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Abstract

Glass wool defect detection is a key part of product qual-
ity assessment in the glass wool production process, yet
few studies have been reported in this area. We propose
a glass wool defect dataset named GWD, and also use the
YOLOv5s model embedded in the GSConv and the CBAM
modules for both Gap and Glueless defects in this dataset.
The experimental results show that the performance of the
improved YOLOv5s on the GWD dataset is superior to other
compared methods and achieves a relatively good level on
other publicly available datasets. Compared to the vanilla
YOLOv5s, the mAP50 increased by 3.7% to 84.1%, the re-
call increased by 4.2% to 84.4%, and the number of pa-
rameters decreased by 0.42 MB to 6.27 MB of the improved
YOLOv5s model on the GWD dataset. Speed-wisely, the
improved YOLOv5s achieves a 97 FPS on RTX 2080Ti, thus
making it practical to be applied in the industry of glass
wool defect detection. The research on the GWD dataset is
likely to contribute to breakthroughs in research on other
datasets of the same type as well. The GWD dataset can be
obtained by contacting us via email.

1. Introduction

Glass wool is a porous material that is widely used in
construction, aerospace, and other industrial production due
to its corrosion resistance, stable chemical properties, good
thermal insulation, and effective sound absorption proper-
ties [1]. In chemistry, glass wool is also widely employed
as a filter, packing material in gas chromatography columns,
purge traps, and adsorbent beds [2]. In recent years, studies
have shown that glass wool can act as catalyst support for
many different reactions, and it offers a promising alterna-
tive as an adsorptive material for virus concentration [2, 3].
As one of the most common insulating materials in the
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world [4], glass wool plays an important role in industry
and daily life.

Glass wool defect detection is the identification of where
and what kind of defects are present in a piece of glass wool.
Its goal is to monitor the production process of glass wool,
but it also helps glass wool products meet market standards
and identify inferior products before quality checks. In re-
cent years, researchers have made a lot of efforts to improve
the effectiveness of neural networks in industrial vision de-
fect detection. Deep learning-based image processing mod-
els that can classify and locate defects more accurately have
been applied in industrial production [5–7]. However, little
research has been reported on the detection of defects in
glass wool.

The main challenges in glass wool defect detection are
the wide range of defect sizes and the high inference speed
required of the model. According to the images we col-
lected, the area of the defects in the labeled glass wool de-
fects can range from 0.1% to 94% of the total image. In
the actual production environment, glass wool is inspected
on the assembly line for quality, and its residence time is
very short, so the model must complete defect detection on
glass wool in real time under the condition of meeting the
production requirements of the assembly line.

Focusing on the study of the glass wool defect detection
problem, we collected a glass wool defect dataset in an ac-
tual production environment in a factory and then improved
on the YOLOv5 [8] model to propose a method applica-
ble to glass wool defect detection. The method mainly uses
the GSConv module [9] and the convolutional block atten-
tion module (CBAM) [10] to replace the native convolution
module in the YOLOv5, thus improving the performance of
the vanilla YOLOv5 on this problem.

In summary, our contributions are as follows: (1) we
constructed a glass wool defect detection dataset named
GWD, which to the best of our knowledge is the first dataset
on glass wool defects; (2) we investigated the performance
of YOLOv5n, YOLOv5s, and YOLOv5m models on the
proposed dataset, respectively, and discovered that these
models struggled to detect defects in glass wool and pin-

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4385



pointed the primary problems; (3) an improved YOLOv5
model applicable to glass wool defect detection is proposed,
which achieves 84.1% mAP50 and 84.4% recall on the
GWD dataset, with inference speed up to 97 FPS measured
under RTX 2080Ti GPU. The proposed model also achieves
relatively good results on other publicly available datasets.

2. Related Work
Since the glass wool used in this study is very similar to

the fabric in appearance from the images, this section fo-
cuses on the work related to the detection of fabric defects.

One-Stage Fabric Defect Detection: As a specific im-
plementation of the one-stage detector for fabric defect de-
tection, the one-stage algorithm inherits both the benefits
and drawbacks of the one-stage detector. One-stage detec-
tors typically attempt to classify and regress bounding boxes
directly by either densely classifying a set of predefined an-
chor boxes or by densely searching for geometric entities.
The detection speed of one-stage detectors is fast enough to
satisfy online detection needs, but their detection accuracy
often falls short of expectations [11].

