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Abstract

Underwater environments are greatly affected by sev-
eral factors, including low visibility, high turbidity, back-
scattering, dynamic background, etc., and hence pose chal-
lenges in object detection. Several algorithms consider con-
volutional neural networks to extract deep features and then
object detection using the same. However, the dependency
on the kernel’s size and the network’s depth results in fad-
ing relationships of latent space features and also are un-
able to characterize the spatial-contextual bonding of the
pixels. Hence, they are unable to procure satisfactory re-
sults in complex underwater scenarios. To re-establish this
relationship, we propose a unique architecture for under-
water object detection where U-Net architecture is consid-
ered with the ResNet-50 backbone. Further, the latent space
features from the encoder are fed to the decoder through a
GraphSage model. GraphSage-based model is explored to
reweight the node relationship in non-euclidean space using
different aggregator functions and hence characterize the
spatio-contextual bonding among the pixels. Further, we
explored the dependency on different aggregator functions:
mean, max, and LSTM, to evaluate the model’s perfor-
mance. We evaluated the proposed model on two underwa-
ter benchmark databases: F4Knowledge and underwater
change detection. The performance of the proposed model
is evaluated against eleven state-of-the-art techniques in
terms of both visual and quantitative evaluation measures.

1. Introduction
Detection of moving objects in a video scene is one of

the most fundamental problems in computer vision. Al-
though several surveillance-based techniques are developed
for outdoor scenes and very few technologies are developed
for underwater applications till the early twenty-first cen-
tury. Most of the underwater object detection techniques
are employed for tracking marine life for estimating the
spread of diseases [15] among the marine animals, cracks
in oil and gas pipelines [12], drowning detection [14], etc.
These applications make it interesting for many underwater
surveillance tasks too. Further, state-of-the-art moving ob-
ject detection algorithms focus on detecting the shape and
structure of the object.

The moving object detection task is more complex in the
underwater scenario as compared to conventional above wa-
ter due to the intrinsic properties of water. There are two
main factors that affect underwater images greatly. The for-
mer includes when the light coming from the objects in the
scene is absorbed and scattered due to the suspended parti-
cle present in the water, which produces a haze in the un-
derwater scene. The latter is due to the salinity of the water
where the optical light gets attenuated due to the difference
in viscosity of the water, which creates the color cast prob-
lem in the scene. Further, the poor visibility and decoloriza-
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tion in underwater conditions pose challenges for traditional
computer vision techniques to accurately analyze underwa-
ter images and videos.

Although many of the conventional object detection al-
gorithms are used in underwater surveillance; very few
works are reported which are specifically designed to de-
tect underwater moving objects against the underwater chal-
lenges including haze, color cast, poor visibility, decol-
orization, etc. In the state-of-the-art (SOTA) techniques
deep convolutional neural networks (CNN) [1, 3, 16] are
used to extract the deep features from the underwater im-
age sequences and draw a projection map from RGB color
image to a binary classification of the images as object and
background. The projections from the encoder to the de-
coder are non-invertible due to pooling layers. The assump-
tion of symmetricity impediments the extraction of spatial-
contextual information among pixels. This motivates to re-
factor the latent space variables to define the relationship
among the nodes that are necessary to preserve the infor-
mation and minute details of the object. In SOTA tech-
niques, graph convolution network (GCN) [13] is found to
be effective in exploring the convolution network in non-
euclidean space. The GCN assumes the neighborhood in
non-euclidean space and integrates the information using a
mean aggregator [2, 30]. We further, broaden the perspec-
tive using GraphSage, i.e., the Graph sampling and aggre-
gator. The learning is based on a function from the local
neighborhood, and information among nodes is shared us-
ing different aggregator functions.

