
Supplementary material

A. Deformable transformer encoder
The deformable encoder [44] enriches the input mainly

by the Deformable Attention (DA) module and the Feed-
Forward Network (FFN). The detailed architecture can be
seen in Figure 7. The DA module sums the selected features
at deformable sampling locations across multi-scales with
learned attention weights. The ourput of this module is
passed through the FFN.

Suppose the encoder takes as inputs the flattened fea-
ture map mf ∈ RC×Nin(C: number of channels, Nin =∑

l HlWl), positional and level embedding information
E ∈ RC×Nin and reference points P ∈ RNin×2. The
output of the deformable attention layer is formulated as:

ODA = f(Os) (7)

where f is the linear layer and Os is the weighted summa-
tion:

Os =
∑
l,p

W nhlpV nh(P n +∆P nhlp) −→ [C,Nin] (8)

where n, h, l and p index the pixel in the flattened feature
map, attention head, feature level and sampling point re-
spectively. The rightarrow −→ represents reshaping to the
dimensions in the brackets. The value feature V , the pre-
dicted sampling offsets ∆P and attention weights W are
defined as:

V = f(m −→ [Nin, Nh, C/Nh]) (9)

∆P = f(Q) −→ [Nin, Nh, Nl, Np, 2] (10)

W = Softmax(f(Q) −→ [Nin, Nh, NlNp])

−→ [Nin, Nh, Nl, Np]
(11)

where the query feature Q is the element-wise addition:

Q = m+E (12)

It should be noted that W is normalized in the last dimension
to provide weights that sum up to 1. The encoder finally
outputs O ∈ RC×Nin as:

O = FFN(LN(Dropout(ODA) +m)) (13)

where FFN and LN are short for Feed-Forward Network
and Layer Normalization layer respectively.

B. Dataset explanations
To acquire the weak annotations of polyps, we manually

annotate the simple sketches with the help of the PaintTool
SAI, which is a painting tool for drawing. Annotators are

asked to relabel the dataset according to their first impres-
sions without a fixed drawing style. These simple sketches
only cost 2 seconds to label an image.

More visualizations of our annotated dataset can be seen
in Figure 9. Column 1 shows the original image, column 2
shows the original ground truth segmentation map, column 3
shows only the foreground annotation, and column 4 shows
both the background and foreground annotations. Only the
annotations shown in the last 2 columns were used in training
our model.

C. Visualizations

Figure 10 shows qualitative results between our method
and other state-of-the-art methods. It should be noted that
all the other methods shown were trained in a fully super-
vised way. Impressively, in some cases such as in rows 1, 2
and 3, the fully supervised methods completely fail while
our method manages to recover the main polyp part. In or-
der to provide fair visualizations and avoid cherry-picking
we also provided more cases where other methods such as
PraNet [11] perform better such as rows 4, 5 and 7. How-
ever, our method still outperforms all other fully supervised
methods beyond Pranet in these qualitative visualizations. In
other words, visual maps in Figure 10 demonstrate that the
proposed method has a better generalization ability that can
achieve satisfactory detection results in different scenarios.

Lastly Figures 11, 12, 13, and 14 show more qualitative
examples ablating our method in a similar way to Figure 2.
Column 1 shows the original RGB image, column 2 shows
the prediction when trained only with Lp, column 3 shows
the predictions when trained with sparse foreground loss,
column 4 shows the predictions when trained with Lsemi,
column 5 shows the predictions when trained using DTEN
and column 6 shows the original ground truth segmentation
maps. It is evident that each proposed idea of our method
provides performance improvement evident from these visu-
alizations.

D. Hyperparameter optimization

In order to find proper α (equation 3), β1 and β2 (equation
6) for our training regime, we carried out hyperparameter
optimization. We investigated the performance of our regime
on five polyp datasets with different hyperparameter settings
as presented in Tables 6 and 7. Results show that the most
accurate segmentation is achieved on all datasets with α =
0.5. For (β1, β2), the combination of (0.1, 0.5) produces the
best results on three out of the five datasets. To generalize the
regime, we use the aforementioned settings for most robust
and accurate segmentation.



