
 

 

 

Abstract 

 

In this paper, an unsupervised defect inspection method 

based on anomaly detection is proposed to inspect various 

kinds of surface defects in the field of industrial production. 

This method consists of two modules: (i) An image 

matching module is utilized to align the input image with a 

pre-specified template image. Specifically, all objects to be 

detected will be adjusted to the same position and angle. 

The aligned images can reduce the difficulty of the training 

stage, facilitating the subsequent feature extraction and 

anomaly localization. (ii) After the image matching 

procedure, an anomaly localization module is trained to 

learn a mapping that concentrates normal samples in 

feature space. In particular, each local image region is 

assigned a feature center by adopting a feature map as the 

mapping target. Therefore, the compactness of the features 

extracted from the same region can be improved, which is 

beneficial to detect potential anomalous targets. Moreover, 

various artificial defective images are synthesized during 

the training stage to further improve the discriminatory 

ability of the anomaly localization module. A series of 

experiments are conducted on MAD dataset and the 

industrial production line. The experimental results verify 

the efficiency and versatility of the proposed method. 

 

1. Introduction 

Surface defect inspection is vital to control the product 

quality in the industrial production line[1, 2]. Traditionally, 

the inspection model is obtained by supervised learning[3, 

4], which requires plenty of labeled defective images to 

train the model. However, collecting sufficient defective 

images could be time-consuming in the real production 

environment. Furthermore, the image annotation also 

requires a lot of time and labor costs. Therefore, the 

unsupervised-learning-based anomaly detection method 

has received increasing attention in both academia and 

industry[5]. Without requiring actual defective samples 

during the training stage, anomaly detection focuses on 

detecting inconsistencies with normal data to locate a 

 
Figure 1: Example images for five products in MAD dataset[14]. 

For each category, the top row shows the defective images, while 

the bottom row highlighted the defective regions. 
 

detective regions as shown in Figure 1. This characteristic 

of anomaly detection can accelerate the adaptation process 

in a new environment and reduce the production cost. 

The anomaly detection methods can be roughly 

classified into two categories: reconstruction-based 

method and feature-based method. 

The reconstruction-based method aims to obtain a 

defect-free image by eliminating the anomalous regions. 

Afterward, the anomalies can be located by analyzing the 

differences between the original and the reconstructed 

images[6-11]. Furthermore, References [12, 13] had 

proved that the segmentation network can be utilized as the 

discriminative module to locate the defects. However, the 

average location precision of the reconstruction-based 

method needs further improvement. 

The feature-based method is another popular strategy in 

anomaly detection. Generally, the distribution of the 

extracted features from normal images is more regular than 

that of anomalous images. Therefore, the anomalies can be 

detected by comparing the differences between input 

features and normal features.  

There are several trends in feature-based anomaly 

detection methods: Reference [15] introduced knowledge 

distillation into the anomaly detection method. Since the 

student networks may learn the representation of normal 

images from different perspectives under the guidance of 

the teacher network, the extracted features of student 

networks may vary on anomalous images. Therefore, the 

variance of the features of student networks can be utilized 

to locate anomalous regions. References [16, 17] followed 

this method and adopted the multiscale strategy to further 

improve the location accuracy.  

Furthermore, another feature-based method is one-class 
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classification(OCC), which often constructs a 

discriminative hyperplane to detect anomalies[18]. 

Specifically, a feature extraction network is trained to map 

all defect-free images into a pre-specified region in the 

feature space. Therefore, the features of the anomalous 

images may be mapped away from the normal features. 

Hence, a hyperplane surrounding the normal features can 

be constructed to detect anomalies[19]. With a pre-trained 

feature extraction network, Reference [20] detected the 

anomalous regions by calculating the distances between 

the features of input images and normal images. Reference 

[21] separately constructed several Gaussian models from 

multiple feature maps for anomaly detection. Reference 

[22] adopted two pre-trained networks and designed a 

mapping method to connect the feature space of the two 

networks. Afterward, the anomalies can be located since 

the features of abnormal regions cannot be transmitted 

smoothly between the two feature spaces. Reference [23] 

utilized the distance between the feature of the input image 

and the nearest normal image to locate the defects. 

Reference [24] improved the discriminatory ability of the 

feature extraction network by introducing an assistant 

classification task. In [25], the original one-class dataset 

was transformed into a multiclass dataset by geometric 

transformation. Afterward, triplet loss was utilized to 

emphasize the differentiability between the features of 

different classes, improving the performance of feature 

extraction. 

However, the following problems remain unsettled. 