In this article, we propose a simple yet efficient end-to-
end hybrid deep learning architecture that uses both deep
learning and graph theory for underwater object detection.
In the proposed technique, we adhered to the use of a U-Net
architecture which is composed of an encoder and a decoder
part. The U-Net architecture is designed with a ResNet-50
backbone. Further, the encoder part is connected to the de-
coder part through a GraphSage technique. In traditional
CNNs, the dependency on the kernel’s size and the net-
work’s depth results in fading relationships of latent space
features. Hence, they are unable to procure satisfactory re-
sults in complex underwater scenarios. Hence in the pro-
posed scheme, we explored the utilization of refactoring
of latent space vectors using GraphSage network. Further,
we explored different aggregator functions in GraphSage to
check the refactorization of latent space features.

The main contributions of this article are listed below:

• We explored the hypothesis that projections by con-
volutional neural networks lose information in latent
space and utilize refactoring of latent space vectors us-
ing a novel refactoring algorithm i.e. GraphSage for
moving object detection.

• A novel projection method of high-dimensional latent

space variables to graph space using GrapSage is pro-
posed. Here, each element of latent space is projected
as a node of an unordered and unstructured graph, and
training is done to learn the edge relationships.

• Further, we used different aggregator functions like
LSTM, mean, and max to refactor the relationship
among the neighboring nodes of latent variables.

The organization of this paper is as follows. Section 2
depicts the discussions on state-of-the-art techniques. The
proposed work with the motivation of the same is provided
in Section 3. Section 4 describes the experimental results
and analysis of the proposed work. The conclusions and
future works are provided in Section 5.

2. State-of-the-art Techniques
The main idea of moving object detection is to classify

each pixel of an underwater video frame as foreground or
background hence perceiving the shape and structure of the
object. Based on the study of SOTA techniques we devise
underwater object detection techniques into the following
sub-categories.

2.1. Statistical methods

Statistical methods were used to statistically model the
pixel information and further estimate the parameters with
the relative changes in subsequent frames to detect the ob-
ject’s movement. The process of finding the changes in
pixel intensity from two consecutive image frames of a
video helps in detecting the foreground from the back-
ground. Rout et al. [25] proposed a method for local change
detection to detect underwater moving objects. In the said
work, the authors used a difference of 5 frames to detect
the local changes. Vasamsetti et al. [28] proposed a multi-
frame triplet pattern (MFTP) model to detect underwater
moving objects. However, the said method failed in the dy-
namic background condition. Javed et al. [10] proposed a
robust principal component analysis-based model for mov-
ing object detection. The authors decomposed the input
data matrix into a low-rank matrix representing the back-
ground image and a sparse component identifying the mov-
ing objects. Rout et al. [26] proposed a spatio-temporal
Gaussian-integrated Wronskian model to detect moving ob-
jects from a given video scene. The said method considers
the background modeling by exploiting the spatial depen-
dency among the pixels in Wronskian framework and multi-
temporal background in the temporal direction with a mix-
ture of Gaussian probability density functions. However,
considering the underwater challenges the focus has shifted
toward deep learning-based methods. The deep features are
extracted and given to the decoder to re-project the informa-
tion to image space passing through a non-linear activation
map to infer the moving object from the frame.
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2.2. Deep learning based methods

In SOTA, the Encoder-decoder-based deep learning-
based methods are popularly used for moving object de-
tection. These methods extract the deep features from un-
derwater video scenes using deep architectures like CNN,
transformers, etc in the encoder part of the network. The
extracted features contain the object information and are re-
tained during the training of the end-to-end model. Chen et
al. [3] proposed a model using a novel attention model com-
prising long short-term memory. The said method is tested
on CDnet and may fail to incorporate underwater dynam-
ics. Lin et al. [18] proposed a mask RCNN-based method
to detect objects in the underwater environment. However,
the said method doesn’t preserve the minute details of the
moving object. Further, Li et al. [17] proposed a method
for underwater marine life detection using Faster R-CNN.
Recently, Bajpai et al. [1] proposed a UNet-based model for
underwater moving object detection using the ResNet back-
bone. The proposed methods fail to retain spatial informa-
tion. Hence, a re-weighting module is expected to restore
the connections in latent space. Fan et al. [4] proposed a
method for multi-scale contextual features using augmenta-
tion of the receptive field. The proposed model has a com-
posite connection backbone to deal with the distortion in
texture and blurring due to the scattering effect.

