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Abstract

A wide range of human eye fixation prediction algo-
rithms have been presented in the research with the advent
of deep learning. However, to generate better prediction
outcomes, these methods are becoming increasingly compli-
cated. In this study, we present a lightweight human eye fix-
ation prediction network that is based on a low-complexity
representation learning network and can handle a variety
of real-world data. The method includes a simplified multi-
level feature extraction network with an emphasis on chan-
nel and spatial attention mechanism. We investigate the ef-
fectiveness of the present technique in predicting eye fixa-
tion maps on a collection of challenging images from the
SALICON and MIT1003 datasets. A comprehensive quali-
tative and quantitative evaluation revealed that the network
could learn and capture spatial and semantic information in
a scene effectively, resulting in a higher hit rate and fewer
false positives in comparison with the competing solutions.
The approach is implemented on Samsung Galaxy S23 with
SnapDragon-SM8550 mobile platform given its short infer-
ence time of 1.4ms and low model complexity.

1. Introduction
Visual scene interpretation is a crucial research area that

is used in several applications such as video monitoring,
robot navigation, computer vision, and so on. Human eye
fixation detection, the problem of locating points or image
regions that engage human observers’ attention upon first
sight, is one of the critical subjects under visual scene un-
derstanding for its specific use cases in object detection and
tracking, image design, image retargeting, and so on. Ac-
cording to eye fixation studies, an interesting ’visual stimu-
lus’ in a scene stimulates a section of the human eye retina
to process complicated information. When it comes to vi-
sual stimuli, all features may be classified as either low-
level or high-level. Color contrast, orientation, intensity,
positioning, and boundaries are a few instances of low level
characteristics. Faces, objects, and text are some examples
of high-level features. Fig. 1 presents a few example images

Figure 1. Sample Images and Ground Truth Fixation Maps

from well-known Fixation prediciton datasets with ground
truth fixation maps: SALICON [12] and MIT1003 [13].

Early research into eye fixation focused on developing
algorithms that employed low-level handcrafted properties.
Yet, given the variety of factors that define visual saliency,
designing approaches that successfully incorporate all such
features individually can be challenging and tedious. In re-
cent years, deep neural networks have proven to be very
effective in improving the quality of eye fixation prediction
and salient object detection. Several more encoder-decoder-
based deep architectures have been proven to increase de-
tection accuracies by emphasising multi-level feature rep-
resentations and recurrent objectness refinement techniques
to integrate both low and high-level characteristics. Exist-
ing state-of-the-art models are usually complex and time-
consuming to infer. Nevertheless, for real-time use scenar-
ios, increasing parameter overheads and processing com-
plexity have become a bottleneck. Furthermore, for real-
time deployments, a balanced network architecture that ac-
commodates wide fluctuations in real-world data, with bet-
ter detection performance and reduced running costs is re-
quired.

EFNet is proposed to handle highly variable real-world
data effectively. This network was created primarily with
mobile devices in mind, and it delivers impressive accuracy
on real-world data samples. A simplified multi-level fea-
ture extraction network is a component of this proposed ar-
chitecture to provide context-rich representations. To han-
dle the diverse data distributions, we employ a channel
and spatial attention, with an emphasis on discriminative
representations. Using stage-wise fixation prediction on
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a challenging set of images from the benchmark datasets,
SALICON and MIT1003, the proposed technique ef-
fectively captures a wide variety of visual context infor-
mation.The quantitative and qualitative results presented in
Section 4 demonstrate the robustness of the proposed EFNet
as compared to the state-of-the-art methods. The solution is
ideal for low-power devices like mobile phones for its faster
inference speed and minimal model complexity

The primary contributions of the proposed solution are
summarized as follows:

1. A comprehensive study and comparison of the-state-
of-art methods.

2. A scalable, lightweight solution for fixation prediction,
that is well-suited for low-power devices.

2. Related Work
Many computational models have already been pre-

sented to forecast human eye fixations and saliency maps.
There is a strong association between the eye fixation and
saliency maps. The former predicts sparse human eye
fixation spots in a picture, while the latter uses a two-
dimensional topographically organised map to precisely de-
tect the whole attentive object regions. Most early al-
gorithms for fixation prediction were based on traditional
computer vision techniques that produced pixel-level prop-
erties, such spectral residue, global context data, etc. More-
over, it has been shown that the performance of detection
may be enhanced by the use of hand-crafted picture pri-
ors [2, 3, 3, 10, 10, 19, 19, 22].

