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Abstract

Visibility affects traffic flow and control on city roads,
highways, and runways. Visibility distance or level is an
important measure for predicting the risk on the road. Par-
ticularly, it is known that traffic accidents can be raised at
foggy twilight and night. Cameras monitor visual condi-
tions like fog. However, only a few papers have tackled
such nighttime vision with visibility estimation. This paper
proposes a Panoptic Segmentation-based foggy night visi-
bility estimation integrating multiple Deep Learning mod-
els: DeepReject/Depth/ Scene/Vis/Fog using single images.
We call PanopticVis. DeepFog is trained for no-fog and
heavy fog. DeepVis for medium fog is trained by annotated
visibility physical scales in a regression manner. Deep-
Depth is improved to be robust to strong local illumina-
tion. DeepScene panoptic-segments scenes with stuff and
things, booted by DeepDepth. DeepReject conducts ad-
versarial visual conditions: strong illumination and dark-
ness. Notably, the proposed multiple Deep Learning frame-
work provides high efficiency in memory, cost, and easy-to-
maintenance. Unlike previous synthetic test images, exper-
imental results show the effectiveness of the proposed inte-
grated multiple Deep Learning approaches for estimating
visibility distances on real foggy night roads. The superi-
ority of PanopticVis is demonstrated over state-of-the-art
panoptic-based Deep Learning models in terms of stability,
robustness, and accuracy.

1. Introduction
Camera-based scene understanding approaches have be-

come attractive and wealthy to academia and industry
due to the tremendous progress in Deep Learning models
[21, 31, 32, 47, 49, 81] during the past few years. Many
cameras in the cities, highways, on-board, and drone cam-
eras monitor various objects such as vehicles, pedestrians,
buildings, and vegetation. Different weather conditions like
sunny, rainy, windy, snowy, and foggy events are shown pe-
riodically, which can cause unstable recognition and classi-

fication rate of such objects. In darker mornings, twilight,
and nighttime, illumination from headlights, street lumps,
traffic boards, reflected lenses, and raindrops on lenses can
degrade image processing performance. These factors are
assumed to be adversarial visual conditions. In particular,
road scene images are more complicated due to a mix of
fog and adversarial elements.

The representative metric is visibility levels or distances
between a camera and a distant location. What is worse for
visibility is darkness or low illumination at night. There-
fore, the most important landmarks, as seen in the daytime,
may be lost in the nighttime road environment. Previously,
computer vision-based visibility estimation methods with
edge detection and geometrical coordinate have been pro-
posed [3, 4, 30, 35, 57, 60, 61, 72, 87]. However, they are
known to be vulnerable to illumination changes.

In Deep Learning (DL) models, semantic segmenta-
tion [49] and instance segmentation [2] have been reported
and used for recognizing things or/and stuff [80]. Panop-
tic segmentation [8, 20, 28, 29, 39, 41, 78] handles stuff
and thing classes by fusing subregions by semantic and
instance segmentation, providing a unique class label for
each pixel in the image and instance IDs for countable ob-
jects. Panoptic segmentation is an essential step towards
scene understanding in autonomous vehicles since it pro-
vides object masks and attractive amorph regions like driv-
able road space or sidewalks. Although video-based panop-
tic segmentation models [1, 9, 24, 26, 28, 44, 46, 50, 53–
55, 63, 75, 78, 84, 86, 89, 93, 99, 100] have recently shown
a new avenue to enhance accuracy, they require a tempo-
rally smooth change over time. Therefore, they are lim-
ited to applying to low frame rates, sudden changes of a
moving camera [19, 58], and snowfall changes. Adver-
sarial visual factors significantly degrade the accuracy of
state-of-the-art (SOTA) DL-based segmentation. Raindrops
[64, 91] are removed for better visibility. Defog or De-
haze [23, 32, 37, 40, 52, 85] is shown, with no visibility
estimation. However, most papers have synthesized rain-
drops, rain streaks, and fog to obtain nearly perfect origi-
nal daytime images under uniform illumination [36] SOTA
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DL models are easy to fail in applications of natural foggy
scenes due to the non-uniformity of fog and rainfall, ambi-
ent illumination, halo effect, and motion in depth [5, 31]. In
dark backgrounds, night vision [22, 69, 79] is a challeng-
ing topic due to low light and less visible landmarks avail-
able. Although night-to-day translation by GAN [27, 101]
may enhance far landmarks to estimate visibility levels, real
nighttime images are converted to false color images due
to strong headlight, spotlighting, and fog image gradients.
Therefore, as the visibility estimation task, DL models have
not thoroughly explored images at foggy twilight and night.
Moreover, few segmentation papers have explored visibility
estimation. Physical distance and level of visibility by the
DL model remain undone. An all-in-one image restoration
model [33] is reported with no manual selection of com-
plex scenes for multiple tasks with adversarial conditions
and visibility estimation.