2.3. Graph based methods

Recently, graph convolutional neural networks (GCNNs)
are found to be effective in various computer vision tasks
such as image classification and semantic segmentation. Xu
et al. [30] proposed a method based on graph learning to
extract relevant contextual information from sparse graph
structures. To increase spatial awareness, learnable spatial
Gaussian kernels performed the graph inference on graphs.
Chen et al. [2] proposed a combination of semantic seg-
mentation networks for feature extraction on labels and im-
ages, and the inferred features were used to initialize the
adjacency matrix of the graphs. GCNNs [29] are a nat-
ural choice for analyzing irregularly structured input data
represented in non-euclidean space. Giraldo et al. [6] pro-
posed a graph CNN-based model for moving object detec-
tion in complex environments from unseen videos. The said
method uses mask R-CNN, motion, texture, and color fea-
tures to initialize the graph. One of the major disadvantages
of the said model is its dependency on handcrafted feature
selection. Moreover, the existing state-of-the-art methods
are computationally intensive.

3. Proposed Method
We propose an encoder-decoder architecture for under-

water moving object detection as shown in Fig: 1. We
use a U-net architecture where the left part of the archi-

tecture is the encoder part, and the right side of the archi-
tecture is the decoder part. As discussed in the previous
section, several algorithms are reported in the state-of-the-
art techniques for underwater moving object detection. It
may be noted that state-of-the-art techniques use CNN ar-
chitecture to extract the deep features from underwater im-
ages. The convolutional layers project the data from the
image domain to a higher dimensional latent space. CNNs
are not fully connected networks, and the node connections
depend on the spatial neighborhoods. The non-euclidean
space doesn’t preserve the spatial information, which leads
to ill-formulated connections in higher dimensional space.
As we go deeper, the space becomes non-euclidean, and the
information in non-euclidean latent space is loosely con-
nected in terms of spatial relationship.

Fig: 2 column (b-c) depicts an example of two standard
SOTA techniques used for underwater moving object de-
tection: ML-BGS [31] and SubSENSEBGS [27]. It can
be seen clearly that, both models fail to detect the objects
in case of complex backgrounds. The structural informa-
tion of the object is lost. In a higher dimensional space,
the spatial relationships are not maintained as the projec-
tion with a convolutional neural network transforms the eu-
clidean space into a non-euclidean space. Hence, the loss of
minute details is observed.

To maintain the relationship among the nodes, a re-
factoring module is required. In the proposed scheme, we
have used a combination of deep CNN and GraphSage al-
gorithms. The deep CNN network extracts the spatial in-
formation and projects the extracted features in higher di-
mensional space. A projection from latent space to graph
space is made using GraphSage. GraphSage is used as a
reweighting module to re-establish the connection between
nodes or feature vector elements. A deep decoder projects
the information from feature space to image space to de-
tect the moving objects in the scene with spatio-contextual
neighborhood information.

We are aware that the underwater complexities are enor-
mous, which include poor illumination, underwater dy-
namic environments, objects with different shapes and
sizes, and cluttered background. GraphSage [7] is a graph
CNN method that can handle irregular and unstructured
data by updating the node features in a graph and can bet-
ter deal the underwater uncertainties. Hence, it is expected
that the GraphSage method will be better suited for object
detection in underwater conditions. Further, to describe the
latent space variables we have considered various aggrega-
tors for reweighing. We explored different aggregator func-
tions: mean, max, and LSTM over node relations.

3.1. Encoder for Feature Extraction

In the proposed scheme we adhered to the use of a U-Net
architecture with a ResNet-50 encoder for the feature ex-
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Figure 1. Proposed model for moving object detection using GraphSage

traction. In the ResNet-50 network, CNNs at different lev-
els are used to extract the features from images and project
them in higher dimensional space. The deep CNN network
extracts the spatial relationship of pixels assuming the in-
formation to be in euclidean space. Though convolution
projects the information from low-dimensional image space
to high-dimensional latent space but unable to preserve the
spatio-contextual entity of the image in higher dimensional
space. Hence, a feature pooling module or feature reweight-
ing module is required to re-establish the latent space con-
nections. Although several algorithms use feature pooling
modules, but are failing to preserve the spatial entity and
hence the error in object detection results. Here we propose
the use of GraphSage for the same.

