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Abstract

The performance of deep neural networks can vary sub-
stantially when evaluated on datasets different from the
training data. This presents a crucial challenge in evalu-
ating models on unseen data without access to labels. Pre-
vious methods compute a single model-based indicator at
the dataset level and use regression methods to predict per-
formance. To evaluate the model more accurately, we pro-
pose a sample-level label-free model evaluation method for
better prediction on unseen data, named Scoring Your Pre-
diction (SYP). Specifically, SYP introduces low-level image-
based features (e.g., blurriness) to model image quality that
is important for classification. We complementarily com-
bine model-based indicators and image-based indicators to
enhance sample representation. Additionally, we predict the
probability that each sample is correctly classified using a
neural network named oracle model. Compared to other
existing methods, the proposed method outperforms them
on 40 unlabeled datasets transformed by CIFAR-10. Espe-
cially, SYP lowers RMSE by 1.83-3.97 for ResNet-56 eval-
uation and 2.32-9.74 for RepVGG-A0 evaluation compared
with latest methods. Note that our scheme won the cham-
pionship on the DataCV Challenge at CVPR 2023. Source
code is avaliabe at https://github.com/megvii-research/SYP.

1. Introduction
The deployment of Deep Neural Networks(DNNs) in the

real world faces the challenge of encountering unseen data.
The conventional way to measure model performance is to
calculate the evaluation metric based on the labeled test
set. For example, Top-1 accuracy and Top-5 accuracy are
two well-known metrics used in image classification, which
evaluate whether the predicted class matches the ground
truth. For object detection tasks, the mean average precision
metric is used to measure the mean area under the precision-
recall curve of each class.

However, these metrics are hard to compute in real-world
settings due to the scarcity of labeled datasets. Acquiring

these samples, even if successful, may introduce bias into
the assessed performance due to their limited coverage of
conditions. For instance, Annotating test data for image
classification can be a costly endeavor. Even with labels
available for every image, it may still be difficult to cap-
ture the diversity of real-world factors such as lighting con-
ditions, shadows, and variations in viewpoints. Moreover,
Real-world data usually follows a different distribution than
the model’s training data distribution, violating the IID as-
sumption. This distribution shift is likely to lead to model
performance degradation. These findings have raised a crit-
ical question regarding how to measure the generalization
of models in real-world settings.

Several studies [2, 31, 37] have attempted to estimate
the unforeseen performance shifts by proposing general-
ization bounds derived from network complexity analyses
theoretically. However, these methods lack comprehensive
empirical evaluation. Recent researches attempt to seek
some dataset-level metrics based on the model’s predic-
tion. They reveal the effectiveness of distributional dis-
tances such as Fréchet distance [11, 47], Maximum Mean
Discrepancy (MMD) [6], gap of average entropy [20] and
discriminative discrepancy [4, 18]. They build a regression
model based on these distances to predict accuracy on un-
seen distributions.

As mentioned above, current popular methods only focus
on the model’s output (e.g., prediction entropy) when eval-
uating the accuracy on unseen data, and failing to consider
the impact of image quality. We emphasize here the fact that
model always gives a higher prediction entropy when feed-
ing with a heavily distorted input, although it may be cor-
rectly classified [8, 39]. Thus, the estimated accuracy will
obviously cause drift if just considering the prediction en-
tropy and ignoring the image quality. Moreover, these ap-
proaches neglect the specific sample characteristics, using
a single indicator value to represent the entire dataset. As
each sample may come from a different distribution, treat-
ing them as if they were the same distribution may lead to
wrongly reflecting the distance between the known and un-
known datasets.

In this work, we propose a sample-level label-free model
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Figure 1. Problem definition. Evaluating model on a labeled test dataset is a commom way in academic research. However, there are scarce
labeled test datasets in many real-world scenarios, leaving us unable to use standard evaluation methods. This motivates us to delve into
the matter of model evaluation on unlabeled datasets.

evaluation method, named Scoring Your Prediction (SYP).
Specifically, SYP introduces low-level image-based indica-
tors including information richness and blurriness as image
quality features. Then, SYP takes both model-based in-
dicators and low-level image indicators into consideration
to complementarily enhance sample representation. More-
over, we propose a neural network named oracle model to
handle indicators and output the classification probability.
We design two types of oracle models: one is a Multi-
layer Perceptron (MLP) network with pure fully connected
layers, named ORA-A. We further combine ORA-A with
multi-head self-attention [43] to propose another network,
named ORA-B.

