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Abstract

Anomaly detection methods can detect outliers, but what
are the properties of an outlier? In this paper, we propose
ZEBRA, a novel framework for generating explanations of
an outlier based on the analysis of feature rarity in an in-
terpretable feature space. The contributions of our work
include: (a) a modular model-agnostic framework for ex-
planations of outliers; (b) a statistical explanation method
based on a rarity score and weighted aggregation functions;
(c) multimodal explanations combining visual, textual, and
numeric explanations. ZEBRA simplifies the mapping of
low-level features to high-level concepts to generate mul-
timodal and human-readable explanations of outliers.

1. Introduction

“When you hear hoofbeats, think of horses, not ze-
bras”. This well-known maxim is commonly taught in
medical schools to stress how common diagnoses should
be preferred over rare ones. However, detecting and un-
derstanding outliers or abnormalities remains crucial, es-
pecially in high-stakes settings like the medical domain.
While anomaly detection methods can identify outliers, un-
derstanding their anomalous nature is challenging. ZEBRA
aims to explain outliers by analyzing and presenting their
outlying and interpretable properties. Anomaly detection
methods for “observations which appear to be inconsistent
with the remainder of that set of data” [2] have evolved
since 1852 [30], with numerous statistical techniques and
AI algorithms now available [5, 28]. Nevertheless, recent
advances in Explainable AI (XAI) highlight the need for
explainable anomaly detection methods [27, 29].

A recent survey by Panjei et al. [29] identifies three types
of outlier explanations: (1) importance level of outliers,
also known as ranking; (2) causal interactions among out-

liers; and (3) outlying attributes of outliers. Type (1) ex-
planations can be further divided into model-specific [5,13]
and model-agnostic methods [1, 11, 12, 14, 17, 34]. As for
type (3) explanations, current tools face three main chal-
lenges: (3.a) limiting subspace search, (3.b) generating
readily interpretable output, and (3.c) incorporating user’s
prior knowledge about the attributes. Reviewing exist-
ing works, Refout [12] and LookOut [11] address both
challenges (3.a) and (3.b) through heuristic-based subspace
search; Explainer [14] tackles (3.b) by developing sapling
random forests and methods for anomaly clustering; COIN
[17] considers user knowledge about contributing attributes
to the outlierness, satisfying challenges (3.b) and (3.c).
None of these techniques address all three challenges. In
this taxonomy, ZEBRA embodies a model-agnostic hybrid
method, providing explanations of types (1) via per-sample
numerical rarity scores to rank outliers, and (3) with learn-
ing the contributions of features to the inlier/outlier clas-
sification. ZEBRA uniquely addresses all three challenges
by conducting rarity analysis on interpretable features and
mapping them into higher-level user-provided concepts.

With respect to evaluating outlier explanations, most
techniques address only their truthfulness [29]. For nu-
merical rankings, usual supervised performance metrics can
be used after choosing a threshold for the minimum out-
lier score (e.g., ROC AUC, accuracy). However, regarding
outlying attributes, ground-truth information is more chal-
lenging, often restricting evaluation to an empirical discus-
sion. To overcome this limitation, researchers can modify
real-world datasets by adding noise attributes [17] or re-
ducing the examples in specific categories to become out-
liers [8], create synthetic datasets [8] or simulate analyst
feedback [34]. The present paper uses a mix of techniques
to create a toy example to showcase the framework since the
real-world use case under study does not have any ground-
truth, nor do we have access to domain experts for valida-
tion.
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The contributions of ZEBRA are three-fold: a) a mod-
ular model-agnostic framework for explaining outliers; b)
a statistical-based rarity score for individual features, along
with score aggregation functions that integrate mappings of
low-level features to user-relevant concepts; c) multimodal
explanations combining visual, textual, and numeric com-
ponents, presented through a versatile Rarity Card.

Following this introductory section, Sec. 2 describes the
ZEBRA framework. Sec. 3 and Sec. 4 present two illustra-
tive use cases and their results. Finally, Sec. 5 concludes
with the main findings and future research directions.

2. ZEBRA framework
ZEBRA is a modular, pluggable framework and interface

for explanations of outliers. Figure 1 illustrates the work-
flow of the framework and its modular components. Each
modular component is subsequently described.

Feature Extraction. ZEBRA leverages an interpretable
feature space. We use the Texture-Color-Geometry Fea-
ture Extraction (TCGFE) library [32] to summarize each
image with 152 interpretable continuous features. Features
describe particular aspects of high-level concepts: Texture,
Color and Geometry. If available, image masks may be used
to focus the feature representation on regions of interest.
Note that this module is extensible to other feature extrac-
tors in a pluggable design. The only requirement to main-
tain the interpretability aspect is to ensure that extracted fea-
tures can be mapped to human-understandable concepts.