Figure 2. Underwater moving object detection

Figure 3. GraphSage Algorithm

3.2. GraphSage

The existing state-of-the-art methods focuses on using
graph learning on features extracted by assigning each el-
ement as a node of the graph making the archaic methods
computationally intensive. However, sampling of graph ac-
cording to the neighbourhood and then aggregating to de-
vise a relationship is not explored. In our proposed method,
the learning strategy of GraphSage is adapted to re-factor
the latent feature vector. The latent vector from the feature
space is fed to initialize the graph. Every element of the fea-
ture vector is considered a node of the graph. Graph archi-
tecture tries to find relationships among them. Images have
a spatial relationship that can be modeled better in CNN.
Using graphs on images leads to high computation time and
space. Hence deploying graphs on high dimensional space
to refactor the relationship rather than on full image is a bet-
ter way to get the best of both worlds. GraphSage is used
for classification in literature. Liu et al. [19] proposed a
GraphSage model for forecasting traffic speed. Graphsage
is initialized with the historical traffic speeds and geometri-
cal information. Lo et al. [20] proposed a GraphSage-based
method for intrusion detection. The graph is initialized and
trained for edge classification. To the best of our knowl-
edge, no work has been done on node refactorization using
GraphSage. To the best of our knowledge, no work has been
done on node refactorization using GraphSage.

A graph G can be defined as an unordered set of tuples
defined over vertices (V) and edges (E). The nodes or ver-
tices are connected with links or edges. In the proposed
scheme, GraphSage (Graph sample and aggregate) is used
for large graphs for inductive reasoning. The basic architec-
ture of the GraphSage algorithm is given in Fig: 3. Further,
different stages of the GraphSage are given as follows.

3.2.1 Sampling

The neighborhoodN is defined as the direct hops connected
by a pathway as shown in Fig: 3 (a). The neighborhood is
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defined as a fixed-size subset from the sample set using a
uniform draw. The neighbors are updated in each iteration.
Working with neighbors helps in reducing the computation
time and size. The information from the neighbors is aggre-
gated and given to the node of the next stage.

3.2.2 Aggregator functions

Aggregator functions af define the relationship among
nodes. The information among the neighboring nodes are
shared and updated according to the aggregator function as
shown in Fig: 3 (b). In GraphSage, the neighbors (j) in
latent space layer l represented by hl−1

j have no order, and
the aggregator function represents the particular node while
being trainable.

hl
Ni
← a f{hl−1

j ∀j ∈ N (i)}. (1)

In the proposed model, three different aggregator func-
tions are used to re-weight the latent space relationship.
Mean aggregator: The mean of neighborhood nodes is
taken into account to evaluate the information at the cur-
rent node.
Max aggregator: The max or the pooling function operates
by doing element-wise max across the neighboring nodes.
LSTM aggregator: Compared to the above two functions,
the third is the most complex function and is inherently not
symmetric. Random permutation among the neighbors is
applied.

3.2.3 Refactoring using GraphSage

Every element of the feature space is considered as a node.
The information from neighboring nodes N is defined over
the information from previous nodes. An aggregator func-
tion from the set {mean, max, LSTM} is applied over the
obtained information from neighbors and is denoted as hl

N .
The current information and information from the neigh-
borhood are concatenated. The obtained vector is passed
through a non-linear activation (sigmoid in our case). The
updated representation of node i in layer l is given as:

hl
i = fupdate(h

l
Ni

, hl−1
j ). (2)

Here, fupdate can be simply an aggregator operator or any
complex function. We have used the update function as a
concatenate operator. The algorithmic representation of the
proposed GraphSage scheme is provided in Algorithm 1. A
graph G is initialized using a latent vector and iterated over
the k-hop neighborhood. At every iteration, the aggregated
information among the nodes is updated to learn the spatial-
contextual information among non-euclidean space.