1) The traditional anomaly detection methods generally 

fail to consider the situation where significant differences 

exist in positions and angles between the objects to be 

detected, leading to performance degradation in this 

complex scene. 

2) The available methods may be unable to balance the 

accuracy and efficiency. The traditional methods with one 

global feature center are fast but lack accuracy[26]. To 

improve the detection performance, some works choose 

the closest normal feature as the mapping target[23][19]. 

However, it may significantly affect the efficiency of the 

method. 

Aiming at the above problems, a novel method based on 

OCC is proposed to detect complex defects accurately and 

efficiently. The contributions of this paper are summarized 

as follows: 

1) To adapt to the scene where significant differences 

exist in positions and angles between the objects, an image 

matching module is innovatively introduced into the 

training phase of anomaly detection to reduce the difficulty 

of feature extraction process. 

2) A detection module based on local OCC is designed 

to learn compact feature representations improve the 

accuracy of anomaly localization. Furthermore, a defect 

generation module is designed to synthesize artificial 

defective images to improve discriminatory ability of the 

module. 

The remainder of the paper is arranged as follows. 

Firstly, the proposed defect inspection method will be 

introduced in detail in Section 2. Secondly, a series of 

related experiments are conducted to evaluate the 

performance of our method in Section 3 and Section 4. 

Finally, conclusions are presented in Section 5. 

2. Proposed Method 

To deal with the problems mentioned before, an 

anomaly detection method is proposed to detect defects in 

complex scenes efficiently. As shown in Figure 2, the 

proposed method consists of two modules: an image 

matching module (IMM) and an anomaly localization 

module (ALM). Firstly, the original image IO is aligned 

with the pre-specified template image IT by the IMM to 

obtain the aligned image IM. Specifically, the spatial 

misalignment including shift and rotation between IT and 

IO is corrected by geometric transformation. After 

obtaining the aligned image IM, the feature representations 

of each local image region of IM are extracted in ALM, 

obtaining the feature map FM. 

 
(a) Image Matching Module                                     (b) Anomaly Localization Module 

 

Figure 2: The overall schema of the proposed method. (a) The procedure of the image matching module. IT and IO separately represent the 

template image and the original image to be detected. Tx, Ty and θ are three geometric transformation parameters obtained by the parameter 

regression phase. IM is the aligned image after matching. (b) The procedure of the anomaly localization module. FM is the representation 

obtained by the feature extraction phase. FC is a pre-specified mapping center and HMap is a heatmap which represents the pixel-wise cosine 

distances between FM and FC. IResult is the detection result. 
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2.1. Image Matching Module 

In the industrial production line, significant differences 

often exist in positions and angles between the objects to 

be detected. As shown in Figure 3, four defect-free 

transistors are captured with spatial misalignment. 

However, the traditional OCC-based methods try to 

describe these samples with a single model, which may 

affect the sensitivity to anomalies. As introduced in Section 

I, the feature extraction network is trained by minimizing 

the distances from the features of defect-free images to the 

pre-defined center. To map the diversified objects as 

shown in Figure 3 into the neighborhood of the same center, 

the model needs to be robust to the differences in the input 

images. Consequently, some slight anomalies may be 

neglected since their small area or the similar structure to 

the defect-free regions, reducing the accuracy of the 

method. 

Therefore, an image matching module (IMM) is 

proposed to simulate the mechanical alignment process. 

Precisely, all the input images will be aligned with the 

template to improve the consistence of the objects, 

facilitating the subsequent feature extraction and anomaly 

localization procedures.  

Figure 4 shows the structure of IMM, the template IT is 

randomly sampled from the defect-free images using a pre-

specified random seed as the target for image matching. 

For each original image IO, the geometric transformation 

parameters are obtained by the sub-networks to align IO 

with IT. Specifically, NP is a fully convolutional network 

that extracts the preliminary features of IT and IO, obtaining 

the feature maps FT and FD. Afterward, FT is concatenated 

with FD as the input of the regression network NR, which 

outputs three geometric transformation parameters: the 

horizontal translation Tx, the vertical translation Ty, and 

the rotation angle θ. Finally, according to Tx, Ty and θ, 

geometric transformation is utilized to align IO with IT, 

obtaining the aligned image IM. Lreg measures the 

difference between IM and IT to train NP and NR, which can 

be formulated as follows: 

                      (1) 

          (2) 

where ⨁  represents the concatenation process of two 

feature maps in the channel dimension. fgeo represents the 

geometric transformation realized by Spatial Transformer 

Network[27]. n is the number of pixels in the image. Figure 

5 shows the results of image matching on real defective 

images. 

