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Abstract

State-of-the-art model specialization methods are mainly
based on fine-tuning a pre-trained machine learning model
to fit the specific needs of a particular task or application.
Or by modifying the architecture of the model itself. How-
ever, these methods are not preferable in industrial applica-
tions because of the model’s large size and the complexity
of the training process. In this paper, the difficulty of net-
work specialization is attributed to overfitting caused by a
lack of data, and we propose a novel model specialization
method by Knowledge Distillation (SKD). The proposed
methods merge transfer learning and model compression
into one stage. Specifically, we distill and transfer knowl-
edge at the feature map level, circumventing logit-level in-
consistency between teacher and student. We empirically
investigate and prove the effects of the three parts: Models
can be specialized to customer use cases by knowledge dis-
tillation. Knowledge distillation can effectively regularize
the knowledge transfer process to a smaller, task-specific
model. Compared with classical methods such as training
a model from scratch and model fine-tuning, our methods
achieve comparable and much better results and have bet-
ter training efficiency on the CIFAR-100 dataset for image
classification tasks. This paper proves the great potential of
model specialization by knowledge distillation.

1. Introduction
Specialized neural networks have recently become com-

mon for edge devices. Unlike general-purpose neural net-
works that are used for a diverse range of classification
tasks, specialized neural networks [4, 5, 16, 31] are trained
to fit the specific needs of a particular task or application.
In other words, it involves making changes to a pre-trained
model to adapt it to a specific domain or problem. There
are several reasons why model specialization may be neces-
sary. First, a pre-trained model may not be optimized for a
specific task. Additionally, different applications may have
unique requirements or constraints that cannot be met by
a general-purpose model. For instance, a customer located
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Figure 1. Knowledge distillation enables effective regularization
of knowledge transfer from large dataset to smaller, task-specific
models on small datasets.

near a harbor may not need to detect objects appearing in a
ravine. In such cases, a model that is designed for a special-
ized purpose can be tailored to meet the specific needs of a
customer or application. Furthermore, by customizing the
model for the specific task, it can be optimized for accuracy
and efficiency, while also reducing the size and complexity
of the model. This approach can be particularly useful for
resource-constrained devices, such as mobile phones or IoT
devices, where minimizing the size and reducing the infer-
ence time of the model is crucial.

There are different ways to specialize a model, depend-
ing on the specific task and the type of model being used.
One common approach is to fine-tune [3] a pre-trained
model, which involves re-training the last few layers of the
model on a small amount of task-specific data. This al-
lows the model to adapt to the particularities of the task
while retaining the knowledge learned from the pre-trained
model. However, fine-tuning a pre-trained model maintains
the model size and the fine-tuned large models are not a
good solution for practical use cases. If one considers the
deployment of deep learning models in low compute appli-
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cations, such as mobile phones, drones, unmanned vehicles,
Internet of Things, or other edge applications, these fine-
tuned large models become a limiting factor in taking their
success to these kinds of computing platforms. In the litera-
ture, a potential solution is knowledge distillation(KD) [14].

Knowledge distillation is a process of training a smaller
and computationally efficient model to mimic the behav-
ior and predictions of a larger and more complex model.
The goal of knowledge distillation is to transfer the knowl-
edge learned by a large model to a smaller model so that the
smaller model can achieve similar performance while being
faster and more lightweight (Hinton, 2015 [14]). Classical
distillation methods achieve high efficiency and accuracy
on general-purpose tasks but neglect use cases for special-
ized tasks. To overcome these limitations, we propose that
knowledge distillation can be used to build a task-specific
specialized model by transferring the knowledge learned by
a larger, more complex model to a smaller, more efficient
model that is specialized for a particular task.

We summarize our main contribution as follows:

1. We propose a novel knowledge distillation framework as
an approach to construct a specialized network. By distill-
ing the knowledge from the general-purpose teacher model,
the specialized student model can achieve comparable or
even superior performance, while requiring less computa-
tional resources for training and inference.

2. The proposed framework overcomes the problem of
overfitting in specialized neural networks by allowing the
student model to learn a better representation from the more
complex teacher model.

