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Abstract

Identifying defects in the images of industrial products
has been an important task to enhance quality control and
reduce maintenance costs. In recent studies, industrial
anomaly detection models were developed using pre-trained
networks to learn nominal representations. To employ the
relative positional information of each pixel, we present N-
pad, a novel method for anomaly detection and segmenta-
tion in a one-class learning setting that includes the neigh-
borhood of the target pixel for model training and evalua-
tion. Within the model architecture, pixel-wise nominal dis-
tributions are estimated by using the features of neighboring
pixels with the target pixel to allow possible marginal mis-
alignment. Moreover, the centroids from clusters of nominal
features are identified as a representative nominal set. Ac-
cordingly, anomaly scores are inferred based on the Maha-
lanobis distances and Euclidean distances between the tar-
get pixel and the estimated distributions or the centroid set,
respectively. Thus, we have achieved state-of-the-art per-
formance in MVTec-AD with AUROC of 99.37 for anomaly
detection and 98.75 for anomaly segmentation, reducing the
error by 34% compared to the next best performing model.
Experiments in various settings further validate our model.

1. Introduction
Humans have the inherent ability to recognize unusual

or abnormal patterns that deviate from what is considered
the norm [8, 9]. This trait is essential for various tasks in
which inappropriate states must be detected. In particular,
identifying defects in the images of industrial products is
essential for enhancing quality control and reducing unnec-
essary maintenance costs [26, 27, 39]. Therefore, artificial
intelligence models for industrial anomaly detection have
been developed to more precisely identify anomalous im-
ages and segments.

In the industrial field, most products are nominal with a
rare occurrence of anomalous production [5, 26, 39]. Here,
an out-of-distribution classification is performed by train-

ing the distribution of nominal features using only a nomi-
nal dataset and by evaluating how the nominal and anoma-
lous images in the test set deviate from the nominal dis-
tribution [8, 46]. Industrial anomaly detection has been
challenging because some small-scale anomalous regions
in products are often too small to distinguish. Moreover,
anomalies in the industrial field vary from minor flaws, such
as cracks, scratches, and holes, to significant irregularities,
such as missing components, flips, and colors [5]. To de-
tect these anomalies well, various models based on autoen-
coders (AE) [12], semi-supervised learning, generative ad-
versarial networks (GAN) [43], and normalizing flows [17]
have been developed. Recently, image representations were
extracted from pre-trained models using ImageNet to learn
the pixel-wise distributions of features without adaptation
through transfer learning, which demonstrated state-of-the-
art performances [10, 11, 32]. To successfully use pre-
trained models for anomaly detection, the assumption that
nominal images are perfectly aligned is necessary for ac-
curate pixel-wise distributions. In this sense, attempts have
been made to disregard positional information during de-
tection. Nevertheless, because the inherent properties of in-
dustrial products exist primarily in their unique shapes, the
positional information of each pixel cannot be overlooked.

Thus, we propose Neighboring Pixel-based industrial
Anomaly Detection (N-pad), which is the first attempt to
employ the features of neighboring pixels to acquire posi-
tional information and minimize errors caused by misalign-
ment. Here, two novel modules for weight application and
feature aggregation of neighboring pixels are devised to es-
timate two nominal distributions by fully leveraging the fea-
tures of neighboring pixels. Specifically, weights are ap-
plied to neighboring pixels according to the similarity val-
ues between the target pixel and its neighborhood, which
are computed using the Bhattacharyya distance [19]. By
integrating the two estimated distributions for the compu-
tation of the final anomaly score, we achieved state-of-the-
art performance in multiple classes of the industrial dataset
with a pixel-wise area under the receiver operating char-
acteristic curve (AUROC) of 98.75, which is a 34% im-
provement compared to the existing state-of-the-art model
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. Various experiments are performed to demonstrate the ro-
bustness of the model performance.