The one-stage detectors are pioneered by YOLO, and
some fabric defect detectors are based on the improved
YOLO algorithms. By enhancing the YOLOv2 deep con-
volutional neural network’s super parameters, Zhang et al.
[12] refined the model, which was then applied to the de-
tection of defects in the yarn-dyed fabric. Jing et al. [13]
combined fabric defect size and k-means algorithm for di-
mensional clustering of target frames based on YOLOv3 to
determine the number and size of previous frames; then
combined low-level features with high-level information
to add detection layers on feature maps of different sizes.
Dlamini et al. [14] used the pre-trained model of YOLOv4
for retraining to localize defects in the textile. Zheng et al.
[15] suggest a Squeeze-and-Excitation(SE)-module-based
YOLOv5 (SE-YOLOv5), which adds the SE module to
the YOLOv5 backbone and substitutes the ActivateOrNot
(ACON) activation function for the Leaky Rectified Linear
Unit (ReLU) activation function of the YOLOv5 cross stage
partial (CSP).

Two-Stage Fabric Defect Detection: The majority of
two-stage detectors propose class-agnostic bounding boxes
with preset sizes and aspect ratios using a region proposal
network (RPN), which excludes a large number of negative
locations. These bounding boxes are combined into the re-
gion of interest (RoI) features, and a multilayer perceptron
(MLP) is used to categorize them [11]. Although the two-
stage algorithm has a high detection accuracy, it struggles
to meet the real-time demands of the algorithm in practical
applications due to its slow detection speed [16].

As a remarkable two-stage target detector, Faster R-
CNN has been improved in several studies for fabric de-
fect detection. Zhou et al. [17] combined several effective

techniques, including Feature Pyramid Network (FPN), De-
formable Convolution (DC) network, and distance IoU loss
function into the vanilla Faster R-CNN to enhance the ac-
curacy and speed of fabric defect detection. Chen et al. [18]
improved the Faster R-CNN model by embedding Gabor
kernels. A two-stage training method based on Genetic Al-
gorithm (GA) and back-propagation were designed to train
the modified Faster R-CNN model. Wu et al. [19] enhance
the feature extraction capability of the vanilla Faster R-
CNN by designing a dilated convolution module. Addi-
tionally, convolution kernel decomposition and bottleneck
techniques are applied to streamline the feature extraction
networks, and high-level semantic features are fused with
bottom-level detail features to produce multi-scale fusion
features.

By summarizing the previous studies mentioned above,
the main improvement directions on fabric defect detection
include: (1) improving the detection effect of the model for
small-sized defects; (2) enhancing the performance of the
model for images with multiple noises, strong illumination,
blurring, etc.; (3) improving the performance of the model
in the case of large span of defect sizes and an unbalanced
distribution of defect types.

3. Method
This section describes the proposed method for pro-

ducing the glass wool defect dataset (GWD) and the im-
proved method for YOLOv5. In the improvement method
of YOLOv5, we describe the YOLOv5 model, the GSConv
convolution technique, and the CBAM module in detail, as
well as the source of inspiration for improvement.

3.1. Dataset

The proposed glass wool defect dataset, named GWD,
used in this experiment contains 964 glass wool images of
size 1024 × 1200, which were collected from the production
environment of a glass wool factory using a 2D camera. The
images were first annotated by one practiced industry expert
using labelImg annotation software to exploit the annotation
format of the Pascal VOC dataset [20], then tested and re-
viewed by two experienced industry experts. The dataset
contains 892 and 313 examples of each of two types of de-
fects, Gap caused by excessive tension and Glueless due to
lack of glue. These two kinds of defects are the most com-
mon defects in the production of glass wool process. The
size of the Gap is generally on a small scale, and the size of
the Glueless is more variable, with the area of the whole im-
age ranging from 0.1% to 94%. The relatively small num-
ber of defects is due to the rarity of the defects themselves,
and we collected nearly 5,000 glass wool images in total
to produce the GWD dataset. Figure 1 shows a few sample
images from the collected images and the annotated dataset.
The main characteristics of the GWD dataset are weak tex-
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ture and a wide range of defect size variations. Datasets
often used for fabric defect studies are also characterized
by a wide range of defect sizes [21, 22], indicating that the
GWD dataset has similar properties to them and the study
of the GWD dataset may also contribute to breakthroughs
in the study of other datasets.