Evaluation image datasets are essential but very lim-
ited to scenes with clear, synthetic fog and real lighter fog
[16, 66, 67, 92], where no or less adversarial conditions con-
tain. Therefore, real heavier foggy night scenes with adver-
sarial conditions have not been publicly available, as this
paper uses. In particular, hundreds of meters of visibility
distances are required on highways. Furthermore, although
near and far objects can be landmarks for visibility estima-
tion, foggy night causes extremely low contrast to recognize
all of them. Therefore, overall daytime scenes are helpful
to train image features in addition to segmented regions, as
this paper proposes.

To this end, this paper proposes integrated panoptic
segmentation-based visibility estimation on foggy night
scenes under adversarial visual conditions using single im-
ages. Furthermore, multiple Deep Learning (DL) mod-
els with branched structures are integrated for efficiency in
memory, training, and maintenance. Contributions of this
paper are five folds as follows:

1. Transformer-based DeepScene segments images in
which objects are partially or fully occluded by
fog. Such segmented images and original images are
trained by proposed DeepVis with the ground truth of
image visibility distances using the distance chart in
real road images in a regression manner. DeepFog
takes charge of heavy or medium fog levels to classify.

2. DeepDepth is improved by alleviating intense illumi-
nation from a depth estimation method. DeepDepth
can boost DeepScene panoptic segmentation perfor-
mance like far tiny objects. DeepVis is integrated with
DeepScene for a physical visibility distance estimation
as well.

3. Since no reliable SOTA Defog and Derain DL mod-
els have been reported, DeepReject is proposed for

images with adversarial conditions, which are newly
trained for factors like intense illumination, raindrops,
and darkness. This important preprocessing helps min-
imize recognition errors in DeepVis.

4. For our challenging, novel foggy day and night road
images have been collected since publicly available
image datasets, i.e., Cityscapes [16], Foggy Cityscape
[66], and Foggy Zurich [67], are insufficient to train
and test.

5. The proposed PanopticVis will enhance the camera-
image-based visibility distance and level estimation
accuracy for the surveillance monitoring, the safety of
drivers, auto-driving, and rescue workers even under
clear and adversarial conditions, i.e., extremely heavy
fog. Moreover, the camera-based visibility estimation
system will benefit from replacing the expensive visi-
bility hardware sensors.

Using various road scenes from different cameras, experi-
mental results show the superiority of the proposed method
over SOTA DL models for visibility estimation under ad-
versarial conditions in terms of accuracy, robustness, and
stability.

2. Related works
This section briefly describes review methods and is-

sues in scene understanding of camera images under various
conditions. Visibility levels are one of the most important
visual factors to estimate for monitoring and auto-driving.
Weather conditions with sunbeams, rainfall, snowfall, and
fog, i.e., haze, impact visibility. Strong illumination like
headlights, street lights, or darkness changes can also be
added. A mix of these factors can lead to a worse visual
condition.

