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Abstract

Concept activation vectors (CAVs) enable interpretabil-

ity of a model with respect to human concepts, though CAV

generation requires the costly step of curating positive and

negative examples for each concept one wishes to encode.

To alleviate this bottleneck, we present Text2Concept, an

efficient method for obtaining CAVs directly from text.

Text2Concept extends the multi-modal accessibility of a

CLIP model’s feature space to that of an arbitrary off-the-

shelf vision model, with only the small extra step of training

a linear layer on existing data to map the feature spaces to

one another. We validate our method qualitatively, by sort-

ing images by similarity to embedded concepts, and quan-

titatively, by showing surprisingly strong zero-shot classifi-

cation (enabled via Text2Concept) performance for off-the-

shelf vision encoders. Finally, we demonstrate two new in-

terpretability applications of Text2Concept CAVs: building

concept bottleneck models with no concept supervision, and

diagnosing distribution shifts in terms of human concepts.

1. Introduction

The representation spaces of deep vision models are un-
doubtedly rich in semantic structure. However, these deep
feature spaces are notoriously challenging for humans to
interpret, mainly because it is hard for us to digest thou-
sands of numbers at once. Unlike deep models, which en-
code concepts as vectors in high (e.g. d = 2048) dimen-
sional spaces, humans have developed language to describe
the world around us concisely. In this work, we propose
a method to map text to concept vectors that can be com-
pared directly to image representations obtained from off-
the-shelf vision encoders trained with no text supervision.

Our method works by mapping the representation space
of a given vision model to the representation space of a
CLIP [27] model. By design, CLIP representation space
is shared across jointly trained vision and text encoders.
Thus, CLIP models already have Text2Concept built in, via
the text encoder. To extend this capability to off-the-shelf
models, we propose to learn a mapping between represen-

tation spaces. Specifically, we optimize a linear layer to
predict the representation of an image for a target model
(i.e. CLIP) from the same image’s representation for a
source model (i.e. off-the-shelf vision model). We can then
map the representations of the off-the-shelf model to CLIP
space, where the aligned features would reside in the same
space as the concept vector for the desired text. We can also
learn the reverse mapping, which would map the CLIP text
embedding for a concept to a CAV for the model of interest.

Figure 1 visually validates our approach: after encoding
the concept “in a tree” in CLIP space and computing
similarity with mapped (to CLIP) representations from a
self-supervised ResNet, the classes with the highest average
similarity are reasonable, and most similar class instances
display the concept prominently, while the least similar
ones do not. Stronger validation of our approach is found in
performing zero-shot classification using off-the-shelf en-

coders via Text2Concept. Models achieve impressive zero-
shot accuracy on many tasks, often being competitive with
a CLIP model that is larger, trained on many more samples
with richer supervision, and most notably, directly trained
to align with the text encoder we use in Text2Concept.

Additionally, we demonstrate two new ways to use
Text2Concept CAVs for improved interpretability. First, we
show Text2Concept allows for converting existing vision
encoders to Concept Bottleneck Models (CBMs) [15] with
no concept supervision. CBMs decompose inference into a
concept prediction step followed by class prediction using
a white box model (i.e. linear head) on concept predictions,
so that the contribution of each concept to the final logit
can be precisely computed. With Text2Concept, we can
first predict concept similarities in a zero-shot manner, and
then train a new linear head mapping concept similarities to
class labels. For RIVAL10 data [22], we obtain a CBM that
accurately predicts attributes (AUROC of 0.8) and classes
linearly from attributes (93.8% accuracy), leading to the
desired interpretability benefits (see Figure 3). Next, we
show Text2Concept can demystify large datasets, as the
distribution of similarities between a bank of Text2Concept
CAVs and aligned (to CLIP) representations of the data
essentially summarizes what concepts are present in human
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Figure 1. Qualitative validation of Text2Concept. ImageNet classes are sorted by the average cosine similarity of the CLIP embedding for
“in a tree” to the linearly aligned (to CLIP) Dino ResNet representations of images within each class. Highest ranked classes indeed often
appear in a tree, as is evident by the most similar instances. The least similar instances appropriately do not contain the concept.

terms. We can then diagnose distribution shifts w.r.t. to
human-understandable concept similarities by comparing
new data to training data. For example, when comparing
ObjectNet [2] to ImageNet, we find the distribution of
similarities for the “indoors” concept shifts dramatically,
capturing a key reason why ObjectNet poses a challenge:
images in ObjectNet were taken in people’s homes.