Rarity Scores. A numeric rarity score is computed for
each feature of a given image. Rarity of a feature value
describes the parameterized probability density estimate of
the sample, and its computation is described in Sec. 2.1.

Aggregation of Rarity. The aggregation of feature rarity
scores relates samples to higher-level concepts and also en-
ables measuring the overall rarity of a given sample or fea-
ture. Model-based aggregation enables context-specific ex-
planations of outliers allowing rarity to account for known
or assumed bias. Aggregation is described in Sec. 2.2. This
step connects rarity with two modular components of the
ZEBRA framework:

i High-level Concept Mapping. A mapping between
(groups of) lower-level features to high-level user-
relevant concepts can be provided, resulting in inter-
pretable concept-level rarity scores. Examples of high
level concepts include general image-related concepts
like Color, Texture and Geometry features, or clinical
criteria in healthcare applications.

ii Explanations for Outlier Detectors. Model-based
aggregation enables ZEBRA explanations to represent
the biases of an outlier detection method or classifier.
Examples of context-aware weighted aggregation are
given in Sec. 2.2.

Multimodal Explanations in a Rarity Card. The ex-
planations from ZEBRA are visually consolidated into an
automatically-generated Rarity Card, as shown in Fig. 1.
The multimodal explanations include numerical rankings or
scores, visual plots, and textual summaries to aid user un-
derstanding of the outlying properties of the sample. Expla-
nations are queryable over a dataset of images with a web
application and platform developed using the Streamlit
library. ZEBRA provides interactive visualizations, such
as correlation plots (e.g., outlier detector Anomaly Score
vs. overall / concept-aggregate Rarity Score), as shown in
Fig. 2, and UMAP-based plots [21] with interactive display
of sample information.

Additional implementation features of the ZEBRA plat-
form include:

a Generalization across modalities. Rarity scores are cal-
culated from features computed by any feature extractor,
which allows for extensive applicability to various data
modalities (e.g., image, time series, text, or speech).

b Class-specific analyses. Sample rarity is preferably re-
stricted to a specific data class (or group), safeguarding
the possible existence of contextual outliers [7] and gen-
erating appropriate explanations for them.

c Outlier labelling. Outlier detection is built into the
framework (e.g., applying a threshold to samples’ rarity
scores). However, the user can also submit ground-truth
anomaly labels, or apply an outlier detector (OD) to ob-
tain approximate results. For the latter, our implemen-
tation has two options although others can be used: the
Isolation Forest [16] and Local Outlier Factor [4].

2.1. Rarity Score

The proposed numerical Rarity Score aims to character-
ize each descriptive feature of a sample based on its like-
lihood of occurrence. The steps for calculating the Rarity
Score are described in Algorithm 1. The calculation of the
probability density function (PDF) of each feature’s distri-
bution is achieved by Kernel Density Estimation (KDE), us-
ing the Epanechnikov kernel [9] given its computational ef-
ficiency (compact support) and robustness to the presence
of outliers:

K(u) =

{
3
4 (1− u2), |u| ≤ 1

0, |u| > 1

where u is the distance from the center of the kernel, and
K(u) is the weight assigned to a data point at that distance.
A bandwidth h is used to adjust the kernel to the data by:

Kh(u) =
1

h
K

(u
h

)
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Figure 1. ZEBRA’s modular and pluggable architecture generates multimodal explanations of why an outlier is rare. Choice of a
feature extractor, outlier detector, and high-level concept space enables users to interact with explanations of samples, features, concepts
and outlier detectors. The explanations are contextualized on automatically-generated rarity cards displayed to users in an interactive web
interface.

Algorithm 1 Rarity Score

Input: A matrix of interpretable features F ∈ Rn,m for n
samples and m features.

Output: Matrix of rarity scores R ∈ [0, 100]n,m, where
Ri,j is the rarity score for feature Fi,j .

1: for each feature column F:,j do
2: Estimate kernel density f(j) ≜ KDE(F:,j)
3: for each sample, i ∈ 1..n do
4: Calculate the density ei,j ← f(i|j)
5: end for
6: Form the matrix E ∈ Rn,m from all ei,j
7: Normalize each row Ei,: ← E:,j

||E:,j ||2
8: Apply Element-wise Inversion Ei,j ← 1

Ei,j

9: Scale each column
R:,j ← 100× E:,j−min(E:,j)

max(E:,j)−min(E:,j)

10: end for

and its selection is done via the Freedman-Diaconis
method [10], a data-driven rule adaptable to different dis-
tributions:

h = 2× IQR(F:,j)

n1/3

where IQR denotes the interquartile range of the column
vector F:,j of feature j, and n is the number of samples.