We conduct extensive experiments to show that the pro-
posed method outperforms other existing methods. Fol-
lowing the DataCV Challenge settings, on 40 unlabeled
datasets transformed by CIFAR-10, SYP lowers RMSE
by 1.83-3.97 for ResNet-56 evaluation and 2.32-9.74 for
RepVGG-A0 evaluation compared with other advanced
methods. On 100 unknown test sets, SYP achieved 6.37
RMSE and won first place in the 1st DataCV Challenge.

To sum up, the contributions of this work are:
1) We introduce low-level image-based indicators in-

cluding information richness and blurriness to extract the
image quality representation.

2) We complementarily combine both model-based in-
dicators and image-based indicators to enhance the image
representation.

3) Two types of oracle models are proposed to predict
model performance. The experiments on both validation
and test sets demonstrate the effectiveness.

2. Related Work

Our goal is to evaluate the model’s performance on un-
seen and label-free datasets. The topic involves multiple
related research fields. This section reviews some research
relevant to our method.

Model generalization prediction. Predicting general-
ization performance of models on in-distribution data using
typical machine learning methods has been some excellent
work, including [31–33]. Additionally, some work [16, 25]
focuses on using unseen unlabeled data to predict general-
ization errors. [7] proposes using models ensemble are bet-
ter than a single model when detecting errors and estimat-
ing accuracy. [31] points to several factors that can affect a
model’s generalization performance, including the model’s
architecture, network size, optimization methods and rain-
ing dataset. Furthermore, the prediction consistency of dif-
ferent augmented versions of the same input can also be
used for generalization estimation [14,30,35,36]. [3] intro-
duces a novel measure named (effective) prediction depth to
represent the prediction difficulty. Differently, we not only
focus on a single metric but comprehensively consider the
features of dataset, image and model’s output.

Out-of-distribution (OoD) detection. OoD [12, 23, 27,
28,44] is an important research area that aims to detect sam-
ples that are different from the training data distribution.
Anomaly detection [1], open-set prediction [5] and rejec-
tion [9] are OoD research subfieilds. [45] firstly assigns
pseudo-labels on the unlabeled test data, and then train a
new model based on these pseudo-labels, OoD detection
performance can be reflected by the parameter differences.
[23] uses the softmax output of the final layer as a confi-
dence score to detect misclassified and OoD examples. [17]
believes that OoD sample always produces a high prediction
entropy. Differently, our work takes into account multiple
statistical characteristics of test datasets, which can effec-
tively improve the accuracy prediction.

Domain adaptation. Domain adaptation [15] aims to
address the matter of model deployment in target domains
with different statistical properties than training domains.
Recent works on domain adaptation have also explored un-
supervised domain adaptation, where there is no labeled
data available in the target domain [29, 42, 48]. Some
schemes have been developed for this field [34, 41, 46].

3280



Accuracy

Target dataset

Single
model-based 
indicator

(a) The backbone of other existing methods.

Entropy

ATC

FD

Model-based 
indicators

Image entropy

Variance

Blurriness

Image-based 
indicators

+ Correct ?

Correct ?

… …

Accuracy

Target dataset

Entropy

ATC

FD

Image entropy

Variance

Blurriness

+

(b) The backbone of our proposed SYP.

Figure 2. Comparisons between other existing methods and our proposed methods. Other existing methods neglect the specific sample
characteristics and image quality features, using a single model-based indicator value to represent the entire dataset, leading to sub-optimal
prediction. Our method is sample-level, combining model-based indicators and image-based indicators to predict whether each sample is
correctly classified, and then computing the accuracy on the entire dataset.

DAN [29] minimizes a joint objective function that incor-
porates both the classification loss and the maximum mean
discrepancy (MMD) [19] distance, which measures the dif-
ference between the source and target domain distributions
in the feature space. In this work, we not only consider the
feature statistics at the dataset level but also introduce the
sample-level features.

3. Method
We first define the problem, then propose a strong

pipeline for label-free model evaluation and illustrate the
basic procedure, including model-based indicators selec-
tion, image-based indicators selection, and oracle model ar-
chitecture.