3. Experiments demonstrate that the proposed method can
significantly improve the performance of specialized net-
work training for simpler tasks with small datasets.

Overall, the proposed framework is a promising approach
for improving the performance of specialized networks in
simpler tasks with small datasets.

2. Related Work
2.1. Model specialization

Model specialization [4, 5, 16, 31] is a rapidly evolving
field of machine learning, with ongoing research and de-
velopment aimed at improving the performance, efficiency,
and interpretability of models for specific tasks and do-
mains. Previous works of model specialization including
transfer learning [24, 37] and fine-tuning [3], neural archi-
tecture search [20,26,27,38], meta-learning [10,23,29,32],
have shown substantial gains for a wide range of down-
stream tasks.

Transfer learning [24, 37] is a powerful technique for
model specialization. A main approach to transfer learn-
ing is fine-tuning. Fine-tuning [3] pre-trained models are

the most popular method to achieve model specialization.
Fine-tuning a model refers to the process of taking a pre-
trained model and training it further on a new task or a new
dataset. The pre-trained model has already learned to rec-
ognize a set of features on a large-scale dataset and can be
used as a starting point for the new task. Fine-tuning allows
the model to learn new features that are specific to the new
task while retaining the knowledge learned from the pre-
trained model. Despite the strong empirical performance of
fine-tuned models, fine-tuning is an unstable process: train-
ing the same model with multiple random seeds can result
in a large variance in the task performance.

Neural architecture search (NAS) [20, 26, 27, 38] is a
technique that uses machine learning algorithms to au-
tomatically discover the optimal architecture for a given
task [25]. Pioneers works such as NASRL [39] and
MetaQNN [1] have reached state-of-the-art classification
accuracy on image classification tasks. This demonstrates
that automated neural architecture design is feasible. How-
ever, NAS requires a large amount of computation and time
to search for an optimal neural network architecture.

Meta-learning [10, 23, 29, 32], or learning to learn, is a
technique that involves training a model to learn how to
adapt to new tasks more quickly and effectively. The popu-
lar approach to address this problem is either by utilizing
gradients [10] or evolutionary [8] procedures. There are
also a number of approaches for label prediction based on
limited number of training data. However, Meta-learning
algorithms are highly sensitive to hyperparameters. Find-
ing the optimal set of hyperparameters can be challenging,
and it often requires a lot of trial-and-error experimentation,
which prohibits its applications for edge devices.

Overall, model specialization is a vibrant area of re-
search with many exciting developments and applications.
However, none of these algorithms does help with the model
deployment on resource-constrained edge devices. While
edge applications are mainstream use cases for model spe-
cialization.

2.2. Training on small dateset

Training a machine learning model on a small dataset [2,
9] or a small task can present several difficulties. With a
small dataset, the model may learn to memorize the train-
ing examples rather than generalize patterns. This can result
in poor performance when the model is applied to new, un-
seen data. A small dataset may have limited variation in
the feature space, making it difficult for the model to learn
meaningful patterns. This can result in poor performance
or models that fail to generalize to new data. To overcome
these challenges, we introduce knowledge distillation to en-
hance the performance of the model trained on the smaller
dataset for user-defined specialized use cases.

3369



C
N

N
 B

lo
ck

C
N

N
 B

lo
ck

C
N

N
 B

lo
ck

C
N

N
 B

lo
ck

Forward Pass

Backward Pass

C
o

n
v Laye

r

C
o

n
v Laye

r

C
o

n
v Laye

r

C
o

n
v Laye

r

Soft Labels

Conventional 
KD Loss

Not Match

Feature-level
KD Loss

Figure 2. An overview of our proposed SKD. For the teacher-student backbone in our network specialization task, the conventional
knowledge distillation loss does not fit. The input and output feature maps of each module are used to format the knowledge to regularize
the training of the specialized network.