3.2. Improved YOLOv5

The YOLOv5 detection algorithm: The YOLOv5 pro-
posed by Jocher et al. has the characteristics of simplic-
ity, speed, and portability [23]. One of the typical mod-
els of the YOLOv5 series models is YOLOv5s. The main
components of the traditional YOLOv5s structure are Bak-
bone, PANet [24], and Output. The CSPDarknet [25] is
used as the backbone network for extracting features. The
Focus structure and the CSP structure are applied in the
CSPDarknet. The Focus structure is an image-slicing in-
dex operation that converts image spatial dimensions infor-
mation into channel dimensions and can obtain a double
downsampled feature map without information loss, which
is believed to increase the inference speed of the model.
The CSP structure borrows the design model of the CSPNet
network, which allows the model to learn more features,
and it solves the problem of over-computation in inference
from the perspective of model structure design. PANet is
a bottom-up enhancement structure based on FPN, which
employs a strategy of bi-directional fusion of feature layers
that enhances the transmission of localization information
and enables prediction on three different scales of the fea-
ture layer. The Output part can output three different scales
of features with dimensions of 80 × 80 × 256, 40 × 40 ×
512, and 20 × 20 × 1024 simultaneously, assuming the in-
put image size is 640 × 640 × 3 (height × width × channels).

The GSConv convolution technique: The GSConv
aims to cooperate Standard Convolution (SC) with Deeply
Separable Convolution (DSC) since the feature maps gen-
erated by DSC are still “depth-wise separated” [9]. The
GSConv uses a unified blending strategy to permeate the
information generated by the SC into every part of the in-
formation generated by the DSC. The approach blends the
SC information into the DSC output by uniformly exchang-
ing local feature information from different channels. The
GSConv has demonstrated the ability to achieve significant
accuracy gains without additional operations, and its low
memory and computational requirements make it particu-
larly suitable for edge computing devices. A new design
paradigm using the GSConv, called Slim-Neck, is also pro-
posed in the original study.

The Convolutional Block Attention Module (CBAM):
It has been demonstrated that attention mechanisms can in-
crease the effectiveness and performance of detectors, par-
ticularly light detectors [26]. The CBAM is a compact
hybrid attention mechanism that improves feature maps in

both spatial and channel dimensions. The channel attention
module is arranged first, followed by the spatial attention
module. Utilizing the inter-channel and the inter-spatial re-
lationships of features are the goals of channel and spatial
attention, respectively. The channel attention of a feature
map concentrates on “what” is meaningful given an input
image because each channel is a feature detector. In contrast
to channel attention, spatial attention focuses on “where” is
an informative part, which is complementary to channel at-
tention. The CBAM enhances the model performance with
a slight increase in computation and the number of parame-
ters [10].

Inspired by the glass wool image in the GWD has very
simple texture features, which implies that the model needs
to pay more attention to the lower-level features, so we use
the CBAM at the beginning of the backbone network for
the first two downsampling layers to extract features. The
CBAM enables the model to adaptively adjust the impor-
tance of each spatial location and channel to improve the
algorithm’s attention to the target information in the feature
map and suppress the influence of irrelevant information.
Meanwhile, for industrial defect detection, where speed and
accuracy are equally important, we introduce Slim-Neck
through GSConv to reduce the complexity of the model
while maintaining its performance of the model.

4. Experiments
In this section, we first present the implementation de-

tails of the experiment. Afterward, in Section 4.2, we per-
form an extensive ablation study on design choices for this
work. In Section 4.3, we compare the proposed model to ex-
isting approaches on different datasets. Finally, we launch
the discussions in Section 4.4.