As shown in Figure 5, distinct spatial misalignment 

exists between the objects in the input images IO. 

Meanwhile, diverse anomalous regions marked by red 

circles occur in IO. However, the objects in the aligned  

 
Figure 3: Images of defect-free objects with spatial misalignment 

 

 
Figure 4: The structure of the image matching module. The two 

NP share the same weights and separately extract the features of 

IT and IO. FT and FD are the extracted feature maps. NR is a 

regression network 

 

 
Figure 5: The results of image matching by the trained IMM 

 

image IM can be basically adjusted into the same position 

and angle as that in IT. After the image matching procedure, 

the consistency of the images can be effectively improved, 

simplifying the training process of feature extraction and 

facilitating the followed anomaly localization. 

2.2. Basic Anomaly Localization Module based on 

One-class Classification 

Following the image matching procedure, the 

anomalous regions can be located by the OCC-based 

module. To balance the accuracy and efficiency of the 

method, an anomaly localization module (ALM) based on 

fully convolutional network is utilized to extract compact 

features of each local image region simultaneously. 

Afterward, each pixel in the extracted feature map is 

assigned a local feature center as the mapping target, 

named as local OCC in this paper. 

Subsequently, the pixel-wise cosine distances between 

FM and the pre-defined mapping center FC are calculated 

to obtain the heatmap HMap, which indicates the locations 

of anomalies. Finally, the detection result IResult is gained 

by up-sampling the low-resolution HMap. 

As shown in Figure 6, the ALM consists of two sub-

networks, including a pre-trained Resnet-18 and a feature 

mapping network NM. Firstly, the pre-trained Resnet-18 is 

utilized for preliminary feature extraction. Secondly, the 

feature maps from Stage 1, Stage 2 and Stage 3 of Resnet-

18 are extracted and merged by scaling and concatenating 

( )
2

2

1
,reg M T M TL I I I I

n
= −

( ) ( )( )( ),M geo O R P O P TI f I N N I N I= 

Shared 

Weight

IM

IO

IT NP

NP FD

FT

NR

Lreg

Tx

Ty

θ

Geometric 

Transform

IO

IM
IT

4437



 

 

 
Figure 6: The structure of the anomaly localization module. FMixed 

is a multi-scale feature representation of IM. NM represents the 

feature mapping network. 

 

to obtain the multi-scale feature map FMixed. Thirdly, FMixed 

is further mapped by the subsequent mapping network NM 

to obtain the feature maps FM for local OCC. Each vector 

in the FM is the feature representation of the corresponding 

local image region in IM. Afterward, Lmap measures the 

pixel-wise cosine distances between FM and the pre-

defined mapping target FC, where FC is the mean after 

dimensionality reduction of the FMixed of all defect-free 

images. Subsequently, Lmap is utilized to train the feature 

mapping network NM. During this process, the loss 

function can be formulated as follows: 

    (3) 

                        (4) 

where w and h are the width and height of the feature map 

FM. 𝐹𝑀
𝑖,𝑗

 and 𝐹𝐶
𝑖,𝑗

separately represent the feature vector of 

FM and FC at location (i, j). dist(a,b) is the cosine distance 

between vector a and vector b, where "·" represents the dot 

product. Under the effect of Lmap, the network is trained to 

keep the mapped features 𝐹𝑀
𝑖,𝑗

 in the vicinity of the 

corresponding center 𝐹𝐶
𝑖,𝑗

. Consequently, in the testing 

phase, the Lmap can be utilized to locate the anomalies since 

the features of anomalous regions are most likely far from 

the corresponding mapping centers.  

Compared with the traditional OCC-based methods that 

forcedly map all local image regions to the same target, the 

proposed local OCC-based method adopts the feature map 

as the mapping target. Therefore, each feature vector in FM 

is assigned a different mapping target, which is equivalent 

to assigning a feature center to each local image regions. 

Since all the objects in IM are basically in the same position 

and angle, the image patches corresponding to the same 

local center are basically the same, reducing the training 

difficulty of the method. Consequently, the trained NM can 

obtain compact feature representations of defect-free 

images. Therefore, the method is more sensitive to small 

differences, which helps to improve the overall detection 

accuracy. 

2.3. Improved Anomaly Localization Module 

Combined with Outlier Exposure 

However, since only defect-free images are utilized in 

the training stage mentioned above, the performance of the 

basic ALM on real defective images is limited[28]. 

Therefore, Outlier Exposure (OE) [29] is introduced in 

ALM to improve the performance. Specifically, a defect 

generation module (DGM) is designed to synthesize 

various artificial defective images to assist in the training 

of ALM. 