2. Review of Literature

Concept Activation Vectors (CAVS) were popularized
by [14], who encoded human concepts as directions in a
model’s deep feature space, and then interpreted the model
by inspecting its sensitivity to changes along these direc-
tions. A major limitation is the need for example sets of data
to define CAVs – this is an expensive step that scales poorly
(i.e. with the number of concepts of interest). More re-
cent efforts automatically discover CAVs [9,10,36], though
annotating the discovered concepts with language is not
straightforward. Our method efficiently obtains CAVs di-
rectly from text, resolving the need to curate data to define
a CAV or annotate some direction after discovering it. The
key step to our method is mapping the feature space of a
fixed model to that of a CLIP vision encoder [27], which is
jointly trained with vision+text supervision, making it pos-
sible to access the vision latent space with text and perform
zero-shot classification. Some works leverage CLIP to in-
terpret neural nodes or failure models of other models [13,
25], though they also require probe datasets or exemplars.
We map to and from CLIP using linear layers, which is sim-
ilar to model stitching, first introduced by [19] and later
revisited by [1] and [7]. These works, however, typically
stitch together models of the same architecture, while we
consider a much more diverse set of models. Recently, [23]
devise a zero-shot method for mapping across representa-
tion spaces based on relative positions to anchor points,
though they do not use their mapping for interpretabilty.

3. Text2Concept Method and Validation

Text2Concept encodes text descriptions of semantic con-
cepts as vectors that can be directly compared (i.e. via
cosine similarity) with the mapped features of images ob-
tained from an off-the-shelf vision encoder. Despite its sim-
plicity, Text2Concept is surprisingly effective, which, after
further detailing our method, we demonstrate qualitatively
and quantitatively in this section. Notably, we show that the
similarities of aligned image representations to class vectors
obtained via Text2Concept enables zero-shot classification

for non-CLIP models off-the-shelf, with zero-shot accuracy
of much simpler models at times exceeding that of CLIP.

3.1. Method Details

We define Text2Concept as a procedure for obtaining
vectors corresponding to concepts described as text that can
be directly compared (i.e. via cosine similarity) to image
representations from a fixed vision encoder. Our method be-
gins with a string describing some concept, like “red food”.
We then prepend this string with a number of template
prompts (e.g. “a photo of {}”); we use the same template
prompts as in CLIP’s original paper for ImageNet zero-shot
classification. Then, we embed the templated text to CLIP
space using CLIP’s text encoder, and average the resultant
vectors over all templates to obtain a single concept vector
(as is standard). For some object agnostic concepts, such
as contexts like “in a tree”, we can encode a general prompt
like “a photo of an object in a tree”, or we can obtain a more
refined vector by encoding “{prompt} {class name} in a
tree”, averaging over all choices for class name and prompt.
There are countless ways to prompt engineer; we elect to
use general prompts in most cases, as prompt engineering
is not the focus of our work.1

Then, for a given model, we train a linear layer to map its
representation space to CLIP (specifically, CLIP ViT-B/16).

1See Appendix A for complete details on all prompts used.
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Figure 2. The zero-shot capabilities of CLIP can extend to off-the-shelf vision encoders via alignment based Text2Concept. (Left) Models
trained on ImageNet can recognize coarse categorizations of ImageNet classes, despite never explicitly being taught them. (Right) Off-
the-shelf models remain strong zero-shot classifiers even when images are out of distribution. In some cases, they surprisingly surpass the
accuracy of the CLIP vision encoder whose jointly-trained text encoder was used to embed each class vector.

We pass ImageNet training images to the given model’s
feature encoder and CLIP’s vision encoder, resulting in a
dataset of paired representations to train our linear map-
ping. Now, we have two functions that map to CLIP’s vi-
sion space: the CLIP text encoder (since the text and vision
representation spaces are shared), and the composition of
the given model’s encoder with the linear aligner. Since the
concept vector obtained via CLIP’s text encoder and aligned
representations from the given model are both mapped to
the same space, we can compare them directly, thus satisfy-
ing our definition of Text2Concept. Alternatively, we could
train a layer from CLIP to the given model’s representation
space, mapping the text embedding instead of the features,
though we found this method to be less effective. Since we
use a simple affine transformation, the mapping minimally
changes the content of the representation obtained from the
off-the-shelf model. Also, our approach is very efficient:
after training a linear layer once, we can encode any number
of new concepts from text at no additional training cost.

