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Abstract

Metal defect segmentation poses a great challenge for
automated inspection systems due to the complex light re-
flection from the surface and lack of training data. In this
work we introduce a real and synthetic defect segmentation
dataset pair for multi-view inspection of a metal clutch part
to overcome data shortage. Model pre-training on our syn-
thetic dataset was compared to similar inspection datasets
in the literature. Two techniques are presented to increase
model training efficiency and prediction coverage in darker
areas of the image. Results were collected over three pop-
ular segmentation architectures to confirm superior effec-
tiveness of synthetic data and unveil various challenges of
multi-view inspection.

1. Introduction

Surface inspection is a common task of automated visual
inspection systems, where defects are anomalies appearing
on the surface of the product, resulting from production
chain error (e.g. scratch, bump, pitting) [12]. While auto-
mated surface inspection systems introduce benefits such as
faster inspection process and reduction of human error, they
require consistent acquisition conditions. The acquisition
conditions, together with detection algorithms, are always
customized for specific inspection tasks. This makes the
systems extremely rigid. Experts planning the acquisition
hardware setup in an inspection system must ensure that the
whole surface of the inspected product is illuminated and
captured in a way such that all possible defects can be suc-
cessfully detected. The task may sound simple in principle,
however the appearance of defects varies drastically and is
largely affected by the location of the defect relative to il-
lumination sources and camera (Fig. 2). This problem be-
comes especially noticeable on geometrically complex and
reflective metallic surfaces. Additionally, defect visibility
can be obscured by the surrounding surface texture, which

Figure 1. The examined clutch object from outside (left) and inside
(right). The object contains four distinct texture patterns (red) and
a transition area (green).

vary locally (Fig. 1) and between products.
Designing a robust inspection system requires defect

samples which are diverse enough to provide a complete
understanding of all the possible defect characteristics and
occurrences on the production line. A sufficient dataset
will thus require a large number of physical samples, which
might be challenging to obtain since some defects appear
more frequently than the others and appearance within a
single class of defects can vary greatly. The challenge in-
creases for premium products fabricated in low volumes.
While traditional image processing algorithms can be de-
veloped with considerably smaller amount of defected sam-
ples, cases with high variation of defect characteristics sig-
nificantly complicates their development and maintenance.
Machine learning approaches can circumvent these short-
comings by relying on automatic extraction of robust fea-
tures from large amounts of diverse data. However, in low
data scenarios they are prone to overfitting.

Usage of synthetic data to circumvent the data shortage
has gained traction recently in machine vision [1, 21, 33,
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39, 47, 54]. Mainly because it provides a way to generate
arbitrary amount of diverse annotated training data, includ-
ing edge-case scenarios which are difficult to obtain in real
production. However, there is a lack of studies which in-
vestigate the suitability and advantages of using custom
designed synthetic data for industrial quality inspection.

We summarize our contributions as following:

• We introduce a dual dataset, consisting of real and syn-
thetic equivalent, for the domain of multi-view inspec-
tion of a complex metal object to expand the existing
literature on synthetic data for industrial applications.

• We compare the effectiveness of our synthetic dataset
to alternative metal inspection datasets in the literature,
to confirm that a custom designed synthetic data is su-
perior in the low-data scenario.

• We introduce intensity biased cropping mechanism to
increase model training performance in this domain.

• We introduce exposure stacking to increase model re-
sponse in darker regions and discuss its effect on sur-
face coverage in inspection.

• Finally, we identify the unique shortcomings of apply-
ing synthetic data in this domain and offer research di-
rections for overcoming them.

2. Related work
2.1. Defect recognition

Defects are the results of anomalous events in the pro-
duction chain which inflict deviations from product’s in-
tended design, function, or appearance. Defects can come
in various forms, with several classifications present in the
literature [12,44,52], however, what is and what is not con-
sidered to be a defect is always application-specific. For
visual inspection we distinguish between defects which are
visible by observing the object with non-penetrating light
interaction [12, 56], and defects that are below the observ-
able surface and should be inspected using a material pene-
trating medium [2,15,56]. In this work we focus on the first
kind, more specifically, macroscopic surface defects such as
dents and scratches [12].