3.1. Definition

In this section, we describe the label-free model evalua-
tion problem. As is shown in Fig. 1, consider a classification
problem with k classes. We can train a classifier f given a
labeled training dataset L = {xi, yi}nl

i=1. The non-linear
classifier f maps xi to a predicted class ŷi = f(xi). To
evaluate the performance of f , one common way is to test
it on another labeled dataset V = {xi, yi}nv

i=1 and calculate
the classification accuracy:

Acc =
Σnv

i=11{f(xi) == yi}
nv

, (1)

where 1{∗} is a characteristic function. However, the above
evaluation approach is not feasible in real-world scenarios
as the samples are often unlabeled. So we want to extend the
model generalization evaluation: estimate the model perfor-
mance on a new unlabeled dataset U = {xi}nu

i=1.

3.2. Model-based Indicators

Given a classifier f and a sample xi ∈ U , the softmax
layer of the classifier outputs a softmax vector s = f(xi) ∈

Rk to predict which class this sample belongs to. The pre-
dicted label is decided by the class with the maximal score,
i.e. i∗ = argmaxi si . In order to judge whether f cor-
rectly classifies xi, it is intuitively necessary to make full
use of s. Define an indicator function I : s → R that maps
s to a scalar. We expect the scalar to be correlated to s so
that we can determine whether f is correct or not based on
the value of the scalar at xi. We introduce several indicator
functions: entropy, averaged threshold confidence (ATC),
and Fréchet distance (FD).

Entropy. Entropy [20] can be used as an uncertainty
measurement of classification correctness. It indicates the
confidence of the classifier in its own prediction. If the en-
tropy of s is higher, then the distribution of elements of s
is more uniform, indicating the classifier f is more likely to
be incorrect. Therefore, we introduce the entropy of s as
the first indicator function:

IE(s) =
∑
i

silog(si). (2)

Averaged Threshold Confidence (ATC). Given a soft-
max output s, we obtain the predicted label i∗ such that
i∗ = argmaxi si. ATC [17] predicts whether an image is
classified correctly given a threshold t:

IATC(s) = 1{si∗ > t}, (3)

note that we can also replace maximum confidence with
negative entropy:

I ′ATC(s) = 1{INE(s) > t}. (4)

Fréchet Distance (FD). Fréchet Distance is used to mea-
sure the similarity between curves. Besides that, Fréchet
distance can also be used to measure the difference be-
tween probability distributions. Suppose two distributions
d1 ∼ D1(µ1,Σ1), d2 ∼ D2(µ2,Σ2), The Fréchet distance
between D1 and D1 is defined as:

dF (D1,D2) = ( inf
γ∼Γ(D1,D2)

∫
∥x− y∥2dγ(x, y)) 1

2 , (5)
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(a) The variant of our oracle model: ORA-A. It contains pure fully
connected layers.
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(b) The variant of our oracle model: ORA-B. It combines two global
operation layers: the fully connected layer and the self-attention layer.

Figure 3. Two variants of our oracle model: ORA-A, ORA-B. The oracle model we proposed can effectively use the indicators to estimate
the accuracy of the classifier.

where Γ(D1,D2) is the joint probability whose marginals
are D1,D2 respectively. It is also known as 2-Wasserstein
distance. If D1,D2 are multidimensional Gaussian distribu-
tions, FD has a closed formulation:

dF (D1,D2) = ∥µ1−µ2∥+Tr(Σ1+Σ2−2(Σ1Σ2)
1
2 ). (6)

In our task, we can compute the mean vectors of labeled
training dataset L and target unlabeled dataset U , named
µ′
1, µ′

2 respectively, and compute the covariance matrices
of labeled training dataset L and target unlabeled dataset U ,
named Σ′

1, Σ′
2 respectively. We can estimate the distance

between L and U :

IFD(L,U) = ∥µ′
1−µ′

2∥+Tr(Σ′
1+Σ′

2−2(Σ′
1Σ

′
2)

1
2 ). (7)

Note that IFD(L,U) is a dataset-level indicator. For each
xi ∈ U , we append IFD(L,U) to its indicator list.

