-layer CNN followed by an FC layer; the encoder has
5 CNN layers. The training time is ∼10 minutes for one
digit experiment and 1 hour for one experiment on Office-
Home/MvTec dataset on an RTX 2080. The optimizer is
Adam with lr = 10−4 and no weight decay. About train-
ing/validation sets: the training set contains normal data



Table 3. Results on MNIST→SVHN with highest numbers in bold. The metric is AUROC in percent. Results are also plotted in Fig. 4.

Model DSVDD AGT BiOST OCSVM (S+T) OCSVM (T) IRAD (OC) IF (S+T) IF (T) IRAD (IF)

0 51.3±1.3 53.2±0.5 56.1±1.7 50.4±0.1 47.1±0.2 56.5±3.2 49.0±0.5 54.4±0.4 56.7±2.0
1 51.7±1.2 50.7±0.5 56.7±1.8 49.5±0.1 51.0±0.2 52.5±4.2 50.4±0.4 51.8±0.6 61.0±2.0
2 51.0±0.8 50.6±0.3 53.8±1.0 49.0±0.1 49.6±0.1 52.7±1.4 50.9±0.4 51.2±0.2 56.0±0.2
3 51.7±0.3 50.0±0.4 53.7±1.1 48.8±0.1 49.7±0.3 54.1±0.6 51.0±0.1 50.6±0.3 55.8±0.9
4 50.4±0.7 50.9±0.5 54.7±1.5 49.7±0.1 51.3±0.3 51.7±2.8 49.7±0.5 51.7±0.5 55.9±1.1
5 50.5±0.4 51.0±0.2 53.9±1.1 49.8±0.1 49.5±0.2 51.1±0.7 42.9±0.2 51.3±0.4 54.1±0.8
6 49.2±0.5 51.3±0.4 55.9±1.4 50.8±0.1 49.8±0.2 53.3±1.0 48.8±0.3 52.4±0.5 56.6±1.4
7 50.4±1.1 49.5±0.6 56.3±2.0 50.1±0.2 51.3±0.2 49.4±2.1 50.1±0.5 51.9±0.4 57.0±1.3
8 50.5±2.3 50.7±0.3 53.0±0.8 50.5±0.2 50.0±0.3 52.7±2.1 49.1±0.3 51.3±0.2 54.2±0.9
9 49.8±0.4 51.7±0.5 54.4±1.1 50.7±0.2 48.8±0.3 52.6±0.9 49.2±0.3 52.3±0.4 55.9±1.4

Average 50.6 50.9 54.8 49.9 49.8 52.6 49.1 51.9 56.3

Table 4. Experimental results of Product→Clip Art. The evaluation metric is AUROC in percent. Results are also plotted in Fig. 6.

Model DSVDD AGT BiOST OCSVM (S+T) OCSVM (T) IRAD (OC) IF (S+T) IF (T) IRAD (IF)

Bike 51.1±2.7 55.7±2.6 52.7±0.8 50.0±0.1 50.0±0.1 54.1±5.1 45.5±1.8 57.7±3.9 85.7±2.8
Calculator 53.4±8.5 79.7±4.2 65.2±1.0 49.4±0.7 50.0±0.0 52.1±2.3 46.4±1.5 81.5±3.9 79.2±1.8

Drill 53.5±4.8 54.5±3.3 47.0±0.5 47.1±1.5 48.2±1.2 51.8±3.5 58.8±2.8 63.6±6.0 71.2±5.5
Hammer 50.3±1.7 64.4±2.3 43.7±0.9 49.3±0.7 49.2±0.5 60.3±1.6 56.8±1.1 61.9±3.4 77.0±6.0

Kettle 44.3±6.5 56.3±3.2 47.7±1.5 48.7±0.7 47.7±1.7 66.7±0.9 57.0±2.1 57.7±3.3 70.0±4.9
Knives 64.3±4.3 68.9±3.9 63.1±1.5 48.7±0.9 49.5±0.6 50.7±2.3 36.1±2.7 67.8±5.0 70.3±3.5

