
Improvements to Image Reconstruction-Based Performance Prediction
for Semantic Segmentation in Highly Automated Driving

—
Supplementary Material

Andreas Bär Daniel Kusuma Tim Fingscheidt
Technische Universität Braunschweig, Braunschweig, Germany

{andreas.baer, d.kusuma, t.fingscheidt}@tu-bs.de

1. Background
For better readability of the Supplement, we repeat a few

equations from the main paper. If you are familiar with the
main paper, you can skip this part.

First, we assume that encoder Eseg has E layers, while
decoders Dseg and Drec have D layers, with total number
of layers L = E+D. Next, we introduce the decoder layer
identifier d ∈ {1, ..., D − 1}, which allows us to point to
specific decoder layers. Note that we have the relation

ℓ = E + d (1)

between network layer ℓ and decoder layer d. For our back-
ward parameter sharing, we first introduce the decoder layer
identifiers d1, d2 ∈ {1, ..., D−1}, d1 ≤ d2, indicating the
first and last shared decoder layers. As we have d2 = D−1,
we define the number of parameters shared across decoders
Dseg and Drec as

∆d = D − d1. (2)

We will use ∆d in Table 2 to refer to the amount of shared
decoder layers. Further, we introduce the set of inter-
decoder lateral connections LIDLC. In particular,

d′ ∈ LIDLC ⊂ {1, ..., D−1} (3)

holds. We will use d′ to refer to the decoder layer in-
dex, where inter-decoder layer connections are incorpo-
rated. The entities of LIDLC are then displayed in Table 2.

As task metrics, we employ the mean intersection-over-
union defined as

mIoU ϵ =
1

|S|
∑
s∈S

TPs,ϵ

TPs,ϵ + FPs,ϵ + FN s,ϵ
, (4)

with class-wise true positives TPs,ϵ =
∑

n∈N TPn,s,ϵ,
false positives FPs,ϵ =

∑
n∈N FPn,s,ϵ, and false negatives

FN s,ϵ =
∑

n∈N FN n,s,ϵ. Further, ϵ indicates the average
distortion strength and n ∈ N is an image index from set
N = {1, ..., |D|}. With mIoU n,ϵ being the image-specific
mean intersection-over-union, we define its mean as

mIoU ϵ =
1

|N |
∑
n∈N

mIoU n,ϵ. (5)

We further introduce the image-specific peak signal-to-
noise ratio PSNRn,ϵ and its mean

PSNRϵ =
1

|N |
∑
n∈N

PSNRn,ϵ. (6)

As performance prediction metrics, we use the Pearson
correlation defined as

ρ =

∑
n,ϵ(an,ϵ − µa)(bn,ϵ − µb)√∑

n,ϵ(an,ϵ − µa)2
√∑

n,ϵ(bn,ϵ − µb)2
, (7)

with an,ϵ = mIoU n,ϵ, bn,ϵ = PSNRn,ϵ, µa =
1

|N ||E|
∑

n,ϵ an,ϵ, µb = 1
|N ||E|

∑
n,ϵ bn,ϵ, and ϵ ∈ E , set of

distortion strengths E , and ρ ∈ [−1, 1]. Further, the mean
absolute prediction error is defined as

∆M =
1

|N ||E|
∑
n∈N

∑
ϵ∈E

∣∣∆n,ϵ

∣∣, (8)

with ∆n,ϵ = m̂IoU n,ϵ − mIoU n,ϵ, where m̂IoU n,ϵ is an
estimate of mIoU n,ϵ, followed by the root mean squared
prediction error

∆R =

√
1

|N ||E|
∑
n∈N

∑
ϵ∈E

(
∆n,ϵ

)2
. (9)