To estimate visibility, near and far objects can be used
as landmarks. Such objects may be obtained from segmen-
tation. Dehaze [23, 32, 37, 40, 52, 85], denoise [45, 59,
76, 98], and derain/dedrops [64, 91] may be useful to en-
hance such landmarks. Although considerable progress has
been made in semantic segmentation understanding under
clear weather, it is still a tough problem under adversarial
weather conditions, such as heavy fog and snowfall, due
to the uncertainty caused by imperfect observations. SOTA
segmentation models [13, 17, 73, 95] have become robust to
the partial appearance of objects. However, they are stable
mainly when opaque objects are occluded from each other.

On the other hand, such natural phenomena pose a differ-
ent challenge due to semi-transparent image features, i.e.,
stuff. This problem [52] has been alleviated by bridging
the gap between clear and foggy images, i.e., city scenes.
In [52], the intermediate gap/domain for the dual gap with
style and fog is added in a pipeline into a unified framework
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to disentangle the style and fog factors separately, and then
the dual factor from images in different domains. However,
since only daytime light foggy scenes have been experi-
mented with, several objects were degraded by light fog.
Issues in foggy and heavy snowfall at night remain unsolved
only by this model [52], and no visibility estimation under
fog requires further modelization, unlike the proposed ap-
proaches we show.

In image restoration [33], an all-in-one image restora-
tion network (AirNet) for unknown corruption has been pro-
posed. Single image restoration aims to generate a visually
pleasant high-quality image from a given degraded corre-
spondence, e.g., noise, rain, fog, or snow. Almost all ex-
isting approaches could handle a specific degradation only,
i.e., denoise, defog, deraining, and deblurring, where the
user must know the correct corruption before applying a
specific API. Since such degradations are rooted in natu-
ral phenomena, the degradation ratio can vary in space and
time, letting the user retune manually. Therefore, the AirNet
[33] enjoys two highly expected merits: an all-in-one solu-
tion to recover images with different corruption types and
ratios and a single path network even with multiple corrup-
tion types, unlike previous multiple input and output heads.
In [33], although AirNet experimentally shows superiority
in three degradation factors with noise, rain, and haze (fog),
at least only lighter fog has been used in the daytime scenes.

The monocular geometric scene understanding task
combined with panoptic segmentation and self-supervised
depth estimation has been reported as MGNet [68]. Panop-
tic segmentation captures the full scene semantically and
on an instance basis. Self-supervised monocular depth esti-
mation uses geometric constraints derived from the camera
measurement model to only measure depth from monocular
video sequences. However, no adversarial weather condi-
tions are shown, i.e., heavy fog. Moreover, the depth map
may lose a lot of landmarks due to lower brightness at twi-
light and night.

To enhance previous semantic segmentation problems,
Deep hierarchical semantic segmentation (HSS) has been
proposed in city scenes [34]. HSS can exploit taxo-
nomic semantic relations for structured scene parsing by
slightly changing existing hierarchy-agnostic segmentation
networks. By exploiting hierarchy properties as optimiza-
tion criteria, hierarchical violation in the segmentation pre-
dictions can be explicitly penalized. Through hierarchy-
induced margin separation, more effective pixel represen-
tations can be generated. However, no physical scales of
different semantic segmentation have been considered, like
depth ordering from near to far objects along the road, i.e.,
multiple vehicles and pedestrians. Single-image dehazing
aims to restore the haze-free image from the hazy counter-
part that suffers from the reduced contrast and dull colors
caused by spatial variant haze densities. This task has been

a longstanding and challenging problem with many appli-
cations.

The proposed method [20] combines the global model-
ing capability of the Transformer and the local representa-
tion capability of CNN with transmission-aware 3D posi-
tion embedding. However, dehazing in [20] is limited to
closer views of daytime lighter foggy scenes, i.e., indoor
and garden, unlike our proposed method for distant scenes
with heavy fog at night, i.e., highway. Moreover, instead
of 3D position embedding [20], panoptic segmentation is
proposed to integrate for visibility distance estimation.