3.3. Decoder

The re-weighted features are mapped using an inverse-
mapping function by the decoder. In order to preserve most
information, an identical mapping is obtained using U-Net
architecture. There are skip connections between the en-
coder and decoder to preserve the information. The model
is initialized using ImageNet data, and later, the weights
are updated using the F4Knowledge dataset using transfer
learning.

The algorithmic enumeration of the proposed scheme is
provided in Algorithm 1

Algorithm 1: Proposed Algorithm for Object De-
tection

Input: RGB video frame
Output: A binary segmented frame

1 for k = 1 to number of epochs do
2 capture frame f
3 bi ← f
4 for i = 1 to 3 do
5 ci ← conv2d(bi, kernel)
6 bi ← pool(ci)

7 mi ← bi
8 xi ← flatten(mi)
9 xi ← sigmoid(xi)

10 Graph Initialization; A graph G, Latent space
vector xi, i ∈ V , layers L, neighbourhood
function N : i→ 2i, weight matrices W l

∀l = 1 · · ·L
11 hi ← xi ∀i ∈ V
12 for l = 1 to L do
13 for i ∈ V do
14 hl

Ni
←

aggregator functionl{hl−1
j ∀j ∈

N (i)} hl
i ←

σ(W l.concatenate(hl−1
i , hl

N (i)))

15 yi ← hl
i ∀i ∈ V

16 ki ← conv2d(yi)
17 for i = 1 to 3 do
18 ui ← upsample(ki) + bi
19 di ← conv2d(ui)

20 di ← sigmoid(di)

21 L = − 1
N

∑N
k=0 tk ∗ log(t̂)+(1−ti)∗ log(1− t̂i)

22 compute gradient
23 update weights and bias
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Figure 4. Qualitative measure of F4Knowledge dataset on proposed model

Table 1. Quantitative analysis of proposed method with different aggregator functions on different challenges of F4Knowledge dataset

Challenge Aggregator Function Accuracy Recall Precision F measure
Training Testing

ComplexBkg Mean 99.60 98.59 98.99 99.58 99.28
Max 99.58 58.77 99.68 59.00 74.13

LSTM 99.48 99.61 99.03 97.07 98.04
Crowded Mean 98.83 97.41 99.37 98.02 98.69

Max 98.88 96.78 99.36 97.39 98.37
LSTM 98.46 96.96 99.56 97.38 98.46

DynamicBkg Mean 98.76 97.27 99.27 99.99 99.63
Max 98.77 97.08 97.08 100.00 98.52

LSTM 98.75 96.90 97.14 99.75 98.43
Hybrid Mean 99.14 97.84 98.06 99.78 98.91

Max 99.13 97.94 98.10 99.84 98.96
LSTM 99.14 98.66 98.92 99.73 99.32

Standard Mean 98.74 98.92 99.37 99.54 99.46
Max 98.73 98.92 99.37 99.54 99.46

LSTM 98.72 98.29 98.89 99.38 99.13
Aggregate 98.98 95.33 98.81 96.40 97.25

Table 2. Quantitative analysis in terms of F-measure with six SOTA techniques. The red color indicates the best, and blue indicates the
second best

Challenge Texture-BGS [9] MLBGS [31] MultiCueBGS [21] SubSENSEBGS [27] SILTP [8] MFI [28] PM (mean) PM (max) PM (LSTM)
complex background 0.69 0.58 0.48 0.21 0.73 0.83 99.28 74.13 98.04

crowded 0.54 0.74 0.68 0.67 0.67 0.69 98.69 98.37 98.46
dynamic background 0.43 0.32 0.33 0.81 0.32 0.64 99.63 98.52 98.43

camouflage foreground 0.42 0.66 0.77 0.42 0.66 0.72 99.46 99.46 99.13
hybrid 0.49 0.46 0.72 0.42 0.69 0.8 98.91 98.96 99.32

Table 3. Quantitative analysis in terms of F-measure with five SOTA architectures. The red color indicates the best, and the blue indicates
the second best.