Deep models are now being employed in this field of
study since earlier approaches that were more concerned
with pixel-level visual features were unable to adequately
collect the semantic data required for such complex tasks.
The state-of-the-art in fixation prediction has greatly ad-
vanced because to the establishment of deep neural net-
works (DNNs) and the availability of large-scale saliency
data sets. Using a 3 layer network and DNN, a prelimi-
nary attempt to model saliency is shown in [20]. Follow-
ing that, Kuemmerer et al [15] proposed a transfer learning
approach that creates saliency maps using pre-existing net-
works trained for object recognition tasks. Subsequently, it
became clear that models built using Fully Convolutional
Networks (FCN) were more effective and successful in pre-
dicting saliency. A novel saliency prediction model was put
out by Dodge et al [7] that takes into account both local
information produced by a DNN and scene-wide semantic
data.

Salient and non-salient areas at various sizes were em-
ployed in network construction for eye fixation prediction
by Liu et al [17]. Wang et al [21] developed multi-level su-
pervision in the convolutional layers with different receptive

fields and a skip-layer network topology to predict human
eye fixation. By using location-based convolution filters,
the approach described by DeepFix [14] enables the net-
work to take advantage of location-dependent patterns. In a
different research, SALICON [12], saliency is predicted us-
ing a multi-stream approach and a network objective func-
tion that is customized for saliency.

In conclusion, the majority of the approaches described
above focus on deep network variations to capture the rep-
resentation of several layers of features, producing heavier
models that are still unable to handle the majority of data
variations in real-world samples.

3. Proposed Method
The architecture of the proposed fixation prediction

method, EfficientFixationNetwork, referred to as EFNet, is
shown in Figure 2. EFNet is composed of two main parts:
i) Deep Feature Extraction Module, to extract deep feature
representations of the image; ii) Feature Attention Module,
to emphasize significant and context-rich representations.
In this section, each of these stages is explained in detail.

3.1. Deep Feature Extraction

With the goal to develop an effective and simple model
for fixation prediction, we employ EfficientNet [18] as a
backbone network to acquire deep feature representations,
by drawing inspiration from TRACER [16]. EfficientNet
offers greater learning capabilities and is compact as com-
pared to other models like ResNet and VGG. We experi-
mentally choose feature maps from three different stages of
the CNN: 3, 5, and 7 which contain 40, 112, and 320 chan-
nels, respectively. These are represented in the model archi-
tecture as F3, F5, F7. The feature maps are reduced to F̂3,
F̂5 and F̂7 of sizes 32, 64 and 128, by processing through
multi-kernel based receptive field blocks, which have a set
of k × 1 and 1 × k convolutions. F̂5, F̂7 are upsampled
by scale factors 2, 4, respectively and concatenated to F̂3,
along the channel axis, giving multi-level feature maps.

For mobile applications, we employ EfficientNet-lite1
model for deep feature extraction. This lite version is tai-
lored from the original EfficientNet and is well supported
by mobile accelerators. Some modifications include, re-
moval of squeeze-and-excitation networks, replacement of
all swish activations with RELU6 to improve the quality of
post-training quantization.

3.2. Feature Attention Module:

The Feature Attention Module receives the multi-level
feature maps from the Deep Feature Extraction Module as
input. As these feature maps capture information at differ-
ent levels, we employ channel and spatial attention blocks.
Channel attention is used to emphasize the significant chan-
nels from the input feature representations. The spatial in-
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Figure 2. The Proposed EFNet Architecture for Eye Fixation Map Prediction

formation is mean-pooled globally to obtain a representa-
tive value X̃ , for each feature map. Self-attention is applied
to generate the attention map αc using the descriptor X̃ as
shown in Eq. 1.