Table 6. Comparisons with different α in weakly-supervised training.

α
ColorDB ETIS Kvasir CVC-300 ClinicDB

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

0 0.327 0.263 0.218 0.168 0.555 0.488 0.240 0.174 0.479 0.448
0.5 0.539 0.503 0.442 0.415 0.700 0.668 0.662 0.658 0.740 0.708
1 0.124 0.089 0.064 0.026 0.209 0.133 0.060 0.029 0.126 0.082

Table 7. Comparisons with different combinations of β1 and β2 in semi-supervised training. ’Baseline’ represents the performance of the
model trained only with Lweak using equation 3.

(β1, β2) ColorDB ETIS Kvasir CVC-300 ClinicDB

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

Baseline 0.539 0.503 0.442 0.415 0.700 0.668 0.662 0.658 0.740 0.708
(0.5, 0.5) 0.559 0.513 0.483 0.439 0.716 0.668 0.702 0.667 0.748 0.701
(0.3, 0.5) 0.579 0.527 0.497 0.444 0.718 0.668 0.722 0.692 0.760 0.716
(0.1, 0.5) 0.604 0.544 0.501 0.442 0.730 0.677 0.729 0.678 0.771 0.718
(0.0, 0.5) 0.582 0.511 0.424 0.359 0.759 0.690 0.648 0.585 0.756 0.690

Table 8. Quantitative results with mDice and mIoU on DiNO.

Method
ColorDB ClinicDB

mDice mIoU mDice mIoU

DiNO+Lweak 0.577 0.489 0.756 0.670
DiNO+Lweak + Lc 0.623 0.527 0.821 0.747

E. DINO backbone
Furthermore, the generality of our method can be seen

(Table 8) beyond convolutional-based backbones. Using
our framework we fine-tune a transformer-based backbone,
DiNO [7], and a convolutional-based segmentation head
surpassing the performance of other fully supervised polyp
segmentation methods.



Figure 9. Training samples.
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Figure 10. Comparisons with other state of the art methods.



Figure 11. ClinicDB

Figure 12. ETIS



Figure 13. Kavsir

Figure 14. ColorDB



Table 9. Notations lookup table.

Notation Description

X Whole dataset
Xl Weakly-annotated subset
Yl Weakly-annotated subset’s ground truth
Xu Unlabeled subset
θ Learnable parameters
Mθ Model
M t

θ Teacher model
Ms

θ Student model
xi The ith image from X
ŷi Predicted segmentation map of xi

yi Ground truth map of xi

yfi The ground truth map of xi with only the foreground annotation
Lp Partial cross-entropy loss
Lf Sparse foreground loss
Lweak Total loss for weakly-supervised learning
α Weight of the foreground loss
ŷti , ŷ

s
i The prediction of the teacher and student models with input xi

B Batch
Bl The batch of labeled samples
Bf

l The batch of foreground annotations
Lsemi Total loss for semi-supervised learning in each B
β1, β2 Weights of Lc in Lsemi

m Feature map output by the last stage of the backbone
l Index of the feature level
n Index of the pixel in mf

h Index of the attention head
p Index of the sampling point
ml Feature map at l-th level
Hl, Wl Height and width of ml

Wl Width of ml

mf Feature map after concatenation and flatten
ol Output feature map by the encoder at l-th level
C Number of channels
Nin Number of pixels in mf

Nh Number of attention heads
Nl Number of levels
Np Number of sampling points
R Real number
P Reference points
E Position and level embedding information
O Output of the encoder
f Linear layer
W Attention weights
V Value tensor
∆P Sampling offsets
Q Query tensor
−→ [d1, d2] Reshape to dimension d1 × d2
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