Pan 49.2±5.8 56.4±3.9 49.3±1.5 49.9±0.5 50.0±0.0 57.3±3.5 59.8±1.3 60.0±5.3 72.8±3.7
Paper 51.4±1.9 60.8±3.8 45.1±2.6 49.0±0.8 48.7±0.7 54.7±1.9 58.4±3.1 61.1±5.6 61.8±0.8

Scissors 49.0±8.7 66.5±3.7 38.6±0.8 48.5±0.6 48.5±1.3 58.2±0.2 59.0±1.1 62.9±3.0 70.0±3.3
Soda 48.8±5.8 57.3±8.7 56.9±0.8 49.9±0.4 50.0±0.1 54.2±1.5 50.9±1.8 56.4±7.8 63.2±4.9

Average 51.5 62.0 50.9 49.0 49.1 56.0 52.8 63.0 72.1

Table 5. Results of Clip Art→Product with the best numbers in bold. The metric is AUROC in percent. Results are also plotted in Fig. 5.

Model DSVDD AGT BiOST OCSVM (S+T) OCSVM (T) IRAD (OC) IF (S+T) IF (T) IRAD (I)

Bike 49.4±11.6 54.0±2.5 43.0±0.6 46.2±1.2 46.5±2.2 78.8±5.9 51.4±2.0 65.5±3.69 90.3±2.6
Calculator 48.6±6.7 56.5±5.2 69.0±0.6 50.0±0.1 50.0±0.1 58.9±4.8 46.3±3.0 57.6±6.3 82.2±1.8

Drill 52.8±9.5 33.9±2.1 66.4±0.7 50.0±0.1 50.0±0.1 54.1±3.0 34.4±1.3 64.4±5.1 73.0±5.4
Hammer 44.7±9.0 79.4±1.2 50.1±0.7 47.8±0.6 48.7±0.5 53.5±4.1 81.9±1.5 80.0±1.1 84.5±2.8

Kettle 49.1±11.1 52.0±3.1 63.0±1.0 50.0±0.1 50.0±0.1 63.4±2.7 45.4±1.5 55.6±5.0 75.8±8.5
Knives 57.2±1.8 47.3±3.3 48.8±2.2 48.1±1.2 49.4±0.8 54.5±1.8 48.7±1.8 36.0±1.5 63.9±2.4

Pan 50.2±7.6 48.4±3.6 57.7±1.4 50.0±0.1 50.0±0.0 54.6±1.5 45.0±2.0 60.9±2.4 76.0±4.5
Paper 48.0±9.3 74.9± 3.2 27.4±4.0 50.0±0.1 50.0±0.1 63.7±3.2 68.0±2.0 70.6±4.0 67.4±3.4

Scissors 51.3±10.1 65.0±1.2 56.4±0.6 49.5±0.4 49.5±0.7 65.4±1.9 63.0±0.9 59.0±1.5 68.9±4.0
Soda 52.9±12.0 48.0±9.0 50.2±1.2 48.5±1.0 47.9±1.2 51.2±2.1 34.1±2.5 51.0±13 53.3±1.8

Average 50.4 55.9 53.2 49.0 49.2 59.8 51.8 60.0 73.5

only; the validation set contains normal and anomalous data
from the source domain only.

E. Experiments with different numbers of
target-domain training data

The full results of experiments with different numbers of
target-domain training data are presented in Fig. 10.

F. Examples of images in Office-Home dataset
for evaluation

Fig. 11 displays some examples of images in the Clip Art
and Product domain from Office-Home dataset.
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Figure 10. AUROC on MNIST-USPS experiments of all ten categories with the number of target-domain training data nt = 10, 20, 50, 100.
The model performance increases as more target-domain data are available for training.
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Figure 11. Examples of ten categories in Clip Art and Product domain from Office-Home dataset.
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