As shown in Figure 7, DGM firstly random selects a 

region on the defect-free images IM, marked as M. Then, 

the regions covered by M are randomly darkened or 

lightened or directly replaced with images from VOC, 

obtaining an image IM+ with anomalous local patterns. 

Subsequently, the feature map FM of IM+ is extracted by 

ALM. Afterward, original Lmap is also modified. Besides 

the basic task illustrated in Section II.B, the network is 

further required to maximize the distance from the feature 

of anomalous region to the mapping center. The modified 

Lmap can be formulated as follows: 

  (5) 

where Ms is a downscaled M, whose resolution is 

consistent with the feature map FM. 𝑀𝑠
𝑖,𝑗

 represents the 

value of Ms at location (i, j). 𝑀𝑠
𝑖,𝑗

 = 0 represents that the 

corresponding 𝐹𝑀
𝑖,𝑗

 is extracted from normal region and 

𝑀𝑠
𝑖,𝑗

 = 1 means 𝐹𝑀
𝑖,𝑗

 is extracted from anomalous region. 

Therefore, the first part of Formula (5) is consistent with 

Formula (3) which is utilized to improve the compactness 

of features from normal regions. The second part of 

Formula (5) is utilized to maximize the distances from 

anomalous features to the mapping centers. In particular, 

to avoid overfitting, an upper limit δ of the distance of 

anomalous features is designed. When the anomalous 

feature is far enough to the corresponding center, i.e. 

0.5×dist(𝐹𝑀
𝑖,𝑗

, 𝐹𝐶
𝑖,𝑗

) > δ, the second part of Formula (5) is no 

longer involved in the calculation of Lmap under the effect 

of max(0, ∗ ). δ is set to 0.1 in our experiments. The 

introduced DGM improves the discriminatory ability of the 

anomaly detection module. Meanwhile, the diverse local 

anomalous regions ensure the generalization of the 

detection network. 

 
Figure 7: The procedure of DGM. 

3. Experiments 

To show the effectiveness of the proposed method, 

several experiments are designed and the experimental 
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results are analyzed in detail. All the experiments are 

conducted on a computer equipped with one RTX TITAN 

GPU, Intel i9-7900X CPU, and an Ubuntu18.04 operating 

system. 

3.1. Experimental setups 

Datasets: MAD [14] is a dataset recently proposed for 

unsupervised anomaly detection mimicking real-world 

industrial inspection scenarios. MAD consists of fifteen 

types of images, including five types of texture images and 

ten types of object images. Furthermore, each category 

contains dozens of defective images with pixel-level 

annotations for evaluation. In MAD, the authors have 

carefully adjusted the object images to ensure that all 

objects are basically in the same position and angle. To 

simulate the possible spatial misalignment in the actual 

production environment, a modified version of the object 

images in the original MAD is created in this paper, noted 

as MAD-RTO. Specifically, random rotation and random 

crop are applied to both the train and test sets of object 

images. 

Implementation details: The proposed IMM and ALM 

are separately trained and the batch sizes are set to 32 by 

default. In addition, the learning rates of the two modules 

are separately set to 2e-4 and 1e-3. Moreover, the training 

epochs of the two modules are 500 and 300, respectively. 

Evaluation metric: To evaluate the performance of the 

proposed method quantitatively, the area under ROC curve 

(AUC) is adopted as same as MAD. 

3.2. Ablation studies 

Firstly, to verify the effectiveness of the proposed basic 

ALM that utilizes feature map as the mapping center, 

comparative experiments are conducted on the object 

images of the original MAD and the modified MAD-RTO. 

In Table 1, ‘Feature Map’ is the proposed method, and 

‘Vector’ represents the method with a global feature vector 

as the mapping target. Since the objects in the original 

MAD are basically in the same position and angle, IMM is 

not utilized in experiments on MAD to avoid redundant 

operations. 

As shown in Table 1, the feature map-based methods 

outperform the single vector-based methods on MAD and 

MAD-RTO. Even in the aligned object images, notable 

discrepancies exist between the local image patches 

extracted from different regions. Compared with the 

traditional method with one global center, the proposed 

ALM assigns a mapping center to each image region. 

Therefore, the proposed ALM reduces the training 

difficulty and facilitates the followed anomaly localization, 

especially in the Transistor, Metal Nut and Cable images 

with complex structures. 