4.1. Implementation Details

The CBAM is used to replace the native convolution
module at the beginning of the backbone network, and the
GSConv is used to replace the native convolution module in
the PANet. Figure 2 shows the network structure of the im-
proved YOLOv5s. Before training, the best recall of the
dataset annotation information against the default anchor
frame is automatically calculated using an adaptive anchor
frame. During training, 70% of all images are used for train-
ing and 30% for validation. The official pre-training model
is used, and the data is pre-processed and enhanced: the
image scaling operation is first performed to scale the im-
age to 640 × 640, and then the mosaic data enhancement is
implemented to obtain the processed image and the corre-
sponding labels. The color enhancement, image mirroring,
and center cropping are carried out after the mosaic data
enhancement, and then the images are input into the neural
network. Figure 3 shows a few sample images after data
augment. The SGD algorithm is applied to update the pa-
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Figure 1. Sample images from the collected images and the annotated dataset, the Gap and the Glueless defects are colored red and green,
respectively. Image contains (a) no defect (b) only one defect (c) multiple defects of the same kind (d) multiple defects of different kinds.

Figure 2. Network structure of the improved YOLOv5s.

rameters during training, and the batch size is 16. The hard-
ware environment of all the experiments is Intel Xeon Gold
5218 CPU @ 2.30GHz, 32G RAM, and Four RTX2080Ti
GPUs used during training. The total training epoch is 400
with an initial learning rate of zero, and the learning rate
is increased to 0.001 in the first six epochs with a warm-
up strategy. The model with the best performance on the
validation set is reported.

4.2. Ablation Studies

We perform ablation studies based on the vanilla
YOLOv5n, YOLOv5s, and YOLOv5m, respectively. The
test results are displayed in Tab. 1. As illustrated in Tab. 1,
the three vanilla models perform mediocrely on the GWD
dataset, which we believe is mainly due to the lack of
learning ability of the vanilla models for defects with large
size variations. Compared to the baseline models, both the
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Figure 3. Sample images after data augment, the Gap and the Glueless defects are colored red and green, respectively.

GSConv module and the CBAM bring some performance
improvements. The absolute value of mAP50 and recall in-
creased by 2.0% and 2.1%, respectively, for the YOLOv5n;
by 3.7% and 4.2%, respectively, for the YOLOv5s; and both
increased by 2.4% for the YOLOv5m when the GSConv
and the CBAM are used simultaneously. It is observed that
for the mAP50, the simultaneous usage of the GSConv and
the CBAM resulted in the greatest improvement for all three
baseline models. However, for the recall, only YOLOv5s
achieves the greatest improvement. As illustrated in Tab. 1,
the YOLOv5s achieves the best results in both the mAP50
and recall with the simultaneous usage of the GSConv and
the CBAM. Figure 4 shows a few sample results of the im-
proved YOLOv5s.

Additionally, the parameter column indicates that using
the CBAM module alone slightly increases the number of
model parameters, adopting the GSConv module alone de-
creases the number of parameters, and adding both at once
decreases the number of parameters, which consistently
with the features of these two modules. After simultane-
ously adding both modules, YOLOv5s has the maximum
reduction in the number of parameters, reaching 6.3% (0.42
MB), while YOLOv5n and YOLOv5s are 6.0% (0.1 MB)
and 4.8% (0.95 MB), respectively. Tests result shows that
the improved YOLOv5s model can process an image of the
GWD dataset on RTX 2080Ti at a speed of 97 FPS. Al-
though it is slightly slower than the vanilla YOLOv5s, it
also fully meets the requirements of real-time defect detec-
tion in glass wool production.

Table 2 shows in detail the different performances of the
model on the Gap and the Glueless defects after using the
GSConv module and the CBAM on the YOLOv5s. As il-
lustrated in Tab. 2, the model performs better on the Gap
than on the Glueless before and after applying the GSConv
module and the CBAM. Using the GSConv module alone
improves both the Gap and the Glueless on both mAP50
and recall while using the CBAM alone does not bring this
effect, as will be discussed in Section 4.4. Overall, the im-
proved model outperformed the vanilla model on both the

Gap and the Glueless defects after adopting the GSConv
module and the CBAM.