Recognition approaches Defect recognition is a process
of identifying a defect and its characteristics. There is a
number of traditional (non-learning) approaches to appli-
cation specific defect recognition [10, 44]. However, these
methods rely on manual design and, when presented with
changes in inspection setup, require redesign which leads
to an increase in complexity and operating cost. Therefore,
recent research aims largely at learning based approaches

Figure 2. Appearance inconsistencies of scratches on a curved
surface when acquired under different angles, as seen in real (top)
and synthetic (bottom) data. Defect appearance changes in terms
of its shape and contrast due to illumination and the surrounding
surface texture. Notice how the defect part gets obscured by the
texture in the upper middle image.

where defect recognition models are trained under supervi-
sion with labeled data. The approaches can be aimed at de-
fect detection [48,52], defect segmentation [8,24,43,52] or
image classification [8, 52]. In all cases, the main problem
is the high cost of obtaining large amounts of labeled data.
This may increase difficulty of developing models which
successfully generalize to production.

Labeling for both detection and segmentation is time
consuming. Therefore, efforts have been made to use meth-
ods which rely on faster training sets annotation approaches,
such as image classification [52]. There, segmentation is
achieved using the class-activation map (CAM) technique
[59]. CAMs tend to produce very localized predictions,
which are useful for defect segmentation as defects are of-
ten localized, such as defects in LED chips [27]. Božić et
al. [8] mixes pixel and image level labels to increase the
effective dataset size at a lower annotation cost. In cases
where defected samples are unavailable or are in too small
quantities for supervised training, anomaly detection can be
used on solely the correct samples for training. During in-
ference, the reconstruction of an input image is compared
to the original or extracted features are compared to mem-
orized features of correct samples to detect outliers. It has
been employed for defect segmentation over a variety of
objects as presented in [3, 28, 36, 37]. We focus on the case
where training data is scarce, making the aforementioned
methods unsuitable.

Datasets Various datasets exist for defect recognition
tasks in metal [42, 44, 52]. Most available datasets focus
on inspection of hot-rolled steel [16, 31, 40, 41] which is a
planar surface with various defects. Other present shapes

4425



are curved pads [8, 25, 43], pipes [45] or rails [58]. More
complex surfaces are present in [38] in form of a ball screw
driver with a multi-view setting through single-axis rota-
tion. Anomaly detection datasets [3, 32] contain complex
metal objects, however they reduce the problem to single-
view inspection with a fixed top-down view. In [24], authors
perform a similar top-down acquisition with varying illumi-
nation angles. In contrast, our dataset represents a complex
geometry with highly specular and anisotropic surface in
the multi-view setup in a dark environment.

Inspection of complex surfaces Defect recognition is
tightly coupled with inspection planning process, which de-
termines the image acquisition setup (i.e. camera and illu-
mination position). This process is currently performed by
experts based on physical tests and experience. Recently, a
semi-automated inspection planning pipeline [5,18] for vir-
tual design and verification of inspection plans was intro-
duced. Their work allows coverage evaluation of any object
geometry, regardless of its geometrical complexity. In this
work we rely on their methods to create inspection plans for
both real and synthetic data.

2.2. Synthetic data generation

Image synthesis can benefit data preparation by provid-
ing more control over its content and diversity, speeding up
the process and reducing its costs. Additionally, it provides
insight into the expected inspection coverage and results. So
far it was employed in many forms to a wide range of ma-
chine vision tasks [34] in order to produce balanced datasets
for machine learning.

Generative models A straight-forward way to generate
defected samples from correct real images is by synthe-
sizing an image of a defect and embedding it in a correct
real image. The cheapest approach is by manually design-
ing generative models which produce 2D patches of de-
fects [22]. Albeit a controllable and versatile technique, the
defects are modeled as 2D patches and can not correctly
model the light response of specular defects observed from
multiple viewpoints. This introduces a bias towards the sub-
set of modeled defect appearances with inaccurate light re-
sponse. A more popular approach is to automatically learn
the generative model using generative-adversarial networks
(GAN), where two models are jointly trained in adversarial
setup on weakly-annotated real data [51, 52, 57] with con-
trol over the spatial properties, category and style of de-
fects. These approaches demonstrate great improvements
in the defect recognition tasks, however they can not in-
troduce data representing edge-case scenarios or guarantee
generation of correct data. The second requirement is par-
ticularly difficult to obtain in the multi-view setup due to the

complex specular defect appearance. Additionally, extend-
ing the supported set of defect types or variations requires
retraining on new observed data which does not guarantee
the retention of appearance quality in previously supported
defect types.