2. Related Works
2.1. General anomaly detection

Conventional models for anomaly detection have been
developed to accurately learn the representative attributes
of nominal data. In this sense, existing studies have primar-
ily implemented reconstruction- and embedding-similarity-
based methods. In terms of reconstruction-based methods,
models are trained to learn features that reconstruct the
original data, which identifies poorly reconstructed sam-
ples as anomalies. Accordingly, extensions based on AEs
[5, 7, 12, 16, 24, 37] or GANs [2, 28, 29, 36, 38, 43] have
been proposed. In terms of embedding similarity-based
methods, the latent features of nominal data were learned
from the model to identify samples distinct from the nomi-
nal distribution as anomalies. As a reference for the nomi-
nal features, the center of constrained latent feature spaces
[30,34,35,47], geometric transformations [4,15,23,40,41],
estimation of the probability density function using Gaus-
sian mixture models [21,31,50], and kernel density estima-
tions [20] have been employed. Hence, distance-based met-
rics [14, 32, 42] have been applied to assign distant samples
with high anomaly scores.

2.2. Industrial anomaly detection

Industrial anomaly detection has developed differently
from general anomaly detection because learning the unique
nominal features of an industrial object or texture is es-
sential [5]. A recent trend in industrial anomaly detec-
tion is to use a model pre-trained on an external image
dataset, such as ImageNet, to learn the distribution or fea-
tures of the nominal dataset without transfer learning [3].
One of the first successful applications was SPADE [10],
which obtains a global feature set from the given network
of the nominal data and applies a Euclidean distance-based
measure of the k-nearest neighbor [14] to the feature set
for image-wise anomaly detection. Another pre-trained
network-based model, PaDiM [11] learned the distribution
of local features at every pixel and obtained a pixel-wise
anomaly map by computing the Mahalanobis distance be-
tween the pixel and its distribution [25]. Similarly, Patch-
Core [32] proposed an algorithm for storing a subsampled
coreset [1] of the pre-trained features in a memory bank to
obtain the patch-level distance between the coreset and a
sample for detecting anomalies. In addition, attempts have
been made to adapt the weights of the pre-trained model
to identify the distribution of nominal data. FastFlow [48],
FEFM [44], and CFLOW-AD [17] reported good perfor-
mances by estimating the distribution of network-based fea-
tures by normalizing the flow, and CFA [22] implemented

feature adaption through Coupled-hypersphere to better ex-
plain the distribution of nominal features.

However, there are some limitations in existing pre-
trained feature-based models without the adaptation of pre-
trained features. In particular, because PADiM utilized only
the nominal data of the target pixel location to compute its
anomaly score, the scores may be overestimated if all nom-
inal industrial images are not perfectly aligned. PatchCore
was developed to disregard the positional information of the
pixel because the anomaly scores were computed based on
the distance from the core patch-level local features that
were stored in a memory bank as a whole. Nevertheless,
considering the positional information of each pixel is es-
sential for anomaly detection. When augmentations of ro-
tated images were included for prediction in CSI [41], the
predictive performance degraded, indicating that the change
in position was not constructive for anomaly detection.

Thus, to overcome these limitations, the proposed model
is devised to employ the information of neighboring pixels
to estimate the nominal distribution of each pixel because
the method of integrating the relationship between neigh-
boring nodes with features has long been utilized in graph
neural networks. Specifically, the similarities between the
target pixel and its neighborhood are applied as weights to
appropriately consider the information of neighboring pix-
els along with the target pixel. Consequently, we aim to
design a model that is less affected by perfect image align-
ment but utilizes the positional information of pixels.

3. Method

3.1. Calculation of pixel-wise neighborhood simi-
larity

Feature extraction In this study, a model architecture
which implemented a pre-trained network on ImageNet as
the backbone is designed for the out-of-distribution task
of anomaly detection. Herein, the training set Xtrain =
{xk | yk = 0} consists of |Xtrain| = N nominal im-
ages, and the test set Xtest = {xk | yk = 0 or 1} con-
sists of |Xtest| = Ntest images that are either nominal or
anomalous, where xk denotes a single image from a set
of all images Xtrain, and yk ∈ {0, 1} denotes image xk