2.2. Aggregation of Rarity Scores

Mapping groups of features to a given concept allows
the rarity contribution of each feature to be combined and
generate human-understandable high-level explanations. To
this end, aggregation is performed both at the conceptual
level (aggregating scores for feature subsets), and sample-
wise (aggregating considered concepts/features into a single
score). These aggregate rarity scores can be computed with
an inner product ⟨Ri,:,w⟩ with feature weights w ∈ Rk,
k = c if aggregating c conceptually-related features, or k =
m if aggregating all m descriptive features of a sample. The
feature weights w can depend on an auxiliary model or not,
distinguishing a model-based from a ranked aggregation.

Model-based aggregation. Algorithm 1 outputs rarity
scores via properties of the data distributions, represent-
ing the statistical rarity of a sample in a space of inter-
pretable features. ZEBRA provides an additional step to re-
fine these scores, allowing a model-based aggregation that
enables the reflection of known or assumed bias, such as
bias of a given outlier detector, providing model context
to an otherwise solely data-driven score. Since an outlier
detector o : X → Y where o ∼ O evaluates the sample
space X , and not the rarity space F adopted by ZEBRA,
an auxiliary model a : (F ,O) → W is used to obtain im-
portance weights. Methods from interpretable artificial in-
telligence can suffice for a(·). For instance, it is possible
to train an interpretable classifier to mimic the result of an
outlier detector, and then extract feature importances from
the model. Classifiers of this type include linear models,
Logistic Regression [31], and Random Forest [3]. A second
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class of methods from the field of post-hoc interpretabil-
ity compute the importance weights directly. These include
permutation feature importance [22] and Shapley values via
SHAP [18, 19], and post-hoc attribution methods [25]. The
aggregation step retrieves the importance weights vectorW
to compute the aggregation, generating both concept-related
and overall aggregate sample-wise scores.

Ranked aggregation. Independently from any model, in
this case the features of each sample i are ranked according
to their rarity score value Rij and a weighting vector, wi,
is generated. For a set of k features, wij = k − Rankij +
1,∀i ∈ [1, n], where wij represents the weight of feature j
for sample i, n is the total number of samples, and Rankij
denotes the rank of feature j for sample i based on its rarity
value. The highest score among Ri,: has a Rankij = 1
and the largest weight wij = k, whereas the lowest scoring
feature in the k-set has a weight of wij = 1. This type of
aggregation is used when one opts not to apply the model-
based option, to further evidence the differences in feature
rarity for the different samples in a dataset.

2.3. Regularity and Normality of Rarity Scores

Kriegel et al. [15] propose that outlier scores should sat-
isfy properties of regularity and normality in order to differ-
entiate outliers from inliers. The individual (feature-level)
scores calculated by our method are regular and normal-
ized in the interval [0, 100]. The aggregate scores (by con-
cept or sample) also meet these two requirements, since the
transformations applied to the combination of feature-level
scores are classified as regular, normal and ranking-stable
(according to the taxonomy in [15]).

3. General Image Concept-based explanations:
horses and zebras

Taking the aphorism presented in the motivation of this
work, the distinction between a horse and a zebra is a good
example for a concept-based explanation task. Considering
general image-based concepts such as Texture, Color, and
Geometry, applicable to a myriad of use cases and domains,
it is intuitive to find the rare zebras in a dataset comprised
mainly of horses by emphasizing texture and color features
over geometry features. Can we use the ZEBRA framework
to automatically identify zebras and explain them based on
the outlying attributes?

To answer this question, we built a toy example with
290 horses and 10 zebras randomly picked from the
Horse2zebra dataset in the UC Berkeley’s official directory
of CycleGAN Datasets [35]. The TCGFE library was then
used to extract texture, color and geometry features from the
target images. Subsequent computation of rarity scores and
their ranked aggregation resulted in a rarity score for each
sample, according to the previously described procedure.

Pearson: 0.87
ICC: 0.91

Aggregate RS (sample idx. 43)
Texture: 96.26
Color: 15.92
Geometry: 26.63

Zebra
Horse

Figure 2. Horses vs. Zebras: Correlation plot between sample-
wise ranked aggregated Rarity Scores (RS) and Anomaly Scores
(AS) returned by the outlier detector. Pearson and Intra-class cor-
relation (ICC) coefficients are presented. In this type of interactive
plot, sample cards are shown by hovering over the data points, dis-
playing the sample’s image and concept-related aggregated rarity
scores.