Computer graphics Leveraging computer graphics for
data generation provides a versatile, controllable and reli-
able tool for generating large quantities of data with the
support for generation of scenario-specific variations. It
has proven its usefulness across various computer vision
tasks [13]. A popular example is traffic scene recognition
where the synthetic datasets are commonly paired with real
datasets [47] to complement the scenarios missing from the
real data. In situations where manual data annotation is in-
tractable, it offers an invaluable source of annotated data
such as in the many-keypoint tracking task [54].

In defect recognition domain, available synthetic
datasets are sparse. The DAGM dataset [53] consists of
generic artificial textures and defects with no specific appli-
cation in mind and is often used as a baseline benchmark. In
[4], authors use simple noise transformations for color and
vertex displacement to generate a labeled synthetic dataset
for defect detection over steel plates. The MIAD dataset [1]
is a product maintenance dataset for anomaly detection with
various outdoor scenarios, including welding defects of a
steel pipe. The recent CAD2Render toolkit [33] produced
the DIMO dataset [14] by relying on photo-realistic render-
ing. It goes a bit further by using procedurally generated de-
fects which are applied to the object surface to simulate rust
and scratches. However, it focuses on assembly inspection
and object pose estimation without specific control over the
shape and locations of defects, reducing its usefulness for
defect inspection.

In all of the above mentioned cases, the main focus is on
simulating macroscopic features such as the object shape or
surface color, disregarding the evaluation of the correct light
response from micro-scale structures of the surface texture
or the defect geometry. This is not sufficient in cases when
the surface is observed from multiple viewpoints at higher
resolution, reducing their usability for defect recognition.
Recently, methods have been developed for generation of
procedural defects [6] and procedural textures [7], capable
of approximating various industrial surfaces with high de-
gree of realism and control. The synthetic defecting meth-
ods have already been employed in [39] for defect segmen-
tation in endoscopic images of a turbocharger.

Transfer learning Transfer learning techniques aim to
align the problem domain between different data sources.
A number of techniques is at hand, depending on the task
and data availability [11]. These methods are suitable for
use with synthetic data since the synthetic data introduces

4426



various approximations of the real world appearance, thus
creating a domain shift.

Domain adaptation exploits the knowledge obtained
from the source data to align the model towards the tar-
get data. The most common approach is by initializing
the training procedure with model parameters pre-trained
on a larger source dataset [11, 34, 47, 55]. The model can
be adapted entirely [49] or partially [36]. However, some
research suggests that similarity between the two domains
results in better performance [11, 49].

Domain randomization [46] is a technique which en-
larges the variance of the source domain to increase the
chance of covering the target domain, while making it pos-
sible for the model to learn more robust features. It is com-
monly used in synthetic data since the environment can be
easily manipulated [34, 47]. By parameterizing the defect
geometry and surface texture as procedural functions [6, 7],
we can generate a variety of data that can cover all plausible
possibilities within the specified ranges. Note that some pa-
rameters, such as perspective distortion, rotation or flipping
of the image, are commonly randomized through train-time
augmentation removing the need for their rendering.

Following Wood et al. [54] instead of using domain
adaptation to reduce the domain gap, we rely on increas-
ing the realism of synthetic data. However, we do incorpo-
rate domain randomization of surface appearance and back-
ground to produce a variety of realistic samples.

3. The clutch dataset
In this work we introduce and publish1 the dual dataset

composed from real data and its synthetic equivalent. It is
a versatile dataset which can be utilized for multiple tasks
such as image classification, defect segmentation and detec-
tion in supervised, unsupervised or weakly-supervised ap-
proaches. In this work we focus on binary defect segmen-
tation in order to evaluate approaches for dataset prepara-
tion, machine learning techniques specialized for this do-
main and possible imperfections of synthetic data which
must be taken into account.