as nominal with 0 and anomalous with 1. As in previ-
ous studies [3, 10, 11, 32], ResNet-like architectures, such
as ResNet50 and WideResnet-50, were employed to extract
feature maps. Within the given network φh, feature maps
are extracted from the final output of the spatial resolution
block at a specific hierarchy level (h = 1, 2, 3). Because
the feature map extracted from the lowest hierarchy level
(h = 1) has the largest size, the feature maps of higher hier-
archy levels (h = 2, 3) are interpolated to this size. Conse-
quently, the pre-trained feature set φ(xk) = [φh(xk) , h =
{1, 2, 3}] is constructed by concatenating all channels from
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Figure 1. Overall model architecture. Two nominal distributions are estimated by applying the similarity between the target pixel and
its neighboring pixels as weights (A) and by aggregating features of its neighborhood (B). Also, the k-means centroids of the aggregated
features are identified as a set of representative nominal features for image-wise detection (B). Next, the pixel-wise anomaly map and
image-wise anomaly score are computed by Mahalonobis distances between the estimated distributions and test features and Euclidean
distance between the centroids of train features and test features (C). Lastly, a shifting technique is applied to enhance the predictive
performance (D).

each level.
Dimension Reduction Before estimating the nominal

distributions, dimension reduction is performed on the to-
tal set of concatenated features φ(xk) because features ex-
tracted from the pre-trained network may infer redundant
information. Although the concatenated channels at each
pixel are assumed to follow a multivariate Gaussian distri-
bution, not every channel may follow a Gaussian distribu-
tion. In this sense, when reducing the number of channels,
we aim to select the channels with an approximate Gaussian
distribution form. We believe that the normal distribution
may be distorted when all channels with values below zero
are set to zero after applying ReLU function at the end of
most pre-trained networks. Accordingly, the nonzero val-
ues in the nominal features are counted for each channel,
and the top-d channels with the least nonzero values are se-
lected. Consequently, the final nominal feature set reduced
from φ(xk) is identified and denoted as exk

.

3.2. Estimation of weighted similarity distribution

Calculation of pixel-wise neighbor Bhattacharyya
distance To estimate the nominal distribution at each pixel,
we propose a novel method for computing the pixel-wise
similarity between a pixel and its neighborhood. In this
study, we aim to calibrate possible misalignments by in-

cluding information from neighboring pixels, whereas the
perfect alignment of pixels was essential for position-based
estimations in existing methods. Specifically, the neighbor-
hood of a pixel is defined as the set of p pixels that were
adjacent to the target pixel:

N (h,w)
p = {(h′, w′) | h′ ∈ [h− ⌊p/2⌋, h+ ⌊p/2⌋],

w′ ∈ [w − ⌊p/2⌋, w + ⌊p/2⌋]}
(1)

First, based on the assumption that every pixel (h,w) in
a feature map e

(h,w)
i of a nominal image i follows a multi-

variate Gaussian distribution, the sample mean µ(h,w) and
covariance Σ(h,w) of the nominal distribution are estimated.
In addition, a regularization term ϵI is added to Σ(h,w) to
ensure full rank and invertibility.

µ(h,w) =
1

N

N∑
i=1

e
(h,w)
i (2)

Σ(h,w)=
1

N−1

N∑
i=1

(
e
(h,w)
i − µ(h,w)

)(
e
(h,w)
i − µ(h,w)

)
T+ϵI

(3)

Next, the Bhattacharyya distance m, which indicates the
distance between two probability distributions, is computed
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between the target pixel and all pixels within the neighbor-
hood. Because the Bhattacharyya coefficient BC measures
the overlapping degree of the two distributions, the negative
exponential value of the coefficient is accepted as the sim-
ilarity value. Consequently, the Bhattacharyya distance set
λ
(h,w)
p between the estimated distribution of pixels (h,w),

and N (h,w)
p is computed as follows:

λ(h,w)
p = {ma|a ∈ N (h,w)

p }
ma = Batt(N(µ(h,w),Σ(h,w)),N(µa,Σa)), Batt = e−

BC
γ

BC(N (µ1,Σ1),N (µ2,Σ2)) =

1

8
(µ1 − µ2)

TΣ′(−1) (µ1 − µ2) +
1

2
log(

detΣ′
√
detΣ1detΣ2

)