2. More Details on Our Method
Figure 1 visualizes our proposed methods. We assume

that decoders Dseg and Drec have D = 3 layers. Further,

1

Trained Decoder Dseg

Initialized (t=0) Decoder Drec

zseg DL[
θseg
E+1

] DL[
θseg
E+2

] DL[
θseg
L

] y

DL[
θrec
E+1

] DL[
θrec
E+2

] DL[
θrec
E+D

] x̂

θrec
E+1=θseg

E+1 θrec
E+2=θseg

E+2
θrec
E+D∼pθ

f seg
E+1 f seg

E+2

f rec
E+1 f rec

E+2

(a) Parameter Initialization

sh
ar

ed

Trained Decoder Dseg

Decoder Drec

zseg DL[
θseg
E+1

] DL[
θseg
E+2

] DL[
θseg
E+D

] y

DL[
θrec
E+1

] DL[
θrec
E+2

] DL[
θrec
E+D

] x̂

θrec
E+1=θseg

E+1

f seg
E+1 f seg

E+2

f rec
E+1 f rec

E+2

(b) Parameter Sharing

Trained Decoder Dseg

Decoder Drec

zseg DL[
θseg
E+1

] DL[
θseg
E+2

] DL[
θseg
E+D

] y

DL[
θrec
E+1

] DL[
θrec
E+2

]+ DL[
θrec
E+D

] x̂

f seg
E+1 f seg

E+2

f rec
E+1 f rec

E+2

(c) Inter-Decoder Lateral Connections

Figure 1. Our Proposals. Decoders Dseg and Drec with D = 3
decoder layers (DLs) and zseg = Eseg(x), with encoder Eseg

having E layers. Note that each DL may be of arbitrary layer type
having its individual set of parameters θ. Both Dseg and Drec

take zseg as input and produce y = Dseg(zseg;θseg
E+1:E+D) and

x̂ = Drec(zrec;θrec
E+1:E+D), respectively. All proposed adjust-

ments are marked in blue. Best viewed in color. (a) First and sec-
ond DL (ℓ = E+1, E+2) of Drec are initialized, i.e., t = 0, with
respective DL parameters of Dseg, while last DL (ℓ = E +D) of
Drec is randomly initialized following the distribution pθ . (b) Pa-
rameters of second DL (ℓ = E + 2, d1 = 2) are shared across
Drec and Dseg. This corresponds to ∆d = 3 − 2 = 1 (2).
(c) We employ inter-decoder lateral connections after the first DL
(ℓ′ = E + 1, d′ = 1) resulting in f rec

E+1 ← f seg
E+1 + f rec

E+1. In this
case, the set of inter-decoder lateral connections has one entry, i.e.,
LIDLC = {d′} = {1} (3).

we assume zseg = Eseg(x), where encoder Eseg has E
layers. For visualization purposes we neglect any encoder-
decoder lateral connections between encoder Eseg and de-

coders Dseg and Drec.
In Figure 1a, we provide a visualization for our param-

eter initialization. In particular, the parameters of layers
ℓ = E+1 and ℓ = E+2 corresponding to the first (d = 1)
and second (d = 2) decoder layer (DL) of Drec are ini-
tialized using the segmentation decoder weights θseg

E+d of
the segmentation decoder Dseg, respectively. As the last
layer of each decoder has its individual output space, we
randomly initialize θrec

E+D following some standard distribu-
tion pθ.

In Figure 1b, we give an overview of our backward
parameter sharing scheme. Note that the last shared DL
d2 = D−1 = 2 is fixed while the first shared DL d1 can
be freely chosen. In the example, we share the parameters
of layer ℓ = E + 2 which is the second (d = 2) DL. This
corresponds to setting d1 = 2. As a result, we have ∆d = 1
(2) shared DLs in total. Consequently, if we would like to
proceed with our backward parameter sharing scheme and
set d1 = 1, we end up with ∆d = 2 shared DLs, where
layers ℓ = E + 1 and ℓ = E + 2 having the decoder layer
identifiers d = 1 and d = 2, respectively, are shared.

Lastly, in Figure 1c we elaborate on inter-decoder lateral
connections (IDLCs). In this example, we employ an inter-
decoder lateral connection after network layer ℓ′ = E + 1
corresponding to decoder layer d′ = 1. As a result, we
obtain f rec

E+1 ← f seg
E+1 + f rec

E+1, with the set of inter-decoder
lateral connections being LIDLC = {d′} = {1}. If we
would like to have additional IDLCs, set LIDLC is extended
by the additional decoder layer identifiers d′ that are used,
e.g., we have LIDLC = {1, 2} for the case where IDLCs are
employed after the first (d′ = 1) and second (d′ = 2) DL.