2.3. Knowledge distillation

The idea of knowledge distillation was introduced by
Hinton et al. [14]. The authors proposed a method to trans-
fer knowledge from a large, well-trained neural network
(called the teacher network) to a smaller and faster network
(called the student network). The method involves training
the student network to match the outputs of the teacher net-
work on a given set of inputs, while also minimizing the
difference between the logits (i.e., the unnormalized prob-
abilities) of the teacher and student networks. Since then,
knowledge distillation has become a popular technique in
deep learning, with many variations and applications in var-
ious fields such as computer vision, natural language pro-
cessing, and speech recognition. Since [28], most of the
research attention has shifted from logits-based knowledge
distillation [6, 11, 15, 18, 21, 35] to feature-based knowl-
edge distillation. The Performance of feature-based distil-
lation [12, 19, 28, 33, 34, 36] is superior on various tasks.
In this paper, knowledge distillation is proposed as a novel
model specialization methods on small dataset.

3. Method

In this section, we first formulate the network special-
ization explicitly. We then demonstrate that overfitting is
one of the challenges associated with network specializa-
tion. Motivated by this, we propose a knowledge distilla-
tion (KD) based regularization method for mitigating over-
fitting. In this way, the performance of specialized networks

can be boosted.

3.1. Problem Formulation and Motivation

We first formalize our task, network specialization. Sup-
pose we have a complex task with a large dataset D (e.g.
1000-class classification on ImageNet [7]), but we really
care about a relatively simple task with a sub-dataset Ds

(e.g. cat and dog distinction), which is contained in the
complex task. Strictly,

Ds = {xi, yi}Mi=0 ⊆ D = {xj , yj}Nj=0, (1)

in which {xi, yi} is the i-th sample-label pair, and M ≪ N .
As a matter of fact, this setting is widely required by the

industry for real-world deployment of deep learning algo-
rithms. For example, a customer who wants to detect ve-
hicles may not require the animal classification capabilities
of a pre-trained model. However, in this setting, there are
a number of challenges that need to be addressed. Insuffi-
cient training data can result in overfitting, which is one of
the most notorious challenges. It also leads to poor repre-
sentation ability of specialized networks as shown in Fig. 6
(b).

3.2. Knowledge Distillation for Specialized Network

We define a fully-connected neural network with L lay-
ers of widths d1, · · · dL(d =

∑L
k=1 dk) as the form of func-

tion f : Rd0 7−→ RdL :

f(x) = (TL ◦ σ ◦ TL−1 ◦ · · · ◦ σ ◦ T 1)(x), (2)
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where each T (k) : Rdk−1 7−→ Rdk is an affine function
(d0 and dL are the sizes of network’s input and output fea-
ture maps) and σ performs element-wise activation for fea-
ture maps. For k-th layer of the networks, T (k)(u) =
Wku + bk, where Wk and bk stand for the weight ma-
trix and bias vector, respectively. For generality purpose,
we discard the bias term of the network, so that the network
can be simplified as:

f(W1, · · · ,WL;x) = (WL◦σ◦WL−1◦···◦σ◦W1)(x).
(3)

Notably, it is sufficient to consider networks with the most
straightforward fully-connected layers, since layer with
complex structures such as convolution layer can also be
denoted as the form of matrix multiplication. We consider a
convolution layer with i input channels and o output chan-
nels, and the size of the kernel is w × h, resulting in iowh
parameters. We can re-arrange the parameters to a matrix
of size o × ihw, such that this convolution layer can also
be processed in the same way as the other fully-connected
layers do. Hence, our analysis has no loss for generality in
this configuration of function f .

Following Eq. 3, we define the function form of the
teacher network as fT (W1

T , · · · ,W
LT

T ;x), and the student
network as fS(W

1
S , · · · ,W

LS

T ;x), such that the feature-
based KD paradigm can be interpreted as:

∀x ∈ Data, argmin
W1

S ,··· ,WLS
S

Dist(T (fT (x)), T (fS(x))), (4)

where given the same data, the ultimate goal of KD
paradigm is to minimize the distance between teacher and
student for optimizing the latter’s parameters {Wi

S}. Par-
ticularly, Dist(·, ·) is a distance function, and T (·) is a
transformation to turn feature maps into more measurable
and learnable knowledge. By utilizing those designed
knowledge, the student network is forced to mimic the
teacher network and hopefully obtains comparable perfor-
mance with lighter architecture.