4.3. Comparison with other methods

A series of comparative experiments are conducted on
the proposed GWD and other datasets to compare the pro-
posed model with various other models. The compared
methods include one-stage methods: SSD [27], SSDlite
[28], YOLOv7 [29], YOLOXs [30], and two-stage meth-
ods: Cascade R-CNN [31] and Faster R-CNN [32], and
the results are shown in Tab. 3. Our proposed improved
YOLOv5s model outperforms any other model on both
mAP50 and recall and is the only method among all the
compared single-stage methods that exceed 84% on both
metrics.

Furthermore, the recently proposed YOLOv7, which are
single-stage detection algorithms of interest, do not exactly
outperform the YOLOXs and the vanilla YOLOv5s on the
GWD dataset on both mAP50 and recall, which implies that
for the glass wool defect detection problem, choosing the
model that performs best on other publicly available object
detection datasets is not necessarily the most suitable.

A benchmark dataset is built by the 2018 Tainchi Guang-
dong Industrial Smart Manufacturing Big Data Innovation
Competition [33] and is composed of a total number of 10
aluminum surface defect categories of 3004 images with a
resolution of 2560 × 1920, aiming to compare the perfor-
mance of the models on images that are not similar to the
fabric images. We call it the aluminum defect dataset. The
example images of the aluminum defect dataset are shown
in Fig. 5. The results of the comparison experiments on this
dataset are shown in Tab. 4. As illustrated in Tab. 4, our
proposed improved Yolov5s and Yolov7 achieved the best
results on mAP50 and recall, respectively. Moreover, the
improved Yolov5s model achieved the second-best results
on recall. The effectiveness of the improved Yolov5s model
is verified on images that are not similar to the fabric im-
ages.

Another benchmark dataset is built by the 2019 Guang-
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Model CBAM GSConv mAP50(%) Recall(%) Params(MB)

YOLOv5n

81.1 79.2 1.68
✓ 82.3 82.3 1.69

✓ 82.7 83.2 1.58
✓ ✓ 83.1 82.0 1.58

YOLOv5s

80.4 80.2 6.69
✓ 81.4 78.8 6.70

✓ 83.7 82.8 6.30
✓ ✓ 84.1 84.4 6.27

YOLOv5m

81.5 76.5 19.91
✓ 82.1 82.8 19.91

✓ 81.6 75.1 18.96
✓ ✓ 83.9 78.9 18.96

Table 1. Ablation studies on the proposed GWD dataset with YOLOv5n, YOLOv5s, and YOLOv5m respectively. Best and second-best
results, per model, are colored red and blue, respectively.

Figure 4. Sample results of the proposed improved YOLOv5s on the GWD dataset. First and second rows show the results of the ground
truth labels and our proposed model, respectively.

dong Industrial Intelligent Manufacturing Innovation Com-
petition [21] and is composed of a total number of 16 fabric
defect categories of 3101 images with a resolution of 2446
× 2000. We call it the fabric defect dataset. The exam-
ple images of the fabric defect dataset are shown in Fig. 6.
The results of the comparison experiments on this dataset
are shown in Tab. 5. As illustrated in Tab. 5, our proposed
improved Yolov5s and Yolov5s achieved the best results on
mAP50 and recall, respectively. The unremarkable recall
performance of the improved Yolov5s model shows there
is still potential for improvement of the model in the fabric
defect detection study.

4.4. Discussions

Experimental results demonstrate the effectiveness of the
GSConv module and the CBAM in enhancing the perfor-
mance of YOLOv5s. However, as described in Section 4.2,
the model performs better on the Gap than the Glueless both
before and after the addition of the GSConv module and
the CBAM, which we think is due to the higher number of
Gap (about three times more than the Glueless) and their
less size variation. In addition, with the application of the
GSConv module, the model achieved the best or second-
best improvement in mAP50 and recall metrics compared
to the other three ablation experiments for both the Gap
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Algorithm mAP50(%) Recall(%)
Gap Glueless All classes Gap Glueless All classes

YOLOv5s 81.6 79.2 80.4 84.8 75.6 80.2
YOLOv5s-C 81.5 81.3 81.4 85.2 72.5 78.8
YOLOv5s-G 85.1 82.3 83.7 88.9 76.7 82.8

YOLOv5s-CG 83.6 84.6 84.1 86.3 82.6 84.4

Table 2. Differential performance of the model on the Gap and the Glueless defects in ablation studies. Best and second-best results, per
column, are colored red and blue, respectively.