3. Detailed Experimental Setup
In the following, we extend the experimental setup from

the main paper and provide a few more details. In particu-
lar, we include decoder layer identifiers d for each decoder
type used in our experiments. The decoder layer identifiers
are then used as d1 (2) in our parameter sharing experi-
ments and d′ (3) in our inter-decoder lateral connection ex-
periments. Further, all experiments were performed using
PyTorch 1.10.2, TorchVision 0.11.3, CUDA
10.2, and a single NVIDIA GTX 1080Ti. Code is
available at https://github.com/ifnspaml/PerfPredRecV2.

Network architectures: The SwiftNet (SN)-based
Dseg uses spatial pyramid pooling (d = 1) followed
by three upsampling layers (d = 2, 3, 4), with each
having a convolved lateral connection (d = 5, 6, 7)
from the (pre-activated) encoder outputs f seg

ℓ , ℓ ∈
LEDLC = {ℓEB1, ℓEB2, ℓEB3}, corresponding to the out-
puts of the 1st, 2nd, and 3rd ResNet (RN), Swin
(SW), or ConvNeXt (CN) block. Note that the exact
layer indices of ℓEB1, ℓEB2, ℓEB3 vary across ResNet18
(RN18), ResNet50 (RN50), Swin-Tiny (SW-T), and

ConvNeXt-Tiny (CN-T). We adapt the SwiftNet
decoder from PerfPredRec1, the ResNet encoders
from TorchVision2, the Swin-Tiny encoder from
Transformers3 and the ConvNeXt-Tiny encoder
from ConvNeXt4. For completeness, we have D = 8 for
the SN-based Dseg.

On the other hand, the DeepLabv3+ (DL)-based Dseg

employs depthwise separable dilated (also called “atrous”)
spatial pyramid pooling (d = 2) followed by a concatena-
tion to the convolved encoder feature representation at ℓEB1

(d = 1) and further upsamplings and convolutions (d =
3, 4). In addition, DeepLabv3+ varies the encoder’s con-
volution dilation rates with respect to the preset encoder’s
output stride (we use output stride 16 for RN18, RN50,
CN-T and output stride 32 for SW-T). Further, we adapt
the DeepLabv3+ decoder from MMSegmentation5 and
follow some design recommendations. In particular, we set
the number of feature maps of each dilated spatial pyramid
pooling branch to 128, 256, 192, 192 and of the convolved
encoder feature representation to 12, 48, 18, 18 for RN18,
RN50, SW-T, CN-T, respectively. Note that we do not ad-
just feature maps in the SN-based decoder. For complete-
ness, we have D = 5 for the DL-based Dseg.

Lastly, we limit our Monodepth2 (MD) experiments to
an RN18 encoder. The MD-based Dseg uses ten consec-
utive convolutions (d = 1...10) decreasing gradually the
number of feature maps. Before every second convolution
(d = 2, 4, 6, 8, 10) an upsampling is performed and the re-
sulting upsampled feature map is concatenated with a lateral
connection (d = 2, 4, 6, 8). The lateral connections corre-
spond to the outputs of the RN18 stem block as well as the
outputs of the 1st, 2nd, and 3rd RN block. Note that differ-
ent to the SN- and DL-based decoders, the lateral connec-
tions are not convolved beforehand. Further, we adapt the
Monodepth2 decoder from SGDepth6. For complete-
ness, we have D = 11 for the MD-based Dseg.

We refer to [10], [2], and [6] for further de-
tails about SwiftNet, DeepLabv3+, and the adapted
Monodepth2, respectively. Finally, the image reconstruc-
tion decoder Drec follows the architecture of the employed
Dseg, with the adaptation of layer L as described in the
main paper.