A unified framework for depth-aware panoptic segmen-
tation (DPS) has been reported [29], aiming to reconstruct
3D scenes with instance-level semantics from one image.
In contrast to previously predicting depth values for all
pixels at a time, DPS manages to estimate depth for each
thing/stuff instance, which also shares the way of generat-
ing instance masks. 3D cloud point images are generated.
Monocular depth estimation is useful, but almost all trained
Deep Learning models have been trained by a short distance
range, i.e., several hundred meters. Basically, DL-based
depth estimation is vulnerable to strong local illumination,
which should be eliminated, as this paper proposes.

Thus, estimation of physical visibility or visibility level
at foggy nights has not been reported under adversarial vi-
sual conditions. Although Cityscapes with 3000 images
[16], Foggy Cityscape DBF with 500 synthetic foggy im-
ages [66], and Foggy Zurich with 3800 real light foggy im-
ages [67] are publicly available, they are almost all daytime
and lighter fog data, whereas this paper uses heavier foggy
nighttime images up to extremely heavy fog with adversar-
ial conditions.

3. Proposed Method
This section describes the proposed method to estimate

visibility distance and level in various scenes, in particular,
foggy nighttime scenes.

3.1. Overview of Proposed System

This section presents an overview of the proposed
method for visibility estimation in road scenes under ad-
versarial conditions. As shown in Figure 1, the framework
consists of two steps: training and inference.
Training step: In Figure 1 (a), annotators are asked to clas-
sify and select various levels of real clear to foggy day and
night images. All images have been manually selected.
Thousands of real foggy images with different fog levels
were collected from tens of camera locations, where many
landmarks like poles and white lane lengths on road scenes
were referred. Moreover, a fog synthetic physical equation
was used to generate fog images as the ground truth data.

DeepScene is a transformer-based Deep Learning (DL)
for segmentation, in which objects can deal with hundreds
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(a) Training step.

(b) Inference step.

Figure 1. Overview of the proposed models.
of classes based on the COCO image database [43]. Fog
occludes part of segmented objects. In fully covered heavy
fog images, “sky” is obtained from overall images. Objects
like “road” and “light” are detected in fog-free images.

Annotators are asked to provide physical scales in me-
ters as the ground truth from known landmarks on the road
scenes. Instead of inputting the original clear and foggy im-
ages like previous approaches, this paper proposes to input
segmented images paired with physical visibility distances,
i.e., 0 m - 500 m, > 500 m. Notably, segmented images
are boosted by DL-based depth maps [65]. Training data is
combined from day and night images to train the DeepVis
model in a regression manner.

Inference step: In Figure 1 (b), DeepReject is adopted
to eliminate low-quality images and increase the stability
and accuracy of the night visibility estimation model. If the
image is not rejected, the segmentation predicted by Deep-
Scene will be fed into DeepVis to obtain visibility in meters.
Actually, road operation based on visibility is translated into
different fog levels. DeepFog takes charge of heavy or light
fog levels to classify.

As shown in Table 1, an extremely heavy fog level is
defined as a visibility distance < 50 m, where almost all
objects are invisible, even illumination. Fewer white lines
can be seen on the road. Light and heavy fog levels (50 m ∼
500 m) are intermediate between extremely heavy fog and
clear scenes, where the low and high risk for chain reaction
accidents are assumed to happen. Far illumination at night
is assumed to be seen when clear. It is assumed that such an
extremely heavy or heavy fog may cause a higher risk for

transportation.
Table 1: Definition of fog levels at night time.