3.1. Object description

The dataset contains a part of a clutch, shown in Fig. 1.
The clutch is an aluminum object consisting of two halves,
produced using turning and milling with additional brush-
ing to remove material extrusions introduced from drilling.
The flat and curved surfaces, holes and details such as screw
threads or beveled edges increase the geometrical complex-
ity of the object. Different machining and processing op-
erations throughout the part production introduce four dis-
tinct surface textures displaying patterns with more or less
prominent periodicity.

1https://owncloud.fraunhofer.de/index.php/s/mtr1FzERutdOrXi

DAGM KSDD2
Severstal

Steel MTD
CSEM
MISD

Synth
Clutch

Real
Clutch

Figure 3. Texture and defect examples extracted from datasets
used in this paper. Best viewed digitally.

Since the real defects are often a proprietary information,
the clutch object is used as a case study and the defects were
introduced manually to resemble typical defects appearing
in production lines. The defects include various scratches
and dents depicted in Fig. 3.

3.2. Real data acquisition

The RealClutch acquisition setup consists of a robot ma-
nipulator, matrix grayscale camera with a diffuse ring light
mounted around it and the acquisition table. The manipula-
tor is used to position the camera and the illumination into
predefined viewpoints. The acquisition table is a flat surface
covered in diffuse black velvet and the inspected object is
placed on it. The viewpoints were arranged manually using
V-POI2 [20] in a way that covers the inspected surfaces with
overlaps [19]. For the purpose of this work, the viewpoints
have been created with significant overlap in order to exam-
ine defect behavior from multiple acquisition angles. Be-
fore the acquisition, hand-to-eye calibration has been per-
formed as in [5], however slight acquisition offsets are still
present due to manual object placement on the acquisition
table. The collected images were manually annotated using
labelme [50] with an extension which allows enhancement
of the defect visibility (Fig. 4) by manually adjusting the
image exposure using: f(x) = x · 2α, with α ∈ {0, 1, 2}.
The polygonal annotations were finally rasterized into im-
age masks used for model training and validation.

3.3. Synthetic data generation

The SynthClutch dataset has been designed and gener-
ated using the methods presented by Bosnar et al. in [5–7].
The process requires a 3D model of the object and consists

2https://itwm.fraunhofer.de/v-poi
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Figure 4. Increasing image exposure reveals the dark, but also
overexposes the bright parts of the object. Notice the appearance
change of the lower right scratch and the middle left scratch.

of four steps: inspection planning, defect modeling, texture
definition and dataset generation. In the inspection plan-
ning step, view and illumination points are positioned in the
space relative to the object. The viewpoints contain cam-
era parameters such as resolution, focal length or focusing
distance and illumination points contain the light geometry
and intensity. For the purpose of this work, all the param-
eters correspond to the real setup, the lightpoint geometry
has the ring light shape and is positioned around the view-
point. The defects are modeled as dents and scratches, im-
printed directly into the object geometry. They are defined
using class specific parameter ranges, sampled to obtain de-
sired shape variation. Dents are defined by their size, depth
and elongation, while scratches are defined by their depth,
length, and curving strength and frequency. The textures
are modeled using procedural methods that perturb surface
normals, with parameters adjusted to match the observed
appearance of their respective counterparts across the real
object (Fig. 1). Finally, all aforementioned elements are
combined and parameters are sampled to define a scene
for photo-realistic rendering of the images and their cor-
responding defect masks, rendered using emissive material.
As the real environment contains inter-reflections between
the object and acquisition manipulator, we emulate this with
a small amount of constant illumination. The background
was dark with addition of uniform noise at train-time to re-
semble sensor dark shot noise.

The dataset contains object instances varying in defect
shapes and texture which are then rendered according to
the inspection plan. First, geometry instances are created
with defects randomly generated and applied across the sur-
face. The defect sizes were defined to be comparable to
defects present in real samples and contain circular dents
(�0.2−2mm) and scratches (�0.05 − 0.3mm). Addition-
ally, we apply insignificant defects which do not contribute
to the masks, but simulate minor irregularities present in
the real data which may resemble defects but should be
ignored. Next, the texture parameters are sampled within
defined ranges centered around their previously optimized
values. We randomize the surface roughness, normal per-
turbation strength and texture scale. Finally, each geometry

instance is rendered with its corresponding texture parame-
ters and stored in a structured way to simplify data loading.
Reader is referred to the supplementary for a visual com-
parison of the two datasets.