3.3. Image-based Indicators

Besides model-based indicators, it is crucial to take the
low-level image features into consideration. We mainly
consider two low-level features: information richness and
blurriness. Specifically, when the image consists of more
foreground and less background (i.e., high information rich-
ness), it will benefit the model classification. On the other
hand, when feeding a clear image (i.e., low blurriness), the
model must give an output with high confidence to be a cor-
rect prediction. For an image xi ∈ U , we utilize the vari-
ance of xi and the entropy of xi to measure the information
richness and apply Laplacian operator on xi to evaluate the
blurriness.

Variance. The variance of xi is the variance of all pixels
in the entire image:

IV AR(xi) = V ar(xi). (8)

Image Entropy. Similar to image variance, The entropy
of xi is the entropy of all pixels in the entire image:

IIE(s) = IE(xi). (9)

Laplacian Operator. The blurry image doesn’t have
well-defined edges so we can use an edge detection algo-
rithm to compute the blurriness. In this paper, we use Lapla-
cian operator for edge detection. Laplacian operator is a
second derivative function designed to measure changes in
intensity without being overly sensitive to noise. The out-
put is an image that responds higher in the edge position.
In other words, the variance of the Laplacian blurry image
will be less as compared to that of the sharp image. The
Laplacian operator takes the derivative in both x-axis and
y-axis:

Laplace(xi) =
∂2f

∂x2
+

∂2f

∂y2
, (10)

then we compute the variance of the Laplacian image as the
blurriness indicator:

IB = V ar(Laplace(xi)). (11)

In conclusion, we have introduced six indicators given
an image xi and a classifier f . We concatenate them and
regard it as the image representation:

I = [IE ; IATC ; IFD; IV AR; IIE ; IB ]. (12)

Then we use I to determine whether xi can be correctly
classified by f .

3.4. Oracle Model

Now our task is finding a mapping function that takes
in I and outputs a scalar that represents the correct classi-
fication probability O : I → R. This is a typical binary
classification problem. We use a neural network to solve
this problem. When training, we adopt indicator I of a train
set image as input and its top-1 prediction result (True or
False) as label. As the dimension of indicator I is relatively
low, using a large-scale neural network will cause overfit-
ting, we turn to building a tiny neural network. We call it
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Figure 4. The predicted accuracy of ResNet-56 on the first 100 training datasets made by our ORA-A.
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Figure 5. The predicted accuracy of RepVGG-A0 on the first 100 training datasets made by our ORA-A.

oracle model(ORA) as it can tell whether f classifies cor-
rectly without labels. We propose two variants of the ora-
cle model. The first one is a simple Multilayer Perceptron
(MLP) network with pure fully connected layers, shown in
Fig. 3a. We call it ORA-A. It first upsamples I to increase
the feature dimension, then gradually reduces the dimen-
sion, and finally outputs pi ∈ [0, 1]. We show ORA-A can
significantly improve model evaluation performance in the
experiment section.

As is shown in Fig. 3b, we further combine ORA-A with
self-attention [43] and propose the second oracle model,
named ORA-B. We propose a block that contains a multi-
head self-attention layer and two fully-connected layers.
For the hidden feature a, we projects it to Q, K, V :

Q = fWQ,K = fWK , V = fWV , (13)

and compute the single-head self-attention function:

Headi(Q,K, V ) = softmax(
QKT

√
dk

)V. (14)

We concatenate all headi and project them as the output:

O(Q,K, V ) = Concat(head1, ..., headh)W
O. (15)

After that, we feed the output into the fully-connected lay-
ers. We stack two blocks and ORA-B outputs the final pre-
dicted probability pi ∈ [0, 1]. As seen below, our experi-
ments verified that ORA-B outperforms other well-known
approaches in label-free model evaluation. We also ensem-
ble ORA-A and ORA-B to achieve better performance.

Measurements Resnet-56 RepVGG-A0

Rotation [10] 7.13 13.39
ConfScore [23] 6.99 8.72
Entropy [20] 7.40 9.09
ATC [17] 7.77 8.13
FD [11] 4.99 5.97
SYP (ORA-A) 3.16 3.65
SYP (ORA-B) 3.93 4.34

Table 1. Results comparison among different methods. Bold indi-
cates the best result and underline indicates the second-best result.
We can see that our SYP achieves lower RMSE than other meth-
ods regardless of oracle model structure