Physical visibility range (m) Description
From To

0 50 Extremely Heavy fog
50 200 Heavy fog
200 500 Light fog
500 +Inf Clear

3.2. DeepReject (rejection to adversarial visual con-
dition)

DeepReject is a classification-based DL model com-
bined to classify input image quality as low or high. Few
papers have applied the rejection approach. This is used
to enhance the stability and accuracy of the other cascaded
DLs. It is expected to make the system more robust than
without DeepReject. Our original adversarial visual condi-
tions are collected and used to train the DL model. When
being rejected images, stored past image results are applied.
DeepReject is an image classification model with an out-
put of five different adversarial conditions: Normal: Nor-
mal visibility estimation allowed. Lens reflection: Effect of
light refraction on the camera lens or affected by weather
conditions with high humidity. Strong light: Strong artifi-
cial lighting such as road signs, headlights, and sunbeams.
Low light: Insufficient light conditions. Raindrop: Rain-
drops on the camera lens. Data augmentation with flipping,
rotating, cropping, and resizing images are utilized for train-
ing the DeepReject model.

3.3. DeepDepth (robust to local illumination)

This section describes DeepDepth improved from a
monocular depth method [65, 71] using an RGB image.
The algorithm [65] is based on a convolutional neural net-
work architecture trained using a multi-objective optimiza-
tion approach on a large dataset of paired RGB and depth
images. The network extracts high-level features from the
input image and then maps those to the corresponding depth
information. However, the original depth estimation can be
degraded due to local illumination. Therefore, this paper
proposes to eliminate such factors through computer vision.
The input image is first converted to the HSV color model
and applied CLAHE with a clip limit of 2 and a tile grid
size of (8, 8). After that, a Gaussian filter is applied to the
image to ensure its smoothness before implementing binary
thresholding with a threshold value of 128. When the local
illumination region is detected, inpainting is used with the
Telea algorithm. However, DeepDepth is used only when
DeepReject accepts input images.

3.4. DeepScene (segmentation model)

DeepScene is a Transformer-based panoptic segmenta-
tion DL model, i.e., Mask2Former [12], the backbone,
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Swin-B [21]. In the road scenes, DeepScene can recognize
objects such as “road”, “signboard”, “vehicle”, or back-
grounds as “sky” objects. At night, sky object contains the
invisible region in the scene, and “light” are recognized.
Note that such spotlighting is not assumed to be rejected
by DeepReject. Majorly, DeepReject is assumed to reject
glare and diffused illuminations. The segmentation results
of Dscene represent the geometrical features of detected ob-
jects, such as the shape of the road and roadside objects, the
position of vehicles, street lights, and the coverage of back-
ground objects. Like visual perception, spatial correlations
between objects are used as an image feature to determine
visibility by DeepVis.

4. Experiment and Discussion
This section conducts experiments to justify the pro-

posed multiple Deep Learning approach for visibility esti-
mation under foggy night scenes.

4.1. DeepReject evaluation

This subsection evaluates the performance of DeepRe-
ject. Our unique dataset consists of 4321 images with 5
different adversarial conditions types. Figure 2 illustrates
rejected low-quality images by DeepReject due to non-
weather factors such as large glare regions caused by (a)
lens reflection, (b) strong headlight, (c) raindrops, and (d)
low light. Single or mixed visual factors are contained in
single images. As shown in Table 2, DeepReject achieves
an average accuracy of 95.55%, which facilitates minimiz-
ing the visibility estimation error of the proposed method.

(a) (b) (c) (d)

Figure 2. Example of rejected images: (a) Lens reflection.
(b) Strong headlight. (c) Raindrop. (d) Low light.
Table 2: Evaluation of DeepReject on difficult scene classi-
fication under adversarial conditions at night.

Image
number

Correct
recognition

Wrong
recognition

Accuracy
(%)

Normal 827 821 6 99.27
Lens

reflection 627 600 27 95.69

Strong light 864 816 48 94.44
Low light 732 691 41 94.40
Raindrop 587 547 40 93.19

Total 3637 3475 162 95.55

4.2. DeepDepth under strong illumination

A monocular depth estimation [65] is assumed to boost
the proposed DeepScene. Figure 3 shows fair-depth maps
for normal scenes by using [65]. Figure 4 (a) shows two

examples of foggy night images with strong headlights.
Therefore, the original depth map [65] needs to be clarified.
Strong illumination regions are eliminated using a method
in Section 3.3. (b) shows improved depth maps. We call
this DeepDepth.