4. Defect segmentation on complex surfaces
Complex metal objects present a unique case for defect

recognition due to the changes in surface appearance caused
by reflectivity. This requires collection of large amounts of
data to successfully train a model, however oftentimes this
is not possible. In our case, only a small number of real
samples is available real making it difficult to restrain mod-
els from overfitting, even with extensive data augmentation.
Therefore, we look into using alternative data sources from
similar domains and compare its use to a custom designed
synthetic dataset. In both cases the real data is utilized only
for fine-tuning and evaluation.

4.1. Utilizing existing planar datasets

We first examine the transfer of features learned on avail-
able large datasets that represent similar domains. These
datasets collect a large number of images with a variety of
defect types observed over mostly planar surfaces. We re-
strict our selection to 5 datasets (Fig. 3) based on similarities
to RealClutch: DAGM [53] for its genericness, KSDD2 [8]
for its defect shapes, Severstal Steel [40] and MTD [25]
for their material and defects, and CSEM-MISD [24] for its
materials, defects and defect visibility changes.

4.2. Utilizing custom designed synthetic data

Synthetic data can be generated in arbitrary amounts
with large diversity. However, it introduces a domain gap
due to the approximations made during simulation such as
texture geometry or material reflectance. We analyze the
applicability of features learned on synthetic data with and
without fine-tuning on the real data.

Intensity-biased random cropping Inspection images
have larger resolution to increase surface coverage, which
requires us to use random cropping during training. As large
part of the image is in the dark, random cropping produces a
large amount of crops that end up in the dark background re-
gions. To remedy this, we bias the random cropping mech-
anism towards brighter regions to contain the object’s sur-
face. The input image is first binarized using a user-defined
threshold to obtain an intensity mask. A random pixel from
the mask is sampled and a crop window is centered around
it. This technique guarantees that every crop will contain
useful intensity values, while not completely ignoring the
darker regions to prevent the possibility of detecting false
positives in the acquisition scene background. The thresh-
old was chosen heuristically from real data to ensure cover-
age of the regions containing manual annotations.
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4.3. Enhancing model response in dark regions

When predicting on the acquired image, the model tends
to respond only on well lit surfaces where the patterns have
higher contrast, which reduces the detection coverage over
the object surface. As described in Sec. 3.2 annotators could
increase image exposure to enhance the visibility of defect
shapes in darker areas of the image, at the cost of overex-
posing some areas and increasing the image noise amplitude
(Fig. 4). To emulate this, we transform the acquired im-
age using same exposure values as annotators to construct
a channel-wise stack of transformed images alongside the
original as inputs to the model. This allows our model to
have simultaneous access to multiple exposure values and
learn to respond to a much larger surface area.

5. Experimental evaluation
5.1. Training details

Training is implemented using PyTorch and for segmen-
tation techniques we used easily accessible implementa-
tions of segmentation models: FCN [29] and DeepLabV3
[9] implementations from torchvision and U-Net [35] from
segmentation-models library [26], with the ResNet-34 [23]
backbone. For FCN and DeepLabV3 backbones we addi-
tionally use bottleneck blocks to increase speed [23] and
dilated convolutions in the last 3 layers to keep the resolu-
tion reduction factor to 8 [9]. The dilation was necessary to
obtain precise predictions.