αc = σ

(
exp(Fq(X̃)Fk(X̃)T )∑
exp(Fq(X̃)Fk(X̃)T )

Fv(X̃)

)
(1)

where F(·) is a convolution operation using a 1× 1 kernel.
The final representation of channel attention is given by

Xc = X ∗ αc +X (2)

Supporting channel attention, spatial attention is em-
ployed to focus on the feature maps’ informative regions.
The inter-spatial relationship of features is captured using
self-attention, and the input data is reduced to a single out-
put feature Xs.

Xs =

(
exp(Fq(Xc)Fk(Xc)

T )∑
exp(Fq(Xc)Fk(Xc)T )

Fv(Xc)

)
+ Fv(Xc)

(3)
The final saliency map, denoted as Sm, is generated by pass-
ing Xs from the preceding stage through a sigmoid layer.

3.3. Adaptive Pixel Intensity Loss

To create the loss function, similar to TRACER [16], we
combine the binary cross entropy (BCE), intersection over
union (IoU), and L1 loss functions. We observed that, even
though Salient Object Detection was its original use, Fix-
ation Prediction can benefit from it as well. It effectively
highlights the most salient region in comparison to the sur-
rounding area by taking into consideration the pixel inten-
sity w.

wij = (1− λ)
∑

k ∈ K

∣∣∣∣∣∣∣∣∣∣

∑
h,w∈Aij

ykhw∑
h,w∈Aij

1
− yij

∣∣∣∣∣∣∣∣∣∣
yij (4)

In Eq. 4, K denotes the kernel size and (h,w) represents
the pixels around the target pixel Aij within the kernel. λ is
a penalty term set to 0.5 and kernel size K ∈ {3, 15, 31}.

In BCE loss, the pixel intensity w is used to help the
network zero in on the size of the salient areas. The adaptive
BCE loss is shown in Eq. 5, where y and ŷ indicate the label
and predicted probability of the binary class c.

La
BCE = −

H∑
i

W∑
j

(1 + wij)

1∑
c=0

(yc log(ŷc) + (1− yc) log(1− ŷc))

H∑
i

W∑
j

(1.5 + wij)

(5)
Equation 6 shows a modified IoU loss that places more

emphasis on the bright pixels than the other pixels.

La
IoU = 1−


H∑
i

W∑
j

(yij ŷij)(1 + wij)

H∑
i

W∑
j

(yij + ŷij − yij ŷij)(1 + wij)


(6)

We apply the pixel intensity w to L1 loss, as shown in
Eq. 7. When calculating the deviation from the ground
truth, this aids in the differentiation of significant pixels.

La
L1 =

H∑
i

W∑
j

|yij − ŷij |(1 + wij)

H ∗W
H∑
i

W∑
j

wij

(7)

The final loss function, referred to as Adaptive Pixel In-
tensity loss, is created by combining the above 3 loss func-
tions as shown below,

LAPI(y, ŷ) = La
BCE(y, ŷ) +La

IoU (y, ŷ) +La
L1(y, ŷ) (8)
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Figure 3. Qualitative Comparison of Fixation Maps: EFNet Vs Competitor Methods
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Table 1. Quantitative Comparison of Detection Performance: EPNet Vs Competitor Methods

Method AUC ↑ sAUC ↑ NSS ↑ CC ↑ Sim ↑ KLD ↓ MB ↓
SalFBNet [6] 0.868 0.740 1.952 0.892 0.772 0.236 23.4

FB Net [5] 0.843 0.706 1.687 0.785 0.694 0.708 4.7
MD-SEM [9] 0.864 0.746 2.058 0.868 0.774 0.568 -
EML Net [11] 0.866 0.746 2.050 0.886 0.780 0.520 180.2
UNISAL [8] 0.864 0.739 1.952 0.879 0.775 - 14.7

GazeGAN [1] 0.864 0.736 1.899 0.879 0.773 0.376 879.2
ML Net [4] 0.866 0.768 - 0.743 - - 58.9
EFNet-lite 0.860 0.740 1.942 0.892 0.782 0.870 15.0
EFPNet-E1 0.861 0.742 1.973 0.900 0.790 0.907 21.6

4. Experimentations and Results

4.1. Datasets and Metrics

For our training and assessment purposes, we employ the
datasets SALICON and MIT1003, respectively. SALI-
CON (SALIency in CONtext) is a large dataset for selective
attention that includes 20K mouse-tracking annotated pic-
tures. The dataset was constructed using samples from the
well-known MS COCO dataset. 10K, 5K, and 5K pictures
from the 20K photos are used as training, testing, and val-
idation sets, respectively. Images from the Flicker and La-
belMe datasets totaling 1003 are included in the MIT1003
dataset. It is based on eye-tracking data from fifteen people
who watched the photos at their own discretion.