Secondly, to evaluate the effect of the proposed IMM 

and DGM, six ablative settings are designed on the  

Table 1: The AUC of anomaly localization of the methods with 

different mapping targets on MAD and MAD-RTO 

Object 
MAD  MAD-RTO 

Feature Map Vector  Feature Map Vector 

Bottle 0.985 0.983  0.990 0.984 

Cable 0.978 0.953  0.975 0.945 

Capsule 0.985 0.985  0.981 0.971 

Hazelnut 0.984 0.984  0.980 0.982 

Metal Nut 0.976 0.968  0.972 0.961 

Pill 0.971 0.972  0.965 0.970 

Screw 0.965 0.970  0.974 0.981 

Toothbrush 0.988 0.983  0.982 0.982 

Transistor 0.975 0.819  0.978 0.817 

Zipper 0.992 0.991  0.992 0.979 

Mean 0.980 0.961  0.979 0.957 

 

modified MAD-RTO dataset and the basic ALM is adopted 

in all these methods. (i) The first method is the proposed 

method which combines the IMM and the DGM. (ii) The 

second method removes the IMM, directly localizing the 

anomalies on the images with spatial misalignment. (iii) 

The third method is based on the second method with 

additional data augmentation (AUG), including rotation 

and translation on the input images. (iv) The fourth method 

removes the DGM from the first method and utilizes only 

normal images in the training stages. (v) The fifth method 

is the basic ALM without IMM and DGM. (vi) The sixth 

method adds the data augmentation process to the fifth 

method. Table 2 presents the AUC of each method.  

As shown in column (v,vi) of Table 2, the commonly 

utilized data augmentation strategies, including rotation 

and translation, are unable to effectively improve the 

performance on the MAD-RTO dataset with spatial misali-

gnment. Meanwhile, the same conclusion can be drawn 

from column (ii,iii) of Table 2. Conversely, as shown in 

column (iv,v) of Table 2, the proposed IMM significantly 

improves the performance of anomaly localization. In the 

MAD-RTO, the image patches extracted from the same 

local region differ from each other. Consequently, the 

corresponding feature vectors 𝐹𝑀𝑖𝑥𝑒𝑑
𝑖,𝑗

 are loosely 

distributed. Although the network can map all these 

features to the same centroid after training, the feature of 

 

Table 2: The AUC in anomaly localization experiments with the 

six methods on MAD-RTO 

Objects 

Methods 

(i) 
IMM + 
DGM 

(ii) 
DGM 

(iii) 
DGM + 

AUG 

(iv) 
IMM 

(v) (vi) 
AUG 

Bottle 0.990 0.982 0.982 0.962 0.912 0.904 

Cable 0.975 0.963 0.969 0.933 0.862 0.901 

Capsule 0.981 0.957 0.958 0.960 0.910 0.922 

Hazelnut 0.980 0.984 0.985 0.884 0.884 0.903 

Metal Nut 0.972 0.964 0.967 0.932 0.790 0.787 

Pill 0.965 0.941 0.937 0.880 0.816 0.821 

Screw 0.974 0.956 0.962 0.920 0.827 0.822 

Toothbrush 0.982 0.976 0.974 0.961 0.873 0.858 

Transistor 0.978 0.928 0.928 0.978 0.913 0.912 

Zipper 0.992 0.991 0.989 0.922 0.910 0.892 

Mean 0.979 0.964 0.965 0.933 0.870 0.872 

4439



 

 

small anomalous region may be close to a normal feature 

due to the loose distribution. In this case, the network will 

also map these anomalous features near the target center, 

affecting the performance of the localization. In the image 

aligned by IMM, the local image regions corresponding to 

the same feature center are basically the same, i.e., the 

distribution of the corresponding 𝐹𝑀𝑖𝑥𝑒𝑑
𝑖,𝑗

 is more compact. 

Consequently, anomalous features are more likely to fall 

outside the region of normal features in the testing phase, 

obtaining better localization performance than the original 

method.  

Furthermore, as shown in column (ii) and column (v) of 

Table 2, the introduced DGM also effectively improves the 

accuracy. Although there is a difference between the 

artificial and the actual defective images, Formula (5) 

forces the ALM to have sufficient discriminatory ability for 

the possible anomalous regions. Specifically, the network 

is prompted to map these generated images to areas away 

from the center, facilitating the detection of the actual 

defective images. 

Combing the IMM and DGM, the proposed method 

obtains the best performance on the MAD-RTO dataset, 

especially in Pill, Capsule and Screw. 

3.3. Comparative experiments on the original 

MAD 

 
Figure 8: The detection results of the three methods on MAD. The 

first row shows the anomalous images. The middle three rows 

separately show the results of STFPM, PADIM and our method. 