(4)

where µ1 and µ2 denote a pair of mean values obtained
from the estimated distributions and Σ′ denotes the aver-
age of Σ1 and Σ2. Herein, a balancing parameter γ is em-
ployed to modulate the degree to which the neighboring pix-
els are used to estimate the distributions. A γ of 1 is equal to
the original formulation of the Bhattacharyya distance, and
larger values of γ imply that more information is used from
the neighborhood. Moreover, by assuming that the inher-
ent information of pixels within a neighborhood, denoted
as the sample covariances of (h,w) and (h′, w′), are sim-
ilar, the logarithm of the ratio of the determinant terms in
Eq. (4) is negligible. Consequently, the final similarity with
the reduced computational cost is calculated as follows:

BC(N(µ1,Σ1),N(µ2,Σ2)) ≃
1

8
(µ1 − µ2)

TΣ′(−1) (µ1 − µ2)

(5)
Learning the normality based on similarity As the

last step for learning the nominal distribution of each pixel,
we aim to accentuate the features at specific locations that
may infer more relevant information about the target pixel
(h,w). In this sense, weights are applied to the neighbor-
ing pixels according to their similarity to the target pixel.
Accordingly, the similarity values calculated within N (h,w)

p

are utilized to estimate the weighted sample mean µ(h,w)

and covariance Σ(h,w) to accurately train the distribution of
each pixel from the nominal images. The weighted sample
mean and covariance are defined as follows:

µ(h,w) =
1

N

N∑
i=1

∑
a∈N (h,w)

p

m′
ae

a
i , m

′
a =

ma∑
a∈N (h,w)

p
ma

Σ(h,w) =
1

N −
∑

a∈N (h,w)
p

(m′
a)

2
×

N∑
i=1

∑
a∈N (h,w)

p

m′
a(e

a
i − µ(h,w))(eai − µ(h,w))T

(6)

3.3. Estimation of aggregated feature distribution

Learning the normality based on neighborhood ag-
gregate features To best use the information of neighboring
pixels, the normality based on aggregating neighborhood
features (B in Fig. 1) is learned, in addition to the normal-
ity learned with weights (A in Fig. 1). Because neighbor-
ing pixels infer unseen information from the target pixel,
an anomaly map for a receptive field with higher resolution
is identified by aggregating the features within a neighbor-
hood as follows:

ϕ(e(h,w)) = fagg(e
a|a ∈ N (h,w)

p ) (7)

where fagg is the aggregation function for the neighbor-
hood N (h,w)

p . In N-pad, we use adaptive average pooling
for fagg . Accordingly, the pixel-wise nominal distribution
is learned by computing the sample mean and variance of
the aggregated features at each pixel.

Because utilizing the Euclidean distance between the test
feature and aggregated features has been effective in image-
wise anomaly detection in existing studies, we aim to con-
struct a memory bank consisting of a group of essential fea-
tures. In this sense, the aggregated features from the nomi-
nal set are clustered using k-means, and the features identi-
fied as the centroid of each cluster are grouped into a repre-
sentative set of features denoted as C. In fact, the method of
retrieving centroids as key features has been highly robust
for outliers and noisy features within the nominal set and re-
ported significant performance as opposed to arbitrary fea-
ture selection [13,45,49]. Thus, within the memory bank of
all cluster centroids C, a group of centroids near the target
feature is retrieved for image-wise anomaly detection.

3.4. Inference: computation of anomaly score

Pixel-wise anomaly map The anomaly score of a pixel
(h,w) is computed using the Mahalanobis distance between
the target pixel and distributions estimated by the two mod-
ules, in which features highly deviated from the nominal
distributions reported higher anomaly scores.