4. Experiments

Datasets and evaluation metrics. We conduct con-
trast experiments on two typical baselines: ResNet-56 [21]
and RepVGG-A0 [13] on CIFAR-10 [26] and compare
our method with other existing methods. ResNet-56 [21]
and RepVGG-A0 [13] are trained on CIFAR-10 [26] train-
ing dataset and we load the models’ weight to evaluate
them. The training dataset of the oracle models consists
of 1,000 datasets transformed from the original CIFAR-10
test set, using the transformation strategy proposed by [11].
The validation dataset includes 40 datasets, composed of
CIFAR-10.1 [38], CIFAR-10.1-C [22], and CIFAR-10-F.
The test set comprises 100 unknown datasets. The image
size is 32×32 while the input size is set to 6 for training the
oracle models. For quantitative comparisons, we report root
mean squared error (RMSE) between ground truth accuracy
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Figure 6. The predicted accuracy of ResNet-56 on each validation dataset made by our ORA-A.
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Figure 7. The predicted accuracy of RepVGG-A0 on each validation dataset made by our ORA-A.

Acc and predicted accuracy Âcc on unlabeled datasets:

RMSE =

√
Σm

i=1(Acci − Âcci)2. (16)

Experiments Details. We train two types of oracle mod-
els introduced before. We adopt the SGD as the optimizer
and a linear decay learning rate scheduler. We train the ora-
cle models with 30,000 iterations and the batch size is set to
10,000. The basic learning rate is set to 0.1 for ResNet-56
evaluation and 0.05 for RepVGG-A0 evaluation. Dropout
[40] is used to avoid overfitting. The training loss is mean
squared error (MSE). We adjust the loss to avoid the class
imbalance problem. Specifically, if the accuracy of the pre-
defined model is less than 30% in a dataset, we triple the
loss of positive samples. We apply normalization to the in-
dicators. For each indicator I∗ in I except IFD, we compute
the maximum value max(I∗) and minimum value min(I∗)
in U and perform min-max normalization to scale data in
the range [0, 1]:

I ′∗ =
I∗ −min(I∗)

max(I∗)−min(I∗)
. (17)

For IFD, as all samples in U share the same value, per-
forming min-max normalization like other indicators will
scale IFD to 1, which makes no sense. Inspired by batch
normalization [24], We can compute the maximum value
max(IFD) and the minimum value min(IFD) of all 1,000
training sets and use them on unlabeled dataset:

I ′FD =
IFD −min(IFD)

max(IFD)−min(IFD)
. (18)

Methods Results

Six indicators + ORA-A 6.69
+ Loss adjustment 6.40
+ ORA-B ensemble 6.37

Table 2. Results on test sets.

Indicators Resnet-56 RepVGG-A0

Entropy 6.11 7.82
+ ATC 6.11 7.83
+ FD 2.92 5.78
+ Image indicators 3.16 3.65

Table 3. The RMSE of adding different indicators. The indicators
are sequentially added to the model training.

Note that we train the oracle model on a single NVIDIA
RTX 2080Ti.

4.1. Main Results

Comparison to other existing methods. As the Table
1 shows, we compare SYP on 40 validation datasets with
other existing methods: rotation prediction (rotation) [10],
averaged confidence (ConfScore) [23], entropy [20], av-
eraged threshold confidence (ATC) [17], Fréchet distance
(FD) [11]. All other methods are dataset-level and we com-
pute the indicators’ values for each dataset and then use lin-
ear regression to directly predict the accuracy of the classi-
fier on validation sets. While SYP is sample-level, predict-
ing whether each sample is correctly classified by the ora-
cle model, and then calculating the accuracy of the entire
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Figure 8. Visualization of different training datasets and the predicted accuracy of our SYP.

ResNet GT 70.16%
Predicition 71.96%

Validation set 1

ResNet GT 48.57%
Predicition 47.11%

Validation set 2

RepVGG GT 60.05%
  Predicition 59.05%

Validation set 3

RepVGG GT 71.74%
  Predicition 72.91%

Validation set 4

Figure 9. Visualization of different validation datasets and the predicted accuracy of our SYP. The validation datasets are applied to various
transformations, such as Gaussian blur, and zoom blur. They are different from the training dataset of the classifier. As can be seen, under
different transformations, our method accurately predicts the accuracy of both ResNet-56 and RepVGG-A0.
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Figure 10. The sensitivity of the oracle model to the training pa-
rameters. The left is the influence of training iterations, and the
right is the influence of learning rate. Compared with ResNet-56,
the oracle model is more sensitive to parameters on RepVGG-A0.
But both perform best at 30000 training iterations and lr=0.1.