The last row shows the ground truths. 

 

Figure 8 shows the qualitative comparison with our 

model and two recently proposed methods including 

PADIM[20] and STFPM[16], where the red regions 

indicate the anomalies. As can be seen from Figure 8, the 

proposed method is able to precisely locate the anomalous 

regions with few misclassified background pixels. 

Meanwhile, Figure 9 shows the detection results of the 

proposed method on 15 defective images in MAD. 
 

 
Figure 9: The detection results on 15 images in MAD. The three columns in each group of images separately represent the original defective 

images, the detection results and the GT. 

 

Table 3: The AUC of anomaly localization of our method and several recently proposed methods on MAD 

Class Ours PFM SPADE PADIM 
Patch 

SVDD 
FCDD STFPM USTD MKD DRAEM RIAD 

AE-

SSIM 
AE-L2 

Carpet 0.991 0.992 0.975 0.991 0.926 0.96 0.988 0.935 0.956 0.955 0.963 0.87 0.59 

Grid 0.991 0.988 0.937 0.973 0.962 0.91 0.990 0.899 0.918 0.997  0.988 0.94 0.90 

Leather 0.995 0.994 0.976 0.992 0.974 0.98 0.993 0.978 0.980 0.986  0.994 0.78 0.75 
Tile 0.974 0.962 0.874 0.941 0.914 0.91 0.974 0.925 0.828 0.992  0.891 0.59 0.51 

Wood 0.970 0.962 0.885 0.949 0.908 0.88 0.972 0.921 0.848 0.964  0.858 0.73 0.73 

Texture Mean 0.984 0.979 0.929 0.969 0.937 0.928 0.983 0.931 0.906 0.979 0.939 0.782 0.696 

Bottle 0.985 0.984 0.984 0.983 0.981 0.97 0.988 0.978 0.963 0.991  0.984 0.93 0.86 
Cable 0.978 0.967 0.972 0.967 0.968 0.90 0.955 0.919 0.824 0.947  0.842 0.82 0.86 

Capsule 0.985 0.983 0.990 0.985 0.958 0.93 0.983 0.968 0.958 0.943  0.928 0.94 0.88 

Hazelnut 0.984 0.991 0.991 0.982 0.975 0.95 0.985 0.982 0.946 0.997  0.961 0.97 0.95 
Metal Nut 0.976 0.972 0.981 0.972 0.980 0.94 0.976 0.972 0.864 0.995  0.925 0.89 0.86 

Pill 0.971 0.972 0.965 0.957 0.951 0.81 0.978 0.965 0.896 0.976  0.957 0.91 0.85 

Screw 0.965 0.987 0.989 0.985 0.957 0.86 0.983 0.974 0.959 0.976  0.988 0.96 0.96 
Toothbrush 0.988 0.986 0.979 0.988 0.981 0.94 0.989 0.979 0.961 0.981  0.989 0.92 0.93 

Transistor 0.975 0.878 0.941 0.975 0.970 0.88 0.825 0.737 0.764 0.909  0.877 0.90 0.86 

Zipper 0.992 0.982 0.965 0.985 0.951 0.92 0.985 0.956 0.939 0.988  0.978 0.88 0.77 

Object Mean 0.980 0.970 0.976 0.978 0.967 0.91 0.965 0.943 0.907 0.970 0.943 0.912 0.878 

All Mean 0.981 0.973 0.960 0.975 0.957 0.916 0.971 0.939 0.907 0.973 0.941 0.868 0.817 
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To further evaluate the effectiveness of the proposed 

method, comparative experiments between our method and 

several recently proposed methods are conducted on MAD, 

including PFM[22], SPADE[19], PADIM, Patch 

SVDD[23], FCDD[26], STFPM, USTD[15], DRAEM[12], 

MKD[17], RIAD[5] and AE[14]. Since the well-aligned 

images in the original MAD, the proposed IMM is not 

utilized to avoid redundancy in this stage. Table 3 shows 

the AUC in pixel-wise anomaly localization and image-

level anomaly detection of each method. 

The results of USTD are obtained from the reproduction 

of RIAD, and the results of the remaining methods are 

obtained from the original papers. The best result in each 

kind of image is highlighted in boldface. 

As shown in Table 3, the proposed method obtains 

satisfactory performance in both texture and object classes 

on the well aligned MAD dataset, which can be owed to 

two factors. 

Firstly, the feature map is utilized as the mapping center 

while training the feature mapping network NM. Even the 

objects to be detected are well aligned, the image patches 

extracted from different region vary from each other. 