Training details: We train the SwiftNet-based and
Monodepth2-based models by following the SwiftNet
training protocol [10] and train for 200 epochs using the
Adam [4] (RN18, RN50) or AdamW [9] (SW-T, CN-T)
optimizer with learning rate 4 · 10−4 and weight decay
10−4. A cosine annealing schedule is applied with mini-

1https://github.com/ifnspaml/PerfPredRec
2https://github.com/pytorch/vision/tree/main/torchvision/models
3https://github.com/huggingface/transformers
4https://github.com/facebookresearch/ConvNeXt
5https://github.com/open-mmlab/mmsegmentation
6https://github.com/ifnspaml/SGDepth

mum learning rate 10−6. For all pretrained model we adjust
the training parameters to learning rate 10−4, weight decay
0.25 · 10−4, and minimum learning rate 10−7. Further, dur-
ing training we augment the images by random horizontal
flipping, random resizing in the range [0.5, 2.0], and ran-
dom cropping to 768× 768. We set the batch size to 12,
7, 4, or 4 for models with RN18, RN50, SW-T, or CN-T
encoder, respectively. Note that we use the AdamW opti-
mizer for SW-T- and CN-T-based models as we found out
it yields significantly better performance than Adam.

The DeepLabv3+-based models are trained by
combining the DeepLabv3+ protocol from [2] with
parts of the SwiftNet training protocol as well as
MMsegmentation5 training protocols. In particular, we
train for 200 epochs using the SGD optimizer with momen-
tum of 0.9 [11] (RN18, RN50) or the AdamW [9] (SW-T,
CN-T) optimizer. Further, we follow a polynomial learning
rate schedule and set the starting learning rate to either 10−2

(SGD with momentum) or 10−4 (AdamW) and reduce the
learning rate down to 10−4 or 10−5, respectively. During
training we augment the images similar to the SwiftNet
protocol [10] described above. We set the batch size to 12,
5, 4, or 4 for models with RN18, RN50, SW-T, or CN-T
encoder, respectively.

4. Additional Results
Baseline performance: We report performance of base-

lines for models with RN50-, SW-T-, or CN-T-based en-
coders and SN- or DL-based decoders on clean (ϵ = 0) val-
idation and test datasets in Table 1.

Best combination: We report results on the best con-
figuration for each of our proposed methods, i.e., parame-
ter initialization, parameter sharing, and inter-decoder lat-
eral connections, as well as a combination of all our pro-
posed methods on mixed clean/distorted validation datasets
in Table 2. The results are reported for models with RN50-,
SW-T-, or CN-T-based encoders and SN- or DL-based de-
coders, i.e., six model architectures in total. Further, the
best model out of all configurations for each out of the six
possible model architectures is highlighted in gray.

The results mostly align with the observations in the
main paper. For three model architectures, i.e., SN+RN50,
SN+CN-T, and DL+SW-T, the combination of our proposed
methods leads to the best results. For two model archi-
tectures, i.e, SN+SW-T and DL+CN-T, using inter-decoder
lateral connections alone leads to the best results. For
one model architecture, i.e., DL+RN50, using our param-
eter sharing scheme alone leads to the best results. More-
over, with the exception of two model architectures evalu-
ated on two different datasets, i.e., DL+CN-T on DCS

val and
SN+CN-T on DKIT

val , using parameter sharing alone, inter-
decoder lateral connections alone, or the combination of all
methods is better than using parameter initialization alone

Table 1. Baseline performance on clean (ϵ = 0) validation and test datasets. Metrics mIoU ϵ=0 [%] (4), mIoU ϵ=0 [%] (5), and
PSNRϵ=0 [dB] (6) of the SN/DL-based Dseg and Drec and of the RN50/SW-T/CN-T-based Eseg. All models trained on DCS

train.

Dseg,
Eseg mIoU ϵ=0 mIoU ϵ=0 PSNRϵ=0

Drec DCS
val DCS

test DKIT
val DKIT

test DCS
val DCS

test DKIT
val DKIT

test DCS
val DCS

test DKIT
val DKIT

test

SN

RN50 65.18 76.08 38.22 36.52 50.49 63.24 32.98 31.33 31.99 31.39 21.54 21.85
SW-T 68.98 76.04 53.37 46.84 55.95 63.31 40.27 39.00 21.83 20.09 16.27 16.49
CN-T 74.76 79.43 56.49 58.46 57.08 66.43 45.25 47.08 31.37 30.83 20.39 21.04

DL

RN50 64.18 77.47 42.46 40.13 51.99 65.03 36.68 34.89 32.56 31.67 22.03 22.16
SW-T 64.65 75.53 49.73 47.56 54.91 63.17 43.90 42.00 31.40 30.87 20.64 21.13
CN-T 69.02 79.02 54.23 58.10 55.71 66.41 46.42 46.70 31.49 30.71 20.47 20.96