Figure 3. Results by original depth estimation [65].

(a) Original images. (b) Modified images.

Figure 4. Improved depth map from [65].

4.3. Segmentation by DeepScene + DeepDepth and
SOTA at clear day, twilight, and night

In order to show the effectiveness of combining Deep-
Scene and DeepDepth for scene segmentation, the six dif-
ferent scenes with clear, sunrise with glare, fog, snowfall,
night snowfall, and night low light conditions have been se-
lected. Two SOTA panoptic segmentation methods, DETR
[20] and PanopticDepth [8], are compared with the pro-
posed DeepScene and DeepDepth.

Figure 5 (a), (b), and (c) show original images, DETR
[20], and PanopticDepth [8], respectively. Except for the
clear image in 1st row, the remaining seven images (b), and
(c) have become incomplete segmentation, e.g., no roads
and mountains. On the other hand, the boosted DeepScene’s
images (e) by DeepDepth’s images (d) have been segmented
best among all, where stable visibility estimation will be al-
lowed. Therefore, the proposed combination of DeepScene
and DeepDepth has demonstrated the reliable segmentation.

4.4. Evaluation of PanopticVis

This section evaluates trained PanopticVis by 1174
foggy daytime real images. As shown in Table 1, visibility
levels from clear to extremely heavy fog are defined. Fig-
ure 6 and Table 3 show that the overall accuracy is 87.82%.
The F1 Score values show that the light and heavy classes
are close to each other, often confused with the layers next
to them, and these 2 classes are difficult to distinguish from
each other, while the clear and extremely heavy fog is a
good distinction.

4.5. PanopticVis and SOTAs at day and night scenes

This section devotes to simulating time-varying fog lev-
els in actual highways in the day by comparing the proposed
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(a) (b) (c) (d) (e)

Figure 5. Results of proposed DeepScene and SOTA: (a)
original image. (b) DETR [8]. (c) PanopticDepth [20].
(d) Proposed DeepDepth. (e) Proposed DeepScene + Deep-
Depth.

Figure 6. Evaluation of proposed PanopticVis in real fog
visibility levels.

Table 3: Metrics for proposed PanopticVis evaluation [%].

Class Precision Recall F1 Accuracy
Clear 95 93 94 94.80
Light 86 79 82 89.44
Heavy 69 87 77 93.02

Ex-heavy 91 95 93 98.38
Overall

accuracy
85.25 88.5 86.5 92.66

DeepScene + DeepDepth and SOTA, FIFO [32]. Synthetic
fog is generated by using a fog physical equation. Figures
7 and 8 illustrate the comparisons with different scenes at
day and night respectively. Both figures show (1) no fog,
and (2)-(3) light to heavy fog images with panoptic seg-
mentation by the proposed model and FIFO [32]. As fog
becomes heavier, the mountains and buildings located at
different distances are disappeared.

Although FIFO [32] has been assumed to cope with any
foggy scenes, the segmented results [32] have failed to seg-

ment full road surfaces as in clear day (1). Therefore,
FIFO [32] could not show the fog-invariant on the roads
and mountains, which cannot estimate visibility levels. Re-
gions of the road have been expected to disappear from far
to near according to light to heavier fog.

On the other hand, the proposed DeepScene + Deep-
Depth changes to the overall sky as fog changes heavier,
which can lead to estimating visibility levels well. A further
reconfirmation experiment will be conducted in the follow-
ing sections.

Figure 7. Comparative study of panoptic segmentation in
different foggy levels at day: (1) Clear. (2) Light fog.
(3) Extremely heavy fog. (a) Synthesized foggy images.
(b) Segmented images by DeepScene + DeepDepth. (c)
Segmented by SOTA, FIFO [32]. Purple: ”road”, green:
”mountain”, and blue: ”sky”.
5. Ablation study

To justify the proposed the proposed PanopticVis model,
six experiments are conducted under adversarial conditions
by comparing with many SOTA models.