Therefore, when only one global center vector is assigned, 

the network must adapt to the significant difference 

between the patches, affecting the sensitivity to actual 

anomalies. Conversely, the patches acquired from the same 

local region of different images are similar to each other. 

Subsequently, when mapping these basically consistent 

patches to the corresponding local center, the network can 

pay more attention to minimizing the distances to the target, 

obtaining compact feature representation and facilitating 

the followed anomaly localization.  

Secondly, the artificial defective images are introduced 

in the proposed method. Due to the proposed DGM, the 

mapping network NM is prompted to map the features of 

the anomalous regions away from the local center while 

minimizing the distances of the normal features. This 

multi-task training strategy strengthens the discriminative 

ability of the network and optimizes the feature extraction 

process. Furthermore, the diversified artificial defective 

images relatively simulate some actual defects such as 

color change, breakage and crack, promoting the anomaly 

localization during the testing phase. 

3.4. Comparative experiments on the modified 

MAD-RTO 

To evaluate the performance of the proposed method in 

complex scenarios with misalignment in the position and 

angle, experiments are also conducted on the modified 

dataset MAD-RTO. Figure 10 shows the detection results 

on MAD-RTO. Furthermore, the performance of the 

proposed method is quantitatively compared with the other 

methods, including PFM, SPADE, PADIM, Patch SVDD, 

FCDD, MKD, STFPM and DRAEM. We reproduce these 

methods in our environment. The AUCs of these methods 

are shown in Table 4, and the AUCs on the object images 

in the original MAD are also listed for comparison. 

However, some related works have pointed out that the 

AUC does not reflect the localization accuracy well in 

surface anomaly detection where only a few pixels are 

anomalous[15]. Therefore, average precision (AP), a more 

suitable metric for class imbalance scenario like defect 

inspection, is also adopted for evaluation in Table 4. 

Meanwhile, Table 5 presents the average execution time 

of each method. 

As shown in Table 4, when spatial misalignment exists 

in the images to be tested, performance degradations occur 

in all traditional methods. Due to the introduction of 

rotation, the task of identifying relative positions designed 

in Patch SVDD may not be feasible anymore, affecting the 

feature extraction process. Moreover, the spatial 

misalignment in MAD-RTO further increases the 

looseness of the distribution of image patches and raises 

the training difficulty of FCDD. As for MKD and STFPM, 

the teacher network pre-trained on ImageNet has little 

knowledge about processing input images with rotation. 

Hence, the feature extraction of the teacher network is 

more disordered, affecting the learning stage of the student 

network and the anomaly localization process of these 

methods. For the reconstruction-based method DRAEM, 

the involved geometric transformation increased the 

diversity of input samples, which may affect the inspection 

of discriminative sub-network.  

Although SPADE and PADIM still perform well on 

MAD-RTO, these are achieved at the cost of real-time 

performance. As shown in Table 5, the execution times of 

SPADE and PADIM are longer than that of other methods. 

Consequently, it may affect the application of these 

methods in real industrial scenarios. Conversely, the 

proposed method achieves a good balance between the 

accuracy and efficiency of detection.  

As shown in Table 5, the execution time of our method 

is kept at the same level as that of PFM and FCDD. Based 

 

 
Figure 10: The results of image matching and anomaly detection 

on 10 object images from MAD-RTO. The four columns in each 

group separately represent the original images, the aligned images, 

the detection results and the ground truths. 
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Table 4: Results for the task of anomaly localization experiments with our method and several recently proposed methods on MAD-RTO 

(AUC/AP) 

 Ours PFM SPADE PADIM Patch SVDD FCDD MKD STFPM DRAEM 

Bottle 0.990/0.890 0.980/0.747 0.959/0.718 0.975/0.725 0.972/0.386 0.958/0.640 0.924/0.529 0.983/0.761 0.955/0.767 
Cable 0.975/0.722 0.955/0.537 0.899/0.351 0.947/0.376 0.903/0.386 0.909/0.581 0.768/0.148 0.935/0.488 0.854/0.522 

Capsule 0.981/0.487 0.968/0.390 0.973/0.456 0.970/0.321 0.861/0.127 0.840/0.167 0.942/0.215 0.961/0.308 0.871/0.270 

Hazelnut 0.980/0.738 0.988/0.667 0.982/0.660 0.977/0.553 0.911/0.172 0.948/0.388 0.921/0.297 0.981/0.541 0.846/0.371 
Metal Nut 0.972/0.876 0.957/0.771 0.947/0.767 0.946/0.692 0.967/0.837 0.897/0.599 0.791/0.361 0.960/0.765 0.989/0.954 