Challenge GSMM [24] AGMM [32] ABMM [11] ADE [33] GWFT [22] PM (mean)
fish swarm 0.57 0.30 0.06 0.59 0.85 0.99

marine snow 0.84 0.82 0.65 0.82 0.91 0.99
small aquaculture 0.77 0.74 0.43 0.88 0.93 0.99

caustics 0.55 0.74 0.67 0.75 0.67 0.99
two fishes 0.79 0.79 0.76 0.71 0.82 0.95
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4. Experimental Results and Analysis

The proposed technique is executed on an NVIDIA
A100 80 GB GPU with 128 GB RAM. It is imple-
mented by python programming with the PyTorch frame-
work on the Linux operating system. We have evaluated
the performance of the proposed scheme on two benchmark
databases: F4Knowledge and Underwater change detection.
In the proposed scheme, a batch size of 2 is considered dur-
ing training. In GraphSage, a hop of two neighbors is con-
sidered. We used Adam optimizer with a learning rate of
e−3 to converge our model. The U-Net architecture uses bi-
nary cross entropy as a loss function to compute the gradient
and update the hyperparameters. The model’s performance
is tested using different aggregate functions using visual and
quantitative evaluation measures. The performance of the
proposed scheme is corroborated by comparing its results
with those of the eleven state-of-the-art (SOTA) techniques:
Texture-BGS [9], MLBGS [31], MLCB [21], Subsense-
BGS [27], SILTP [8], MFI [28], GSMM [24], AGMM [32],
ABMM [11], ADE [33], GWFT [22].

4.1. Description on Databases

We have evaluated the performance of the proposed
scheme on two benchmark databases: F4Knowledge [5] and
Underwater change detection [23]. The Fish4Knowledge
dataset has video sequences captured from 10 cameras.
We considered five challenges from the Fish4Knowledge
dataset: complex background, crowded scenes, dynamic
background, camouflaged foreground, and hybrid scenes.
The number of samples varies between different challenges.
The second dataset considered in our experiment is under-
water change detection. The said dataset has five videos
with different challenges: caustics, marine, fish swarm, two
fish, and aquaculture. Fish4Knowledge has less correlation
among the frames corresponding to ground truth, while a
high correlation among the frames can be observed in the
underwater change detection dataset.

4.2. Visual Analysis of Results

The visual analysis of the proposed architecture for un-
derwater moving object detection is carried out on different
challenging sequences of the F4Knowledge database and
underwaterchangedetection. A visual illustration, of the re-
sults on F4Knowledge are shown in Fig: 4 columns (a) and
(b) represent the original and ground-truth images of se-
quences. Fig: 4 columns (c) to (h) represent the results
obtained on the considered sequence of the F4Knowldge
database using Texture-BGS [9], MLBGS [31], MLCB
[21], SubsenseBGS [27], SILTP [8], MFI [28] techniques.
It may be observed that most of SOTA methods failed to
provide the complete object region. Even many instances
the moving object region are missed. However, the results

obtained by the proposed scheme as shown in Fig: 4 column
(i) are able to detect the object correctly.

Table 4. Quantitative measure on underwater change detection
dataset

Challenges Accuracy Precision Recall F-measure
Caustics 99.61 99.95 99.65 99.80
Marine 98.78 99.80 98.97 99.39

Fish swarm 98.18 99.60 98.51 99.05
Two Fish 98.60 99.38 99.22 99.30

AquaCulture 90.97 93.48 97.36 95.38

4.3. Quantitative Analysis Results

In this article, the evaluation metrics considered to eval-
uate the quantitative performance of the proposed moving
object detection model are accuracy, precision, recall, and
f-measure. Accuracy is the ratio of a correctly labeled pixel
as foreground among all the pixels. Precision is the ratio of
pixels correctly labeled as a foreground to the detected total
foreground pixels. The recall is the ratio of pixels labeled
as the foreground to those that belong to the foreground. F-
measure is the harmonic mean of precision and recall. As
the number of background and foreground pixels is not the
same, the f-measure is the most reliable metric.