For training we use AdamW [30] and binary cross-
entropy (BCE) loss function. To satisfy memory constraints
we use random crops of size 256× 256, biased towards in-
tensity values above 10. We find that further lowering of
crop sizes decreases model performance. The use of in-
tensity biased cropping in most of the cases reduced the
training time and produced baseline models with metrics
increased by few percentage points. Therefore, it was em-
ployed in all of the experiments. We train with batch size
16 for a maximum of 1000 epochs, selected from prelim-
inary experiments on RealClutch. The initial learning rate
and L2 weight decay factor were always selected using grid
search over {10−3, 10−4} and {10−4, 10−5} respectively,
maximizing F1 score on source validation set. The learn-
ing rate was halved every 50 epochs, with early stopping
when relative decrease in validation loss is under 0.01 for
5 consecutive validations. Model parameters pre-trained on
ImageNet did not improve speed or performance, similarly
to [49]. Once the model is trained, fine-tuning is performed
using real clutch images. For fine-tuning we only reduce the
starting learning rate to 10−4 and train until convergence of
validation loss. In all experiments, image values were cen-
tered to range [−1, 1] and the defect mask channels were
collapsed for single class segmentation. The reader is re-
ferred to the supplementary for detailed analysis.

The performance of our models and data sources is com-
pared using pixel-wise metrics: precision, recall and F1
score. The model predictions were binarized with a thresh-
old that maximizes the F1 score on validation set of the re-
spective training dataset.

The RealClutch dataset consists of 3 correct and 3 de-
fected objects. The objects were acquired using 86 view-
points, covering all examined surfaces, resulting in 516 la-
beled images of resolution 2448×1025. The train-test split
was constructed object-wise using 2 and 4 objects respec-
tively, while keeping the 1:1 balance between the correct
and defected samples. The train set contains objects with
one surface texture, while the test set contains two surface
textures which is common in evolving manufacturing pro-
cesses. The train-val split was constructed with a 4:1 ran-
dom split of the training set. The image resolution is halved
for evaluation efficiency, padded to ensure divisibility by 96
and split into patches of size 416×352.

5.2. Effectiveness of planar datasets

When evaluating the usefulness of pre-training on exist-
ing datasets, the domain difference is compensated for using
augmentations. We apply random rotations from [−90, 90],
Gaussian noise of variance ≤ 10, exposures between [0, 1],
Gaussian blur with kernel sizes form {1, 3}, horizontal and
vertical flips. For each dataset the model was trained on the
source dataset and evaluated on the RealClutch test set with
and without fine-tuning.

DAGM [53] is a synthetic dataset of generic textures
with artifacts representing defects. It consists of 10 textures,
totaling with around 8000 labeled samples for train and test
splits. The labels are in form of ellipsoids surrounding the
defected area which does not provide a detailed coverage of
the defect and is a form of weak supervision. We pad the
images to size 512 and split into patches of size 256×256.

Kolektor Surface Defect Detection v2 (KSDD2) [8] is
a dataset for binary defect segmentation of metallic tile-
shaped products with rough surface. The train split con-
tains 2331 samples, which we split in 4:1 ratio for training
and validation. The test split contains 1004 samples. For
evaluation efficiency, we convert the images to grayscale,
pad them with zeros to resolution 256×672 and split into
patches of size 256×224.

Severstal Steel dataset [40] is a dataset of planar hot-
rolled steel with defects segmented in 4 classes which we
collapse into binary segmentation. The test set for this
dataset is private, however we use it solely for the pre-
training of models so we utilize the available train split for
training and validation. The train split contains 12568 sam-
ples, which we split using 4:1 ratio for training and vali-
dation respectively. We merge the defect classes into sin-
gle class to make it compatible with our binary segmenta-
tion. For evaluation efficiency, we pad the images with ze-
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Source dataset FCN DLv3 U-Net
P [%] R [%] F1 [%] P [%] R [%] F1 [%] P [%] R [%] F1 [%]