First, because the information of neighboring pixels at
(h,w) is involved in estimating the weighted distribution
of N (µ,Σ), features extracted at (h,w) affect the values
in N (h,w)

p . In this sense, we also employ the distributions
of neighboring pixels when computing the anomaly score
of the targeted position. Accordingly, Mahalanobis dis-
tances are computed between the target feature e(h,w) and
its neighborhood, which is defined as a collection of esti-
mated distributions Pq(e

(h,w)) identified from N (h,w)
q . By

applying a minimum aggregation function f to the set of
Mahalanobis distances, D1 is obtained for each pixel and
used to calculate the anomaly score. The computation of
D1 proceeds as follows:
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Pq(e
(h,w)) = {N (µa,Σa) | a ∈ N (h,w)

q } (8)

D1(e
(h,w),Pq(e

(h,w))) =

f(
√

(e(h,w))− µa)T (Σa)−1((e(h,w))− µa) | a ∈ N (h,w)
q )

(9)

Next, the Mahalanobis distance D2 between aggregated

features ϕ(e(h,w)) of pixel (h,w) and N (µ
(h,w)
agg ,Σh,w

agg) is
defined as follows:

D2(ϕ(e
(h,w)),N (µ(h,w)

agg ,Σh,w
agg)) =√

(ϕ(e(h,w))− µ
(h,w)
agg )T (Σ

(h,w)
agg )−1(ϕ(e(h,w))− µ

(h,w)
agg )

(10)

Finally, to equalize the effects of the two pixel-wise
anomaly maps D1 and D2 obtained from all pixels using
Eq. (9) and Eq. (10), the geometric mean of the two maps is
used as the final anomaly score M(h,w):

M(h,w) =
√

D1D2 (11)

Image-wise anomaly score The image-wise anomaly
score based on the Euclidean distance between the aggre-
gated features of a test image and refined set of aggre-
gated nominal features has been effective in existing stud-
ies. Herein, a combination of Euclidean and Mahalanobis
distances is employed to detect image-wise anomalies more
accurately. First, the top-k Mahalanobis distances D1 be-
tween the target feature e(h,w) and estimated distribution
collection of Pq(e

(h,w)) are identified as a set Qk. Next, for
all pixels included in Qk, the minimum Euclidean distance
d between the aggregated feature of a pixel ϕ(ev) and the
centroids in set C is calculated for all pixels and denoted
as set Ek. Consequently, the image-wise anomaly score is
defined as follows:

Qk = max
(h,w)

k(D1(e
(h,w),Pq(e

(h,w)))) (12)

Ek = {min
C

d(ϕ(ev), C) for ∀ v ∈ argmax
k

D1} (13)

Mimage =

k∑
i=1

sort(Ek)[i]sort(Qk)[i] (14)

where Ek and Qk are sorted in ascending order because
the sizes of the two distance values at each pixel are not in
accordance. Consequently, employing both the top-k Eu-
clidean and Mahalanobis distances is demonstrated to be
robust for computing image-wise anomalies.

Image-shifting As the final inference step, target image
xk is shifted by the pixel level from size 1 to r to compute
the final image-wise anomaly score and pixel-wise anomaly

map based on the anomaly scores of the shifted images. By
aggregating the scores from all shifted images of xk denoted
as a set Ir

k , we expect the marginal misalignment in the im-
ages to be negligible. Set Ir

k is defined as follows:

Ir
k = {x′

k | x′
k[h− a,w − b] = xk[h,w]

∀(a, b) ∈ [⌊−r/2, r/2⌋, ⌊−r/2, r/2⌋]}
(15)

4. Experiments
4.1. Dataset and experimental setup

In this study, the proposed model is trained and evaluated
on MVTec Anomaly Detection dataset (MVTec-AD) [5],
which has been widely used for industrial anomaly detec-
tion tasks in existing studies. MVTec-AD consists of ten
object and five texture classes with 3,629 nominal-only im-
ages for training and 1,725 nominal and anomalous images
for evaluation. Moreover, we perform additional experi-
ments on Magnetic Tile Defects (MTD) to further validate
our model, where the details are described in Sec. 4.5. All
images are center-cropped from 256 × 256 to 224 × 224
before model training and evaluation. The proposed model
with a neighborhood size p of 3 for model training, neigh-
borhood size q of 2 for inference, shift size r of 4, balancing
parameter γ of 0.25, dimension reduction to 550, and 10%
use of the centroids from C reported the best performance.