F1 =
TP

TP + 1
2 (FP + FN)

. (3)

The results obtained by the proposed scheme on the
F4Knowledge dataset, using the different aggregator func-
tions are provided in Table: 1 in terms of accuracy, recall,
precision, and F-measure quantitative evaluation measures.
In this table, we have provided the considered evaluation
measures obtained by the proposed scheme on five different
challenges of the Fish4Knowledge dataset. The results are
found to be very effective and produce a higher accuracy
with a very good precision record on all the challenges with
different aggregator functions like mean, max, and LSTM.
We also observed that for the “complex backgrounds” se-
quence, the max operator was found to be providing a lesser
accuracy.

Further, the proposed model is compared with those of
the different state-of-the-art techniques along with consid-
ered three aggregator functions: mean, max, and LSTM.
The proposed model is compared with the six state-of-the-
art techniques: Texture-BGS [9], MLBGS [31], MLCB
[21], SubsenseBGS [27], SILTP [8], MFI [28] techniques
in terms of F-measure and are shown in Table: 2. It can be
clearly observed that the proposed model provides the best
results compared to all SOTA techniques. Hence, it corrob-
orates our hypothesis. It is also observed that the mean ag-
gregator surpasses the F-measure as compared to max and
LSTM aggregators and other considered SOTA techniques.
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We also verified the effectiveness of the proposed
scheme on the underwater change detection dataset with the
mean aggregator. Table: 3 has quantitative results compared
to five SOTA methods: Gaussian switch mixture model
(GSMM) [24], adaptive Gaussian mixture model (AGMM)
[32], adaptive background mixture model (ABMM) [11],
adaptive density estimation (ADE) [33], Gaussian switch
with flux tensor (GWFT) [22] in terms of F-measure. Our
proposed model was found to be performing best as com-
pared to all the SOTA architectures. Table: 4 contains the
quantitative results for the proposed model using the mean
aggregator function in terms of accuracy, precision, and re-
call on five challenges of underwater change detection.

(a) Aggregated quantitative measure of F4Knowledge dataset
on proposed model

(b) Comparison of different aggregator functions

Figure 5. Quantitative measure of F4Knowledge dataset on pro-
posed model

4.4. Ablation study

We made an ablation study of the proposed scheme on
different aggregators using: mean, max, and LSTM meth-
ods on the F4Knowledge dataset which are reported in Ta-
ble: 5. The comparison of different aggregator functions is
reported in Fig: 5. The mean operator has the highest accu-
racy, precision, and a comparable F-measure with a differ-
ence of 0.02 from best. The computation time for the Mean
operator is less than LSTM and hence more preferable.

Table 5. Ablation study of different aggregator functions on the
F4Knowledge dataset. Red indicates best, and blue indicates sec-
ond best.

Function Accuracy Precision Recall F-measure
Mean 98.51 99.38 91.15 98.66
Max 94.46 99.01 98.72 98.66

LSTM 98.50 99.19 93.89 98.68

5. Conclusions and Future Works
In this article, we propose a novel hybrid deep learn-

ing and GraphSage architecture for underwater object de-
tection. The proposed model consists of an end-to-end
encoder-decoder-based U-Net architecture with the ResNet-
50 backbone. To reduce the effects of misclassification in
object detection, a novel GraphSage-based model is sand-
wiched between the encoder and decoder of the U-Net ar-
chitecture. Three aggregator functions, namely, mean, max,
and LSTM, are verified to retain the missing information.
The proposed scheme is tested on two benchmark underwa-
ter databases: F4Knowledge and underwater change detec-
tion. The effectiveness of the proposed scheme is verified
with eleven state-of-the-art techniques. It is verified that in
non-euclidean space, only convolution operation is insuffi-
cient to retain the information. Refactoring the relationship
among nodes is necessary. Further, mean based aggrega-
tor is found to be providing the best results. In the future,
we would like to improve the performance of the proposed
scheme using the first generic object neural network tracker
for its possible real-time implementation.
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