RealClutch (baseline) 53.2 19.4 28.4 59.1 16.5 25.8 55.7 21.7 31.3
DAGM 0.0 4.6 0.1 1.0 0.1 0.1 0.1 5.9 0.2
KSDD2 1.5 5.1 2.3 2.2 6.5 3.3 0.7 7.0 1.3
Severstal Steel 1.0 9.7 1.8 1.7 9.0 2.9 1.0 3.2 1.5
MTD 7.7 10.2 8.8 23.5 9.9 13.9 8.7 11.6 10.0
CSEM-MISD 6.5 6.9 6.7 9.3 3.8 5.4 4.6 5.0 4.8
DAGM (FT) 15.5 4.7 7.2 9.3 5.3 6.7 20.0 3.3 5.6
KSDD2 (FT) 8.0 3.9 5.3 2.2 1.2 1.5 3.6 0.8 1.3
Severstal Steel (FT) 33.7 12.9 18.6 19.5 8.6 11.9 6.1 12.0 8.0
MTD (FT) 28.8 10.5 15.3 48.1 6.6 11.5 48.0 9.5 15.9
CSEM-MISD (FT) 55.2 17.5 26.5 55.0 19.9 29.2 46.3 13.5 20.9
SynthClutch 59.3 10.7 18.1 57.4 10.7 18.1 67.2 10.8 18.7
SynthClutch (FT) 69.6 24.0 35.7 63.1 25.5 36.3 67.6 28.9 40.5
RealClutch (EX) 59.0 16.3 25.5 54.8 17.9 27.0 55.2 20.3 29.7
SynthClutch (EX) 58.1 11.6 19.4 57.5 12.0 19.8 60.0 11.6 19.4
SynthClutch (EX+FT) 67.9 24.2 35.7 67.6 27.7 39.3 64.9 23.5 34.6

Table 1. Comparison between models trained on different source datasets, including fine-tuning (FT) and exposure stacking (EX), evaluated
on RealClutch test split. Precision (P), recall (R) and F1 score (F1) are presented. The best results are bolded vertically.

ros to resolution 1792×256 and split it into patches of size
224×256.

Magnetic Tile Defects (MTD) [25] is a dataset of mag-
netic tiles with slight curvature, used for saliency prediction
over 5 defect classes. We select the defect classes that are
important for our task based on their similarity to our data.
We treat blowhole, crack and break as the defected class,
while uneven and free are ignored. The fray class is not ex-
pected in our data and is thus ignored. Our subset of this
dataset contains 1312 samples split into train-val sets using
the 4:1 ratio, while keeping the ratio of correct and defected
samples at 4:1 in both subsets. For evaluation efficiency,
we standardize the resolution to 640×448 by padding with
zeros and split the image into patches of size 320×224.

CSEM multi-illumination surface defects (CSEM-
MISD) [24] collects 3 different objects (gear, screw and
washer) used for defect segmentation. We use the high-
est 24 light points as defined in the paper, totaling to 2304
images. Different from the proposed method, we train the
model to predict defects on each image separately. The train
split contains 32 instances of every object which we split
using 4:1 ratio for training and validation. For evaluation
efficiency, we split the image into patches of size 256×256.

In Tab. 1 generalization capabilities of models trained on
different source datasets to the baseline model trained on
RealClutch. As expected, the models trained on the Real-
Clutch data generalize poorly due to the small number of
available samples and overfitting due to training and valida-
tion being performed on different images but same objects.
DAGM performs even worse since it does not model neither

the surface texture nor the defect appearance of the metallic
surfaces nor the tight segmentation masks. Severstal Steel
shows some promise due to its size and defect variety which
helps in regularizing the model to learn more robust fea-
tures, which is especially visible after fine-tuning. MTD is
most similar to surfaces of RealClutch and the results con-
firm this relative to other sources. CSEM-MISD addition-
ally displays changes in defect appearance and after fine-
tuning performs on par with RealClutch. Fine-tuning the
models with RealClutch in most cases causes a significant
increase of performance, with highest performance change
attributed to the most similar datasets. However these gains
cannot be predicted based on the pre-trained model perfor-
mance. This allows the conclusion that the domain simi-
larity in form of surface and defect appearance is important
for knowledge transfer. Additionally, learning to correctly
respond to different surface and defect appearances is a cru-
cial information for better performance.

5.3. Effectiveness of custom designed synthetic data

SynthClutch dataset consists of 20 correct and 20 de-
fected object instances. We used the same viewpoints as
for the real acquisition including the non-examined sur-
faces, totaling in 106 viewpoints and 4240 labeled images.
The train-val-test split was constructed object-wise using
28−4−8 objects respectively, while keeping the balance be-
tween correct and defected objects. We follow the augmen-
tation from Sec. 5.2, with max rotation angle reduced to 30
to avoid learning out-of-domain features.