Model Backbone Input size mAP50(%) Recall(%)
Cascade R-CNN [31] Resnet50 640×640 82.0 81.3
Faster R-CNN [32] Resnet50 640×640 77.2 76.5

SSD [27] VGG16 512×512 80.3 76.3
SSDlite [28] Mobilenetv2 640×640 72.1 72.7

YOLOv7 [29] CSPDarknet 640×640 75.7 77.4
YOLOXs [30] CSPDarknet 640×640 78.4 79.3
YOLOv5s [8] CSPDarknet 640×640 80.4 80.2

Ours CSPDarknet 640×640 84.1 84.4

Table 3. Performance of our improved YOLOv5s compared with other algorithms on the GWD dataset. Best and second-best results for
mAP50 and recall are colored red and blue, respectively.

Figure 5. Sample images of the aluminum defect dataset, defects
are labeled with red box.

and the Glueless defects, indicating the effectiveness of the
GSConv module. The addition of the CBAM to the model
with the GSConv module resulted in an overall improve-
ment in the mAP50 and recall, although there is a decrease
in the mAP50 and recall for the Gap, but a greater improve-
ment in both mAP50 and recall for the Glueless. We con-
sider this to be caused by the fact that the spatial attention
module in the CBAM module is more effective for targets
with large size variations when augmented by the GSConv
module.

Figure 6. Sample images of the fabric defect dataset, defects are
labeled with red box.

5. Conclusion

In this work, we propose a glass wool defect dataset
named GWD, which is the first glass wool defect dataset to
the best of our knowledge, and achieve the precise localiza-
tion and classification of glass wool defects by improving
the YOLOv5 algorithm. The YOLOv5s model is chosen as
the baseline model by experiments, and the GSConv and the
CBAM modules are applied to perform the ablation studies.
The GSConv module can better balance the accuracy and
speed of the model, and for this experiment, it reduces the
model parameters while improving the model performance.
The CBAM module, augmented by the GSConv module,
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Model Backbone Input size mAP50(%) Recall(%)
Cascade R-CNN Resnet50 640×640 74.0 72.5
Faster R-CNN Resnet50 640×640 69.6 54.5

SSD VGG16 512×512 70.8 63.6
SSDlite Mobilenetv2 640×640 67.7 67.9

YOLOv7 CSPDarknet 640×640 72.1 75.8
YOLOXs CSPDarknet 640×640 71.3 68.6
YOLOv5s CSPDarknet 640×640 73.8 67.4

Our CSPDarknet 640×640 74.9 72.9

Table 4. Performance of different models on the aluminum defect dataset. Best and second-best results for mAP50 and recall are colored
red and blue, respectively.

Model Backbone Input size mAP50(%) Recall(%)
Cascade R-CNN Resnet50 640×640 64.4 61.7
Faster R-CNN Resnet50 640×640 63.4 64.4

SSD VGG16 512×512 61.2 60.1
SSDlite Mobilenetv2 640×640 55.8 55.1

YOLOv7 CSPDarknet 640×640 58.4 64.1
YOLOXs CSPDarknet 640×640 62.5 61.2
YOLOv5s CSPDarknet 640×640 63.5 65.4

Our CSPDarknet 640×640 65.3 61.6

Table 5. Performance of different models on the fabric defect dataset. Best and second-best results for mAP50 and recall are colored red
and blue, respectively.

works better for Glueless defects with large-size variations.
The comparison results with other algorithms show that the
present improved YOLOv5s algorithm achieves the best re-
sults on the proposed GWD dataset, which verifies the ef-
fectiveness of the presented method. The GWD dataset has
similar properties to other fabric defect detection datasets,
which implies that the study on the GWD dataset can also
contribute to the breakthrough of the study on other datasets
of the same type.

For future work, we will continue to optimize the GWD
dataset and the proposed method in this paper. On the one
hand, for the GWD dataset, the number of images and de-
fect types of the samples need to be increased. On the other
hand, for the improved YOLOv5s method proposed in this
paper, there is a need to increase the detection effect of the
model for large-size range defects, as well as the recall met-
ric which is very important in production, while keeping the
detection speed of the model unchanged.
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