Figure 2 shows the comparison between our sample-
wise ranked aggregated rarity scores (RS) and the anomaly
scores (AS) returned by an Isolation Forest OD. We observe
a good correlation between RS and AS, with a Pearson cor-
relation of 0.87 and Intra-class Correlation (ICC) of 0.91.
Additionally, we can observe that all zebras can be found
with a threshold of RS > 60, whereas for AS that thresh-
old should be AS > 22, which would result in a very low
precision. Considering a threshold of 60 for both scores we
obtain an outlier recall of 50% for AS, and 100% for RS.
F1-scores are 62.5% and 74% for AS and RS, respectively.
These thresholds may be chosen through visualization us-
ing the interactive plot, or objectively based on performance
curves for a training or validation set (e.g., Precision-Recall
Curve).

4. Clinical criteria-based explanations: Cervi-
cal cytology

As another example of application, we illustrate how ZE-
BRA can be applied in a medical use case, namely cer-
vical cytology. According to the World Health Organiza-
tion, cervical cancer is the fourth most common cancer in
women, and curable if diagnosed early [26]. Squamous
cell lesions represent up to 80% of cervical cancers and can
be classified into five levels of abnormality [6, 20]: Atyp-
ical squamous cells of undetermined significance (ASC-
US); Atypical squamous cells, cannot exclude a high-grade
squamous intraepithelial lesion (ASC-H); Low-grade squa-
mous intraepithelial lesions (LSIL); High-grade squamous
intraepithelial lesions (HSIL); and squamous cell carcinoma
(SCC). Additionally, the following nuclei criteria are rele-
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vant to assess squamous cell nuclei abnormality: enlarged
nucleus (Large), heterogeneous chromatin color (HCC) and
texture (HCT), hypo- and hyperchromatism (Chroma), and
presence of nucleolus (Pres. Nuc.).

Given the current advances in developing AI-powered
mobile-based solutions to support cervical cancer screen-
ing in medically underserved areas [23,24,33], we used the
Nuclei-based Cervical Lesions Dataset [23], which consists
of 31698 and 1395 normal and abnormal squamous cell nu-
clei annotations, respectively. The TCGFE library was then
used to extract texture, color, and geometry features from
those annotated regions. Moreover, as an example of how
domain-related high-level concepts can improve the inter-
pretability of the rarity explanations, an empirical mapping
between the TCGFE features and the aforementioned nuclei
criteria was explored.

Figure 3 presents the Rarity Cards generated for the
ASC-US class, covering a comparative inlier and rare cases
for general image concepts (texture, color, and geometry)
- top row - and the mapped clinical criteria - bottom row.
Considerable differences in texture, geometry and color can
be seen in Figures 3b and 3c, respectively. Despite having
no expertise in cytological imaging for cervical cancer, it is
possible for the reader to observe in Fig. 3f the presence of
nucleolus (smaller, round structures).

Based on this information, it is possible to perform in-
put validation of new samples, by checking if they fall out
of scope of the training data (see Fig. 3c with no nucleous
and extreme color rarity). Moreover, one could also evalu-
ate the rare examples in specific classes, and strive for more
targeted collection of similar examples to increase represen-
tativity and avoid negative bias.

5. Conclusion
We introduce ZEBRA, a modular model-agnostic frame-

work to identify and explain rare cases using human-
interpretable concepts displayed in a multimodal Rarity
Card. We additionally propose a statistical explanation
method based on a rarity score and weighted aggregation
functions, and we contribute with Rarity Cards combining
textual, visual, and numerical explanations. This approach
uniquely addresses the three challenges of limiting sub-
space search, generating interpretable outputs, and includ-
ing prior knowledge. Preliminary results in two different
use cases suggest that our rarity score can be used for out-
lier detection and interpretable explanations, showing good
correlation with existing outlier detectors. Without ground-
truth labels or expert validation in the cytology example, we
rely on visual analysis of the Rarity Cards, where consider-
able differences in the high-level concepts are observed.

Future work will consider estimated joint distributions
of multiple features, and we will extend our framework to
other data modalities, such as time series or text, and feature

Overall RS

Aggregate Scores

Inlier

Texture

Geometry

Color
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Geometry
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Rare Color
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Figure 3. Examples of inlier sample and Rarity Cards for cyto-
logical outliers with multimodal explanations: text summary of
rare concepts, visual meter of overall rarity score for the sample,
and plot of rarity scores aggregated by: a-c) general image con-
cepts (color, texture, geometry); d-f) mapped clinical criteria.

types (e.g., binary and categorical). Additionally, we plan to
investigate concept learning, where interpretable concepts
can be automatically extracted from the data, leveraging ex-
emplar samples or self-supervision techniques, (e.g., using
medical images accompanied by clinical notes).

ZEBRA explains outliers by their rarity in a domain-
relevant concept space, empowering users with actionable
insights to understand and address outliers across different
applications.
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