Compared to the baseline model, the models trained on
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synthetic data produce lower recall and similar precision.
However, fine-tuning on RealClutch boosts the performance
above the baseline models by 5−10% on both metrics. Most
pronounced increase is in recall, where the model mostly
increased the area of predictions to match the labels with a
few additional defects becoming detected. When compared
to pre-training on planar datasets, synthetic data doubles the
model performance. This shows that task specific features
guided by geometric attributes and surface texture are re-
quired for best prediction quality. Consequently, this sim-
plifies the task for fine-tuning as model needs to adapt only
to the smaller differences between domains.

The exposure stacking augmentation is evaluated only
on SynthClutch since the defect behavior corresponds to the
target RealClutch defects. As expected, in most cases recall
increases as the model becomes more responsive to a larger
surface area. However, the results are not consistently better
or worse, indicating a need for more detailed research.

6. Discussion
Existing planar datasets were of limited value as sources

of data for transferring knowledge to our geometrically
complex domain. The real object contains sharp and curved
geometrical features with tiny insignificant defects which
can appear very bright under different views. Models tend
to produce false-positives in those regions as they were not
explicitly trained to ignore them. Even fine-tuning this does
not fully resolve this issue, raising the importance of train-
ing on the target object data from the start.

The use of custom designed synthetic data has proven
to be the most promising approach when the amount
of real data is extremely restricted. Although still hin-
dered by the domain gap, the overall model performance
is significantly better than using models trained on alterna-
tive datasets, which in many cases contain more training
samples but the domain is not similar enough. The model
performance is additionally impeded by the task difficulty.
Significant appearance changes of defects depending on the
grazing angle and surrounding texture produce ambiguity
which would also be present for the human inspector. In
such cases, a human inspector would not make a conclu-
sion, but seek a different grazing angle, which was mim-
icked by the illumination stacking approach of Honzatko et
al. [24]. In automated inspection the network is expected
to decide based on a single view, which lowers the recall
rate as observed in Tab. 1. This comes from the fact that the
synthetic data is overly precisely labeled - the defects are
labeled if they are geometrically visible (not obstructed),
and not if they are visible in terms of prominence. This is
true for [24] as well. This issue hints at the need for mod-
els with efficient multi-view memory capabilities or models
utilizing the grazing angle and location information about
the view from a CAD model. So far, the research commu-

nity has no answer to defect visibility evaluation, however
our study raises this as an important point to be tackled in
the future to prevent over-labeling in synthetic data.

The defect visibility problem is also closely related to the
estimation of inspection coverage where we estimate if a re-
gion of the object surface can be inspected by a set of view-
points. Our study on multiple exposures unveils the oppor-
tunity to study the effective visual coverage that is achieved
by a particular recognition model, which greatly influences
the process of inspection planning [19].

While fine-tuning on a small amount of real data helps
with the domain gap, it is still prone to model overfitting
due to high complexity of both the task and the model. [17]
Further development of the data generator could reduce the
gap from reality and reduce the need for fine-tuning. En-
hancements might include texture models with richer varia-
tions or more precise selection of texture parameters. Both
is achievable due to the immense controllability of genera-
tors based on computer graphics. Once designed, the data
generator can reuse existing textures and defects, and be ex-
tended for the new ones. The extensions may be costly in
terms of time however they become cheaper on the long run
due to their high reusability and adaptability across different
inspection targets.

7. Conclusion

When it comes to metal inspection, weighting the ben-
efits of investing into a custom designed synthetic dataset
against using publicly available datasets is difficult. Metal
as a target domain is alone highly restrictive, whereas the
multi-view inspection of complex metal geometry leaves us
with a single publicly available real dataset. Therefore this
work not only examined the benefits of the synthetic data,
but additionally published a new dataset containing both
real and corresponding synthetic data for multi-view inspec-
tion of a complex metal object. Such dataset is a first of its
kind for metal inspection. The synthetic data has proven to
be a superior pre-training data source over multiple archi-
tectures but is still burdened by over-labeling. To resolve
this, the research must further focus on generator enhance-
ment, defect visibility quantification and utilization of ob-
ject 3D as additional source of information for the network.
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