To evaluate the performance of the proposed model, the
image- and pixel-wise AUROCs are measured. In addition
to the AUROC, the per-region-overlap score (PRO-score),
which has been widely used in existing studies to measure
anomaly detection performance, is measured for pixel-wise
anomaly segmentation [5,6]. Herein, a PRO-curve is plotted
using the average rates of correctly classified pixels for all
connected anomalous components, with the false positive
rates set between 0 and 0.3. Accordingly, the PRO-score is
computed by normalizing the area under the PRO-curve.

4.2. Comparison with baseline methods

To validate the predictive performance of the pro-
posed model, we have benchmarked methods from gen-
eral anomaly detection, pre-trained feature-based models,
and existing models with state-of-the-art performance on
MVTec-AD dataset. Since some existing models, such as
Cflow-AD and PEFM, reported ensembled results with dif-
ferent image resolutions or without the 224 X 224 crop,
we standardize the image size of all models prior to model
training for objective comparison.

Tab. 1 presents the average AUROC of image-wise
anomaly detection and the average AUROC and PRO-score
of pixel-wise anomaly segmentation over 15 classes of
MVTec-AD, where the value in parenthesis denotes the
error in each score. Herein, the proposed model consis-
tently outperforms existing models with state-of-the-art-
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Method Normalizing Flow Based Pre-trained Feature Based
Model FastFlow PEFM CFLOW-AD SPADE PaDiM PatchCore N-pad

Image-wise AUROC 97.52 (2.48) 98.13 (1.87) 97.24 (2.76) - - 99.0 (1.0) 99.37 (0.63)
Pixel-wise AUROC 98.03 (1.97) 97.61 (2.39) 97.57 (2.43) 96.0 (4.0) 97.5 (2.5) 98.1 (1.9) 98.75 (1.25)
PRO-score 93.0 (7.0) 92.4 (7.6) 91.7 (8.3) 91.7 (8.3) 92.1 (7.9) 93.5 (6.5) 95.1 (4.9)

Table 1. Image-wise AUROC, pixel-wise AUROC, PRO-score of various models on the MVTec-AD dataset

performance in both tasks. Specifically, the reduction of
error for image-wise detection is 37% compared to the pre-
trained feature-based model of PatchCore. Moreover, the
proposed model achieves state-of-the-art performance in
pixel-wise AUROC for 12 out of 15 classes with an average
AUROC of 98.75 and PRO-score of 95.1 (Tab. 1), reduc-
ing the error by 34% and 25%, respectively, compared to
the next best performing model. The detailed comparison
of all scores and visual results between various models for
all 15 classes of MVTec-AD are listed in the supplementary
material.

We believe that the proposed method of applying similar-
ity between the target pixel and its neighborhood as weights
successfully trained the underlying relationship within the
pixels. In addition, we believe that the shifting module also
contributed greatly to the predictive performance by infer-
ring the distributions of neighboring pixels when computing
anomaly score.

4.3. Ablation study

Evaluation of the effectiveness of key design compo-
nents The effectiveness of the four modules comprising
the proposed model architecture (A, B, C, and D in Fig. 1)
is evaluated by removing certain modules and comparing
their predictive performances. Herein, five experiments are
performed, as follows.

Experiment 1: Inference only using the weighted simi-
larity distribution of the target pixel without the aggregated
feature distribution (A).

Experiment 2: Inference only using the aggregated fea-
ture distribution without the weighted similarity distribu-
tions (B).

Experiment 3: Inference using both the weighted simi-
larity distribution of the target pixel and aggregated feature
distribution (A+B).

Experiment 4: Inference using the distributions from
neighboring pixels to estimate the weighted similarity dis-
tribution (A+C).

Experiment 5: Inference using the distributions from
neighboring pixels to estimate the weighted similarity and
aggregated feature distributions without shifting (A+B+C).