We employ Similarity (SIM), Kullback-Leibler diver-
gence (KLD), Area under ROC Curve (AUC), Shuf-
fled AUC (sAUC), Normalized Scanpath Saliency (NSS),
and Pearson’s Correlation Coefficient (CC) as metrics for
our validation and comparisons with competing algorithms
based on the extensive study reference metrics.

4.2. Implementation Details

MIT1003 and SALICON datasets are used to train and
assess the presented approach. We follow the SALICON
recommended partitioning for validation and testing. With
a maximum of 50 epochs, the training batch size is set at 32.
For each epoch, the Adam optimizer was employed with a
learning rate of 5× 10−5 and a weight decay of 10−4. The
proposed model is benchmarked against various competi-
tive approaches using a TITAN-X GPU.

EFNet-E1, based on EfficientNet-B1 was developed as
the primary version for the task. Then a mobile com-
patible variant called EFNet-lite was developed based on
EfficientNet-lite1. EFNet-lite is only 9MB and operates at
90fps. Due to the restricted support for floating-point op-
erations on mobile devices, the lite version of the model is
then quantized to 8 bits. On the accelerated mobile plat-
form, this quantized variant runs at 715 fps.

4.3. Results

4.3.1 Comparative Results

To demonstrate the efficacy of our current method, we
conducted quantitative and qualitative analyses on the
SALICON test set of 5, 000 samples. The quantita-
tive findings from submitting the predicted fixation maps
to the challenge system 1 are shown in Table 1. The
suggested method’s improved performance, particularly in
terms of CC and Similarity measures, is demonstrated
through the performance comparisons with recent popu-
lar state-of-the-art approaches including EML-Res, EML-
Nas [11], and MLNet [4].

In order to show how the recommended technique can
handle challenging real-world samples, we present the com-
parative fixation maps in Fig. 3. A collection of unseen im-
ages from the SALICON dataset are selected for compari-
son in order to account for subjective observation. The high-
quality fixation maps predicted by the present method are
found to be comparatively consistent and smooth when
compared to the ground truth maps. The samples in the
figure clearly show the efficacy of the proposed approach
owing to the improved hit rate and lowered false positives.

5. Conclusions
In this paper, we presented a lightweight human eye fix-

ation prediction network that is robust to real-world data
variations with comparable better accuracy with the latest
state-of-the-art techniques. The improved inference time
and low model complexity of the proposed method is highly
suitable for solution deployment in low-power devices like
smart phones.
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Murakawa, and Ryosuke Nakamura. Salfbnet: Learning
pseudo-saliency distribution via feedback convolutional net-
works. Image and Vision Computing, 120:104395, 2022. 5

[7] Samuel F. Dodge and Lina Karam. Visual saliency prediction
using a mixture of deep neural networks. IEEE Transactions
on Image Processing, 27, 2017. 2

[8] Richard Droste, Jianbo Jiao, and Julia Alison Noble. Unified
image and video saliency modeling. ArXiv, abs/2003.05477,
2020. 5

[9] Camilo Luciano Fosco, Anelise Newman, Patr Sukhum,
Yun Bin Zhang, Nanxuan Zhao, Aude Oliva, Zoya Bylinskii,
and Hong Kong. How much time do you have? modeling
multi-duration saliency. 2020 IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), 2020. 5

[10] Bo Fu, Yong-Gang Jin, Fan Wang, and Xiao-Peng Hu. Prior
fusion based salient object detection. 2014. 2

[11] Sen Jia. Eml-net: An expandable multi-layer network for
saliency prediction. ArXiv, 2018. 5

[12] Ming Jiang, Shengsheng Huang, Juanyong Duan, and Qi
Zhao. Salicon: Saliency in context. In 2015 IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), 2015.
1, 2

[13] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Tor-
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