Pill 0.965/0.660 0.967/0.754 0.946/0.604 0.956/0.559 0.868/0.485 0.813/0.394 0.880/0.264 0.924/0.537 0.954/0.549 

Screw 0.974/0.441 0.981/0.284 0.989/0.403 0.964/0.280 0.963/0.190 0.861/0.031 0.957/0.072 0.976/0.222 0.978/0.295 
Toothbrush 0.982/0.606 0.984/0.431 0.985/0.547 0.976/0.447 0.921/0.181 0.907/0.145 0.945/0.373 0.985/0.382 0.957/0.289 

Transistor 0.978/0.804 0.823/0.468 0.824/0.360 0.938/0.598 0.863/0.482 0.826/0.434 0.681/0.127 0.764/0.361 0.664/0.197 

Zipper 0.992/0.825 0.974/0.597 0.988/0.753 0.983/0.555 0.903/0.386 0.930/0.291 0.899/0.242 0.968/0.625 0.960/0.651 

Mean 0.979/0.705 0.958/0.565 0.949/0.562 0.963/0.511 0.913/0.361 0.890/0.367 0.871/0.263 0.944/0.499 0.903/0.486 

Mean on MAD 0.980/0.696 0.970/0.563 0.976/0.593 0.978/0.576 0.967/0.473 0.910/0.384 0.900/0.279 0.965/0.493 0.970/0.684 

 

Table 5: The execution time of each method 

 Ours PFM SPADE PADIM 
Patch 

SVDD 
FCDD MKD STFPM DRAEM 

Time (ms) 27 14 2625 862 818 13 18 26 32 

 

on the high-performance localization model ALM, a 

simple and effective matching module IMM is utilized to 

eliminate the differences existing among the input images 

in advance. Therefore, the detection accuracy can be 

maintained without significantly increasing the execution 

time. 

4. Experiments on production line 

To further prove the necessity and effectiveness of 

proposed modules, experiments are also conducted on 

middle frame (MF) images captured by our inspection 

equipment in the industrial production line.  

As shown in Figure 11, the spatial misalignment exists 

in the original MF images can be basically repaired in the 

aligned images. Afterward, the defective regions can be 

well located by the proposed method with few 

misclassified background pixels. Table 6 shows the 

ablation study on MF images. Due to the complex structure 

of the MF image and the spatial misplacement, both ALM 

and IMM effectively improve the performance. By 

introducing artificial anomalous images, DGM further 

improves the accuracy of the inspection model. Meanwhile, 

Table 7 shows the quantitative comparison between our 

method and other methods. 

 

 
(a)            (b)            (c)           (d)            (e) 

Figure 11: The detection results on MF dataset. (a) The mobile 

phone image. (b) Defective circular hole images extracted from 

the vertical side region of MF. (c) The aligned images. (d) The 

detection results of our method. (e) The ground truths. 

Table 6  The AUC/AP in anomaly localization experiments with 

the five methods on MF images 

 Module Metric 

 ALM IMM DGM AUC AP 

(i)    0.641 0.013 
(ii) ✔   0.855 0.078 

(iii) ✔ ✔  0.906 0.255 

(iv) ✔  ✔ 0.968 0.559 

(v) ✔ ✔ ✔ 0.987 0.680 

 

Table 7: Results of anomaly detection of our method and several 

recently proposed methods on MF dataset (AUC/AP) 

 
Ours PADIM PFM SPADE STFPM FCDD MKD 

AUC 

AP 

0.987 

0.680 

0.987 

0.556 

0.985 

0.474 

0.924 

0.129 

0.823 

0.064 

0.940 

0.167 

0.960 

0.250 

 

5. Conclusions 

In this paper, a method based on OCC is proposed to 

perform precise and efficient defect inspection without 

requiring actual defective images. To improves the 

consistency of the input images, an image matching 

module is designed to align the input images to facilitate 

the feature extraction and anomaly localization processes. 

Afterward, a local OCC-based anomaly localization 

module is conducted to obtain compact representations of 

defect-free images. Furthermore, a defect generation 

module is designed to improve the discriminatory ability of 

the anomaly localization module. Experimental results 

show that, without significantly increasing the execution 

time, the AUROC of the proposed method on MAD and 

MAD-RTO are 0.981 and 0.979, separately. Meanwhile, it 

also obtains satisfactory performance on the images 

extracted from the industrial production line. In future, this 

approach can be extended to detect tiny defects on images 

with high resolution and complex structure. 
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