Tab. 2 shows that all modules significantly contribute to
the performance of anomaly detection. First, the degraded

performance in Experiment 5 compared with the result of
N-pad proves that shifting the aggregated anomaly maps
is superior to the sole use of the original images. Next,
0.19 increase in the AUROC from Experiment 1 to Exper-
iment 4 demonstrates that using the distributions from the
neighboring pixels was effective in estimating the weighted
similarity distribution. This result suggests that aggregat-
ing the anomaly scores computed from the distributions of
neighboring pixels is effective. Finally, the improved per-
formance in Experiment 3, which integrated both modules
from Experiments 1 and 2, demonstrates that the inference
that uses both weighted similarity and aggregated feature
distributions was effective.

Method Exper1 Exper2 Exper3 Exper4 Exper5 N-pad
Pixel-wise
AUROC 98.38 98.45 98.59 98.57 98.65 98.75

Error 1.62 1.58 1.41 1.43 1.35 1.25

Table 2. Evaluation of the effectiveness of key design components

Verification of parameter efficiency in model archi-
tecture Various parameters within the modules were tested
to determine the optimal design of the proposed model.
First, different neighborhood sizes (p) for estimating the
distributions of weighted similarity or aggregated features
are tested. Fig. 2a demonstrates that the performance im-
proves as the neighborhood size increases from 1, reaches
the optimal level at a size of 3, and degrades with larger
sizes. Thus, we believe that acquiring information from
considerably close neighbors is the best, whereas distant
neighbors infer excessive information with no greater rel-
evance to the target pixel.

Second, the different numbers of distributions on neigh-
boring pixels (q) used to compute the anomaly map in mod-
ule A (Fig. 1) are tested. Fig. 2b shows a neighbor size of
2 as the optimal value. Because applying a large neighbor-
hood size may affect numerous pixels of the original image
during interpolation, we believe that a relatively small num-
ber is optimal.

Third, different shifting sizes (r) are tested, as shown
in Fig. 2c, resulting in a shifting size of 4 being the most
optimal. This approach demonstrates that calibrating im-
perfectly aligned industrial images through the aggregation
of slightly shifted versions of the images can significantly
contribute to improved performance.
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(a) AUROC comparison of different neighborhood
sizes (p) for estimating distribution

(b) AUROC comparison of different neighborhood
sizes (q) for inference

(c) AUROC comparison of different image shift
sizes (r)

(d) AUROC comparison of different dimension reduction (e) AUROC comparison of different backbones

Figure 2. Verification of parameter efficiency with various sizes and backbones.

Fourth, the number of channels following the dimension
reduction is tested by first using 50 channels and increas-
ing the number up to 550 in units of 50. As shown in
Fig. 2d, the proposed model outperforms PatchCore, a state-
of-the-art model, with an pixel-wise AUROC of 98.1, when
the number reaches 150 channels, which is only 8.37% of
the total number of channels. Because the computational
cost reduces quadratically with fewer channels, this result
demonstrates that the proposed model can be effective with
minimal computation.

Finally, additional experiments are performed with dif-
ferent image sizes because a few existing models have re-
ported benchmark scores by extensively reshaping the im-
age size or excluding image crops. Because the cropped
area is mostly the edge of the image background, which
may be easily identified as nominal pixels, the better predic-
tive performance is recorded with larger image sizes with-
out cropping. Consequently, an ensemble of models which
employed images cropped by 224 and 336 reported the best
pixel-wise AUROC of 98.98, as shown in Tab. 3.

Method 256Resize
224crop 256Resize 320Resize

280Crop
384Resize
336Crop Ensemble

Pixel-wise
AUROC 98.75 98.91 98.86 98.89 98.98

Table 3. AUROC comparison of different image sizes and crops

Evaluation on various ratios of k-means centroids We
have tested various ratios of the K-means centroids included
for model evaluation and compared their AUROCs. In fact,

the decrease in the number of clusters did not significantly
affect the results because a highly robust set of centroids
was employed.