5.1. Various foggy twilight and night scenes

For further reconfirmation, various foggy twilight and
night scenes are added to evaluate the performance of
panoptic segmentation. Two SOTA panoptic segmenta-
tion methods are selected PanopticDepth [20] and Panoptic-
DeepLab [11]. Figure 9 (a) compares highways and city
roads. The proposed integrated model (b) has outperformed
two SOTAs, (c) [20] and (d) [11], in terms of clearly
segmented regions like roads, lights, vehicles, and trees.
PanopticDepth [20] could not recognize several important
stuff regions: roads and sky. Notably, the older method
[11] presents more stable and better segmentation regions
than [20]. Therefore, it has been proven that the proposed
integrated model is robust and stable in adversarial visual
conditions.
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Figure 8. Comparative study of panoptic segmentation at
different foggy levels at night: (1) Clear. (2) Light fog.
(3) Extremely heavy fog. (a) Synthesized foggy images.
(b) Segmented images by DeepScene + DeepDepth. (c)
Segmented by SOTA, FIFO [32]. Purple: ”road”, green:
”mountain”, and blue: ”sky”.

(a) (b) (c) (d)

Figure 9. Comparison of panoptic segmentation at twilight
and night: (a) Original image. (b) Proposed method. (c)
PanopticDepth [20]. (d) Panoptic-DeepLab [11].

5.2. Quantitative evaluation of SOTA panoptic seg-
mentation models and the proposed Panop-
ticVis using real foggy night scenes

This section quantitatively evaluates on real foggy night
scene images using the proposed PanaoticVis and two
SOTA panoptic segmentation models: PanopticDeep [11],
PanopticDepth [20]. Mean Intersection over Union (mIoU),
Average Precision (AP), and Panoptic Quality (PQ) are used
for evaluation. As shown in Table 4, all three metrics by the
proposed PanopticDepth show the highest scores between
the two SOTA models. Therefore, based on the results of
qualitative and quantitative evaluations, the robustness and

stability of PanopticVis have been proven.

Table 4: Quantitative evaluations of SOTA panoptic seg-
mentation models [11, 20] and the proposed PanopticVis.
The best scores are in bold.

Metrics
Proposed

PanopticVis (%)
PanopticDepth

(%)
PanopticDeep

(%)
mIoU 66.0 45.0 43.0
IoU 47.3 13.9 45.5
AP 70.2 70.1 63.8
PQ 64.2 24.4 62.5

5.3. Quantitative evaluation of the proposed method
using real foggy night scenes

To evaluate the performance of the proposed method,
the experiments are conducted on a set of real foggy night
images labeled with physical visibility in meters. The test
dataset consists of 1268 images collected under various ad-
versarial conditions. Table 5 summarizes the accuracy by
integrating different DL modules proposed in this paper. As
their integration increases, accuracy becomes from 34.26%
to 87.35%. Therefore, the effectiveness of the proposed
PanopticVis combined with five Deep Learning models has
been demonstrated.

Table 5: Evaluation results from only DeepVis to the full
model of PanopticVis. Bold indicates the best accuracy.

Different deep learning module
Accuracy

(%)
DeepVis 34.26
Combination of DeepVis, DeepFog, and DeepScene 65.13
Combination of DeepVis, DeepFog, DeepScene, and

DeepDepth 84.90

PanopticVis: Combination with DeepVis, DeepFog,
DeepScene, DeepDepth, and DeepReject 87.35

5.4. Visibility distance evaluation of the proposed
PanopticVis using real foggy night scenes

In order to quantitatively evaluate the performance of the
proposed PanopticVis in actual visibility distance and level,
the experiment is conducted on real night images under var-
ious adversarial conditions. Errors between labeled and pre-
dicted visibility distances in meters are analyzed. Figure 10
(1) and (2) show eight different real foggy highways and
segmented images, respectively. In each of the images, the
actual and predicted visibility distances are contained as in-
set values in meters, e.g., 14.37 m - 1001.0 m. It is noted
that the visibility distances in the actual fog are presented
from no fog, i.e., clear, to extremely heavy fog.