Table 2. Best combination (ours) on mixed clean/distorted vali-
dation datasets. Metrics ρ (7), ∆M (8), and ∆R (9) of the SN/DL-
based Dseg and Drec and of the RN50/SW-T/CN-T-based Eseg.
‘Init’ = ‘initialization mode’ (random weights (r) or segmentation
decoder weights (s)), ‘∆d’ = ‘amount of shared decoder layers’
(2) & ‘LIDLC’ = ‘set of inter-decoder later connections’ (3). A
dash (-) indicates that this feature is disabled. Best results in bold-
face, second best underlined.

Dseg,
Eseg Init ∆d LIDLC DCS

val DKIT
val

Drec ∆M ∆R ∆M ∆R

SN RN50 r - - 8.46 11.62 7.30 9.36
SN RN50 r 3 - 7.41 10.51 5.97 7.83
SN RN50 r - 4 8.37 11.50 6.80 8.72
SN RN50 r 3 4 6.93 9.97 6.25 8.09
SN SW-T s - - 13.76 17.03 11.21 14.14
SN SW-T r 3 - 13.72 16.84 10.58 13.29
SN SW-T r - 2,3,4 11.96 14.64 9.59 11.84
SN SW-T s 3 2,3,4 12.71 16.08 10.91 13.94
SN CN-T r - 15.67 19.27 13.23 16.46
SN CN-T r 4 - 14.34 18.30 10.35 13.51
SN CN-T r - 2,3,4 13.00 16.18 13.37 16.50
SN CN-T r 4 2,3,4 12.56 16.18 9.15 11.85
DL RN50 r - - 10.51 13.31 8.77 10.61
DL RN50 r 1 - 9.54 12.44 7.84 9.60
DL RN50 r - 3,4 9.61 12.27 8.58 10.40
DL RN50 r 1 3,4 9.76 12.48 8.37 10.26
DL SW-T r - - 13.97 16.82 12.94 15.25
DL SW-T r 2 - 12.27 15.30 11.64 14.10
DL SW-T r - 4 10.98 13.78 10.03 12.29
DL SW-T r 2 4 10.53 13.29 9.41 11.50
DL CN-T r - - 14.92 18.31 13.60 16.83
DL CN-T r 3 - 13.97 17.09 11.77 14.61
DL CN-T r - 4 13.09 16.24 12.12 14.71
DL CN-T r 3 4 17.86 21.39 12.78 15.90

on both DCS
val and DKIT

val . Note that the baseline approach
in [1] simply uses random parameter initialization (“r”)
and does not incorporate any of our proposed approaches.
Assuming that the difference between random parameter

Table 3. State of the art comparison on mixed clean/distorted
test datasets. Metrics ρ (7), ∆M (8), and ∆R (9) for state-of-the-
art methods [1,5,6] and ours. Ours and [1] useDCS

train for training,
while [5, 6] also use video data DCS

vid, DKIT
vid . We extend Table 7

from the main paper with additional encoders (Enc.) and decoders
(Dec.) for benchmarking reasons. ‘Cal.’ = ‘regression calibration’
& ‘∗’ = ‘slightly modified DCS

test’.