Regularization Property.
The outputs of the last layer (i.e. soft labels) are explored

by some conventional knowledge distillation methods and
transformed into various types of knowledge [14,36]. Then,
the defined knowledge aligns the teacher and student. How-
ever, those methods cannot be naively scaled into our set-
ting. As shown in Fig. 2, the students and teachers have
different architectures, especially with respect to the output
dimensions of classifier heads, which hinders the alignment
of teacher and student.

To tackle this problem, we implement KD at the feature
map level. Specifically, we absorb the ideas of [12, 13, 30],

Figure 3. Experimental results compare the performance of knowl-
edge distillation (KD) with models trained from scratch and fine-
tuning.

and construct our loss objective as follows: LKD =

L−1∑
i=1

∥FMi
T − FMi

S∥2 + ∥TMi
T ∥SN − ∥TMi

S∥SN

βL−1−i
,

(5)
where FMi

T is the i-th layer’s feature maps of teacher
(corresponding to the feature-based KD loss in [12]),
∥TMi

T ∥SN and ∥TMi
S∥SN for each i ∈ {1, . . . , L}

(corresponding to the feature-based Lipschitiz KD loss
in [30]), and β is a coefficient greater than 1. Hence,
the βL−1−i decreases with i increasing and consequently
the ∥FMi

T−FMi
S∥2+∥TMi

T ∥SN−∥TMi
S∥SN

βL−1−i increases. In this
way, we give more weight on higher layer features since
they are closer to the features performing tasks.

Combined with the cross entropy loss LCE and knowl-
edge distillation loss LKD, we can obtain the overall loss:

L =
λ

2
· LKD + LCE , (6)

where λ is used to control the degree of designed KD loss.
Feature-based KD is advantageous for our task, network

specialization, in which it can regularize the training of the
specialized network. In other words, compared with train-
ing the specialized network from scratch (i.e., singly opti-
mizing LCE in Eq. 6), LKD can serve as a regularization
term. More theoretical details can be found in [12, 30], and
empirical validation is conducted in the next section.

4. Experimental results
In this session, we perform experiments on image clas-

sification tasks to validate the effectiveness of our proposed
algorithm. We compare our method with the state-of-the-
art model specialization method which is fine-tuning. In
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Figure 4. Model size.

addition, we conducted a series of experiments comparing
our method to different models trained from scratch under
various settings.

CIFAR-100 [18] The CIFAR-100 dataset is a popular
benchmark for image classification tasks, and many state-
of-the-art models have been trained and evaluated on this
dataset. The dataset contains 100 classes of 600 images
each, with 500 images in the training set and 100 images
in the test set.

Implementation Details. On CIFAR-100, we optimize
the teacher and student model using Adam [17] and SGD
with Nesterov [22] respectively, where the momentum term
and weight decay in Nesterov are set to 0.9 and 5 × 10−4.
Moreover, the learning rate is initialized to 0.1. The learn-
ing rate is decayed by 0.1, 0.01, and 0.002 at 100, 150, and
175 epochs. In addition, we train the teacher and student
model for 200 epochs.

Main Results We discuss experimental results on
CIFAR-100 to examine our algorithm. We evaluate the
models’ performance in terms of accuracy for the image
classification task. To evaluate the performance of the pro-
posed method across different dataset sizes, we divided the
dataset into 5 sub-datasets with varying numbers of classes,
including 20, 40, 60, and 80. This enabled us to compare
the effectiveness of the method across different dataset sizes
and to gain insights into how it performs on smaller and
larger datasets.

The teacher network used in this experimental setting is a
wide-residual network with 28 layers and a widening factor
of 4, denoted as WRN-28-4. The student network is WRN-
16-4.