K-means ratio 0.25 0.1 0.05 0.01 0.005
Image-wise AUROC 99.39 99.37 99.34 99.31 99.10

Table 4. Evaluation of image-wise AUROC on various ratios of
k-means centroids

Evaluation of the effectiveness of Bhattacharyya dis-
tance for estimating weighted similarity distributions To
demonstrate the effectiveness of the Bhattacharyya distance
calculation for estimating the weighted similarity distribu-
tions in this study, uniform and random weights are tested
for comparison, as presented in Tab. 5. First, weights that
are randomly applied resulted in poor performance because
the relationships within the pixels were not considered.
Moreover, uniformly applied weights also have a minimal
effect on the estimated mean and covariance of the distribu-
tions, because features from neighboring pixels may not in-
fer significantly different information from the target pixel.
Consequently, the proposed method of weighted sampling
based on similarity is reported as the most effective for pre-
dictive performance.

Sampling Method 1/n Random Ours

Pixel-wise AUROC 98.42 98.42 98.45

Table 5. AUROC comparison of different sampling methods
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(a) Image-wise AUROC comparison of different models. (b) Pixel-wise AUROC comparison of different models.

Figure 3. Few shot anomaly detection performance

Comparison of methods for reducing dimensions
with various backbones To evaluate the proposed
distribution-based method for dimension reduction, results
based on a random dimension reduction with different back-
bones are reported for comparison. First, the random selec-
tion of dimensions in the proposed model achieves an AU-
ROC decrease of 0.34. Next, a random dimension reduc-
tion in features extracted at the batch normalization layer
prior to ReLU scores AUROC that is 0.23 lower than that
of the proposed model. This result demonstrates that be-
cause the channels activated greater than 0 by the activation
function are more relevant for ImageNet classification, the
pre-trained network features extracted from those channels
may have been more effective. Furthermore, various model
architectures other than the WideResNet-50 of the proposed
model, such as ResNet18, ResNext50, WideResNet-101,
and ResNext-101, are tested for comparison. As shown in
Fig. 2e, the proposed method reports a better performance
than random reduction in all architectures, demonstrating
the consistency of its superiority.

4.4. Few-shot Anomaly Detection

In the industrial field, anomaly detection can be required
for initial production, where only a small set of nominal
sample data is available. Accordingly, few-shot anomaly
detection is performed to test the proposed model with lim-
ited nominal data by testing the number of training images
from 1 to 50. Consequently, as demonstrated in Fig. 3,
the proposed model achieves better performance than the
previous state-of-the-art model using only 8% of the total
dataset. Because the proposed model employs information
from neighboring pixels to train the distribution of the target
pixel, the augmented information from the neighborhood
may have significantly contributed to few-shot learning.

4.5. Evalution on MTD dataset

In addition to the MVTec-AD dataset, we performed ad-
ditional experiments with MTD (Magnetic Tile Defects)

dataset which has also been used for industrial anomaly
detection in previous studies [18]. MTD dataset consists
of magnetic tile images in various shapes and patterns, of
which 925 are nominal and 392 are anomalous. As in pre-
vious studies, 80% of the nominal data were employed for
model training and the remaining 20% and the anomalous
data were employed for evaluation. Accordingly, the results
were compared to existing pre-trained network-based mod-
els and DifferNet [33], which reported good performance.
The results are reported as follows:

Model DifferNet PaDiM PatchCore N-pad
Image-wise AUROC 97.7 86.88 97.9 98.22
Pixel-wise AUROC 82.45 84.90 85.43

Table 6. Evalution on MTD dataset

Since the shapes of nominal data are not consistent, the
images may not be clearly aligned, which makes the predic-
tions on MTD dataset challenging. Nevertheless, we have
achieved superior performance by employing neighboring
pixels to calculate anomaly score.

5. Conclusion
In this paper, we propose a novel model for industrial

anomaly detection and segmentation that utilizes features
from the neighborhood of the target pixel. We estimate the
nominal distribution of each pixel inferring the the informa-
tion in the neighborhood by applying the similarity between
the neighboring pixels and target pixel as weights. More-
over, another estimation of the nominal distribution based
on aggregated features is proposed to employ information
from various receptive fields. Various experiments evalu-
ate the model in multiple settings and achieved state-of-the-
art performances on the 15 classes of an industrial anomaly
dataset. Thus, we believe that learning nominal distribu-
tions with the pre-trained features of neighboring pixels is
useful and effective for improving predictive performances
in industrial anomaly detection.
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