Eval Video Cal. Method Dec. Enc. ρ ∆M ∆R

DCS
test

- DCS
val Ours SN RN50 0.91 8.88 12.13

- DCS
val Ours SN SW-T 0.77 13.27 15.94

- DCS
val Ours SN CN-T 0.69 16.27 19.94

- DCS
val Ours DL RN50 0.86 14.11 16.96

- DCS
val Ours DL SW-T 0.87 12.53 15.10

- DCS
val Ours DL CN-T 0.67 16.60 19.50

- DCS
val Ours SN RN18 0.92 9.47 12.85

- DCS
val [1] SN RN18 0.90 10.12 13.18

- DCS
val Ours MD RN18 0.88 9.14 12.25

DCS
vid DCS

val [6] MD RN18 ∗0.58∗ ∗12.19∗ ∗15.71∗

DKIT
vid DCS

val [6] MD RN18 ∗0.43∗ ∗13.38∗ ∗16.12∗

DKIT
test

- DKIT
val Ours SN RN50 0.76 6.67 8.42

- DKIT
val Ours SN SW-T 0.54 10.11 12.59

- DKIT
val Ours SN CN-T 0.63 11.44 14.57

- DKIT
val Ours DL RN50 0.68 8.94 11.18

- DKIT
val Ours DL SW-T 0.65 10.81 13.98

- DKIT
val Ours DL CN-T 0.37 13.15 16.34

- DKIT
val Ours SN RN18 0.74 7.80 10.10

- DKIT
val [1] SN RN18 0.73 8.00 10.24

- DKIT
val Ours MD RN18 0.70 7.92 9.79

DCS
vid DKIT

val [6] MD RN18 0.54 7.81 9.79
DKIT

vid DKIT
val [6] MD RN18 0.77 6.01 7.70

DKIT
vid DKIT

val [5, 6] MD RN18 0.86 4.45 6.16

initialization (“r”) and segmentation weights initialization
(“s”) is not large (as was also shown in the main paper),
we can conclude that even with this large variety of model
architectures our proposed methods are better than the base-
line approach [1].

More results on test data: We report results for mod-
els with RN50-, SW-T-, or CN-T-based encoders and SN-

or DL-based decoders on our mixed clean/distorted test
datasets in Table 3. In particular, we use the best models in
Table 2 (highlighted in gray) and just perform an additional
evaluation on the respective test dataset to establish further
benchmark results. Note that Table 3 can be seen as an ex-
tended version of Table 7 from the main paper. First of all,
note that that all three encoders are comparable with regard
to number of parameters and number of floating point oper-
ations [3, 7, 8], however, all three being more complex than
RN18 [3]. We observe that the SN-based decoder with a
RN50-based encoder shows the best results for image-only
performance prediction with ∆M = 8.88 and ∆R = 12.13
on DCS

test and with ∆M = 6.67 and ∆R = 8.42 on DKIT
test .

References
[1] Andreas Bär, Marvin Klingner, Jonas Löhdefink, Fabian

Hüger, Peter Schlicht, and Tim Fingscheidt. Performance
Prediction for Semantic Segmentation by a Self-Supervised
Image Reconstruction Decoder. In Proc. of CVPR - Work-
shops, pages 4399–4408, New Orleans, LA, USA, June
2022. 4

[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-Decoder With Atrous
Separable Convolution for Semantic Image Segmentation.
In Proc. of ECCV, pages 801–818, Munich, Germany, Sept.
2018. 3

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Proc. of
CVPR, pages 770–778, Las Vegas, NV, USA, June 2016. 5

[4] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In Proc. of ICLR, pages 1–15, San
Diego, CA, USA, May 2015. 3

[5] Marvin Klingner, Andreas Bär, Marcel Mross, and Tim Fing-
scheidt. Improving Online Performance Prediction for Se-
mantic Segmentation. In Proc. of CVPR - Workshops, pages
1–11, virtual, June 2021. 4

[6] Marvin Klingner and Tim Fingscheidt. Online Performance
Prediction of Perception DNNs by Multi-Task Learning with
Depth Estimation. IEEE Transactions on Intelligent Trans-
portation Systems (T-ITS), 22(7):4670–4683, July 2021. 3,
4

[7] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin Transformer:
Hierarchical Vision Transformer Using Shifted Windows. In
Proc. of ICCV, pages 10012–10022, virtual, Oct. 2021. 5

[8] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A ConvNet for the
2020s. In Proc. of CVPR, pages 11976–11986, New Orleans,
LA, USA, June 2022. 5

[9] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay
Regularization. In Proc. of ICLR, pages 1–18, New Orleans,
LA, USA, May 2019. 3

[10] Marin Ors̆ić, Ivan Kres̆o, Petra Bevandić, and Sinis̆a S̆egvić.
In Defense of Pre-Trained ImageNet Architectures for Real-
Time Semantic Segmentation of Road-Driving Images. In

Proc. of CVPR, pages 12607–12616, Long Beach, CA, USA,
June 2019. 3

[11] Boris T. Polyak. Some Methods of Speeding Up the Con-
vergence of Iteration Methods. USSR Computational Math-
ematicsand Mathematical Physics, 4(5):1–17, Nov. 1964. 3