The first baseline involves network specialization via
fine-tuning, while the second baseline is training a WRN-
16-4 model from scratch. The accuracy is reported in table
1 and visualized in figure 3. Table 1 presents the results

Method 20 classes 40 classes 60 classes 80 classes 100 classes

SKD 90.96 85.67 82.8 80.625 78.01
Training from scratch 84.706 81.802 79.085 77.002 75.576

Fine-tune 88.225 83.872 81.078 79.395 75.576

Table 1. The accuracy of specialized models trained from scratch
and trained by knowledge distillation on the same neural network
architecture (WideResNet 16-4)

Groups 0-19 20-39 40-59 60-79 80-99 Avg

Accuracy 90.95 91.7 90.1 89.3 92.8 90.97

Table 2. Accuracy on randomly selected small tasks (WideResNet
16-4).

of our proposed approach SKD for network specialization,
along with two baseline methods. Accuracies are compared
across different sub-dataset, in Table 1, each column repre-
sents results on a sub-dataset. For each of the 5 subdatasets,
we compared the accuracy of the proposed SKD method
(first line) with two baselines (second and third lines). Our
results indicate that, compared to training from scratch, the
proposed SKD method achieved an increase in accuracy of
3.2% on the 100-class dataset and 7.3% on the 20-class
dataset. Moreover, when compared to fine-tuning, the SKD
method achieved an accuracy improvement of 3.2% on the
100-class dataset and 3.1% on the 20-class dataset. These
findings demonstrate that the SKD method outperforms the
baselines, particularly on smaller datasets, providing evi-
dence that the proposed SKD method is an effective ap-
proach for improving the accuracy of models trained on
small datasets, and can achieve better performance than tra-
ditional model specialization methods.

Figure 4 shows the number of model parameters needed
in order to keep a certain accuracy (79% ± 0.2%). Exper-
iments indicate that given smaller datasets, models can be
effectively compressed to a smaller size. This is particu-
larly relevant for scenarios where resource-constrained de-
vices are used, a smaller model can be designed to meet the
customer-defined accuracy requirements while minimizing
memory and processing requirements.

Classification on small-size dataset Classification of
specialized tasks usually comes with a small-size dataset.
We further conducted a series of experiments with 5 groups
of a random selection of 20 classes in table 2. The stability
of the results across various combinations of classes in the
20-class setting provides further evidence that the proposed
method is effective for specialized tasks on small datasets.

Representation ability study The t-SNE plots of fea-
ture representations obtained from training with knowledge
distillation and training from scratch are compared in fig-
ure 6. The plots reveal that the features extracted from the
knowledge distillation process exhibit well-defined clusters
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(a) Training and validation Loss. (b) Training and validation accuracy.

Figure 5. Line plots of the training and validation loss values over several training epochs on the 20-class setting.

(a) Training with knowledge distillation. (b) Training from scratch.

Figure 6. Visualizing feature representation using t-SNE.

and clear boundaries, while the features obtained by train-
ing from scratch appear to be mixed and less well-separated.
These observations lead us to conclude that the proposed
method is effective in learning a better feature representa-
tion for the given task.

Further analysis We present the visualization of train-
ing and validation loss values over several training epochs
on the 20-class setting in figure.5. (a) as training losses de-
crease, compared with the validation loss of training from
scratch (orange line), which remains stable during long it-
erations, the one of training with KD (red line) consistently
decreases. (b) When turning off the KD loss, the perfor-
mance on the validation set drops (orange line v.s. red line)
while the training accuracy stays at the same level (blue and
green lines). As seen in both observations, KD can miti-
gate the overfitting of the specialized network if trained on
a simpler task with a small dataset.

5. Conclusion
In this work, we have proposed a novel knowledge dis-

tillation framework (SKD) that addresses the challenge of
constructing specialized networks for simpler tasks with
small datasets. SKD overcomes the problem of overfit-
ting in specialized neural networks by allowing the stu-
dent model to learn a better representation from the more
complex teacher model. Experimental results have demon-
strated that the proposed framework is effective in improv-
ing the performance of specialized network training, result-
ing in significant performance gains in various settings of
simpler tasks with small datasets. The proposed framework
can serve as a valuable tool for practitioners and researchers
working in areas where tasks are simple and data is limited
and can lead to the development of more efficient and effec-
tive models for practical applications.
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