data set. The empirical results show RMSE of SYP is much
lower, outperforming all other existing methods in both
ResNet-56 evaluation and RepVGG-A0 evaluation. For ex-
ample, On ResNet-56, the best RMSE of other methods
is 4.99, and SYP can significantly improve it to 3.16. On

Expansion ratio Resnet-56 RepVGG-A0

r=2 3.22 4.39
r=4 3.21 4.37
r=6 3.58 4.38
r=8 3.16 3.65
r=10 3.17 4.39

Table 4. Comparison among the oracle model with different model
capacity. There is a weak correlation between model capability
and model performance and our experiment shows the prediction
is the best when expansion ratio=8.

Resnet-56 RepVGG-A0

With normalization 3.16 3.65
Without normalization 32.99 33.96

Table 5. The influence of normalization. It can be clearly seen that
the oracle model benefits a lot from normalization. This shows the
importance of pre-processing in our pipeline.
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RepVGG-A0, SYP can improve RMSE from 5.97 to 3.65.
For ResNet-56 and RepVGG-A0, we present the predicted
accuracy of our method on the first 100 training datasets in
Fig. 4 and Fig. 5 respectively. Note that our model trains
well on ResNet data, but struggles with RepVGG data due
to the presence of long-tailed low-accuracy datasets. we
show the predicted accuracy of our method on each valida-
tion dataset in Fig. 6 and Fig. 9 respectively. It can be seen
that the predicted accuracy is very close to the ground truth
accuracy.

Results on test set. Table 2 shows our performance on
the test set, it also demonstrates the effectiveness of our
method.

4.2. Ablation Study

We perform some contrast experiments to demonstrate
the effectiveness of SYP deeply. Note that we choose ORA-
A as the oracle model in this part.

Indicator design We explore the impact of indicators
on the performance of the oracle model. We add entropy,
ATC, FD, and image-based indicators (image entropy, vari-
ance, blurriness) to the input of the oracle model one by
one and compute RMSE. Table 3 shows the results. When
entropy and ATC are added, the performance of the oracle
model is unsatisfactory. After adding FD, the oracle model
is greatly improved. Furthermore, by introducing our pro-
posed image-based indicator, the RMSE on RepVGG-A0
decreases from 5.78 to 3.65, indicating that the oracle model
is further refined. These results serve as evidence for the ef-
ficacy of our image-based indicator.

Sensitivity to training parameters. We explore the im-
pact of two parameters on oracle model training: iteration
numbers and learning rate. Fig. 10 shows the results. For
ResNet-56 evaluation, the training of the oracle model is
relatively not sensitive to parameters. For RepVGG-A0, the
selection of different parameters has a greater impact on the
oracle model’s performance. It is worth noting that the ora-
cle model does not perform better as the number of training
iterations increases. Therefore, when facing different tasks,
the parameters need to be adjusted appropriately.

Oracle model capacity. We explore the impact of differ-
ent capacities of the oracle model on performance. We can
control the model capacity by adjusting the expansion ratio
r. As Table 4 shows, there is no significant difference in
accuracy predicted by the oracle model of different capaci-
ties. It may be due to our training dataset (the input is only
6-dimensional) being relatively simple. The oracle model
works best on the validation set with expansion ratio r = 8,
which is also the model we submitted on the test set.

Influence of normalization. Table 5 shows that indi-
cator normalization plays a key role in our oracle model
training. When there is no normalization, the oracle model
cannot converge, and the prediction accuracy is all 1 on all

validation datasets. By employing normalization, we can
make precise predictions about the classifier’s performance
on different datasets. Consequently, it is imperative to pre-
process the data prior to model training.

5. Conclusion
In this paper, we propose a sample-level label-free model

evaluation approach, named SYP. Different with the previ-
ous methods, SYP takes extra low-level image-based indi-
cators into account, which can benefit the estimated accu-
racy on unseen data. In addition, we use oracle models to
predict the probability of each sample being classified cor-
rectly. We proposed two variants of the oracle model and
verified their effectiveness. Extensive experiment results
strongly confirm the effectiveness of our method. We be-
lieve this work will provide new insights to explore label-
free model evaluation.
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