Using 1268 images, the average error ratio between the
labeled visibility and predicted values in meters is analyzed.
Results in the mean error rates become 9.56% and 15.01%
for extremely heavy and clear levels, respectively. More-
over, the average error ratios become 15.67% and 18.62%
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for heavy and light fog levels, respectively. Moreover, as
defined in Table 1, evaluation is added for four visibility lev-
els. The average level error becomes 14.3%. In spite of im-
ages (Figure 10) under adversarial conditions like headlight,
illumination, and low brightness, the proposed PanopticVis
has proven to be useful for visibility distance and level esti-
mation.

Figure 10. Prediction visibility distances in meters by
PanopticVis: (a) Clear. (b) Light fog. (c) Heavy fog. (d)
Extremely heavy fog. 8-paired examples of (1) Original im-
age and (2) Segmentation by the proposed PanopticVis.

5.5. Limit of image enhancement with Night-to-Day
models

This section conducts image enhancement by DL-based
Night-to-Day models. CycleGAN [101] and pix2pix [27]
are selected for image enhancement. In [27], image-to-
image translation is a class of vision and graphics prob-
lems where the goal is to learn the mapping between an
input image and an output image using a training set of
aligned image pairs. Based on this property of CycleGAN
and pix2pix, night images are translated into day images.
Figure 11 shows (1) original foggy night images, (2) results
of CycleGAN, and (3) pix2pix. Three road scenes (a)-(c)
show different illumination and fog levels. Translated re-
sults of (2) and (3) could not present the daytime scenes,
just brightening headlights and street lumps. In (b)-(2) and
(c)-(3), the fog has become heavier than the original fog.
Therefore, image enhancement cannot contribute to fog re-
moval and estimation of visibility distances.

Figure 11. Night-to-Day translation: (a) Light fog. (b)
Strong headlight. (c) Heavy fog. (1) Original image. (2)
CycleGAN result. (3) pix2pix result.

5.6. Limit of SOTA image restoration model

In order to confirm another possibility for further pro-
cessing images under adversarial conditions, image restora-
tion by an all-in-one DL model [33] has been applied. Fig-
ure 12 shows results with (a) heavy snowfall, (b) raindrops
on the lens, (c) light fog with sunbeam at dawn, and (d) a
clear twilight scene. It is obvious that no image restoration
has been achieved by SOTA DL [33]. Instead, false col-
ors are generated in red and sky blue. Therefore, it is sug-
gested that the proposed DeepReject plays an important role
in avoiding visibility estimation in difficult images. This
can stabilize overall system performance.

(a) (b) (c) (d)

Figure 12. Limit of an all-in-one deep learning model [33]
for adversarial weather conditions and clear scenes: (a)
heavy snowfall. (b) raindrops on lenz. (c) light fog with
a sunbeam. (d) clear twilight scene.

6. Conclusion
This paper has presented PanopticVis: an integrated

panoptic segmentation with multiple different Deep Learn-
ing models, i.e., DeepScene/Vis/Fog/Reject/Depth, for vis-
ibility estimation at day, in particular, twilight and night.
Moreover, many adversarial visual conditions have been
considered to evaluate the proposed PanopticVis. Based
on the Deep Learning model, it is the first time to estimate
physical visibility distances under such adversarial visual
conditions. For such difficult images, most SOTA Deep
Learning models for image enhancement, image restora-
tion, panoptic segmentation, and night-to-day translation
show low performance under heavy fog and strong illumi-
nation. Since PanopticVis consists of changeable indepen-
dent modules, it requires high efficiency in cost, retraining,
memory, and extension. More, the proposed PanopticVis
will be beneficial to the surveillance monitoring and the
safety of drivers, auto-driving, and rescue workers. Finally,
the camera-based visibility estimation system will also be
replaceable with expensive visibility hardware sensors.
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