Figure 1 shows images selected based on the cosine sim-
ilarity of their aligned representations (obtained using an
off-the-shelf encoder and a trained linear aligner) to certain
concept vectors. For each concept, we present the classes
with the highest average similarity, as well as the most and
least similar images within them. The retrieved classes are
sensible for each concept (e.g. American Lobster for “red
food”, see Figure 5). Sorting images within each class sep-
arates examples where the concept is extremely prominent
from those where the concept is absent (e.g. images of un-
cooked lobsters are least similar to the “red food” concept).

3.2. Zero-Shot Classification

CLIP models can classify a test image to an arbitrary set
of classes by embedding text strings describing each class
and choosing the class whose embedding is most similar to
the test image’s representation. This is referred to as zero-
shot since no labeled instances from the candidate classes
are used. Considering classes as concepts, we can then use
Text2Concept to obtain vectors that are directly compara-
ble to aligned representations from off-the-shelf vision en-
coders, thus extending CLIP’s zero-shot capabilities. Zero-
shot classification accuracy serves as a quantitative mea-
sure of Text2Concept, as higher acccuracy is attained when
a Text2Concept class vector aligns better with representa-
tions of samples in that class. Thus, we explore zero-shot
classification over many datasets to shed insight on when
and how well Text2Concept works. We consider models
with diverse architectures and training procedures, though
all models are roughly equal in size (⇠25M parameters) and
are only trained on ImageNet (except for CLIP). Also, the
baseline CLIP model (ViT-B/16) whose text encoder is used
to embed concepts is much larger in size (⇠80M parame-
ters); this baseline is intended more so as an upper bound.

First, we ask if models can recognize new categoriza-
tions of the data they were trained over. Namely, we con-
sider coarse grained categorizations of ImageNet classes
(e.g. distinguishing insects from carnivores, see [29,34] and
Appendix B). Then, we investigate if these coarse grained
concepts can still be recognized even if images are taken out
of the training distribution. We observe impressive zero-
shot performance in both cases (see figure 2). For example,
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on a 17-way classification problem, self-supervised ViTs
achieve 85% accuracy, despite never receiving supervision
about these classes, or any classes at that. Shockingly, in a
few cases, even the performance of the CLIP model whose
text encoder (with which it was jointly trained) was used to
obtain concept vectors is surpassed (see Appendix B).

4. Additional Applications of Text2Concept

4.1. Concept-Bottleneck Networks for Free

Figure 3. Example inference for a Concept Bottleneck Model
(CBM) obtained via training a linear layer on zero-shot concepts.
Since logits in the CBM are linear functions of concept scores, we
can precisely quantify the contribution of concepts to each logit.

The zero-shot results suggest models are already aware
of many concepts beyond those which they are directly
trained to learn. One case where knowledge of concepts
related to the classification task is salient is Concept Bot-
tleneck Models (CBMs) [15]. CBMs are intepretable by
design, as they first predict the presence of concepts us-
ing a black box, and then obtain class logits with a white
box (e.g. linear layer) atop concept predictions. Thus, the
contribution of each concept to the predicted logit can be
computed directly, allowing predictions to be faithfully ex-
plained with semantic reasons. A major barrier to using
CBMs is that they require concept supervision, which can
be prohibitively expensive. Text2Concept, however, allevi-
ates this constraint, thanks to zero-shot concept prediction.

We use RIVAL10 classification [22] as an example for
how a CBM can be implemented with no concept supervi-

sion using Text2Concept. RIVAL10 is an attributed dataset,
though we do not use these labels during training. We use
RIVAL10 because a linear classifier with attribute labels
as input achieves 94.5%, indicating that a CBM could be
effective. Further, the attribute labels allow for quantifying
the quality of the zero-shot concept vectors we obtain.

To implement the network, we use Text2Concept to en-
code the 28 attributes annotated in RIVAL10 as vectors in
CLIP space. We then compute the similarities between the
attribute vectors and mapped (to CLIP) features from an
ImageNet pretrained ResNet-50. Finally, we fit a linear
layer atop image-attribute similarities (i.e. in representa-
tion space) to predict class labels. Note that the only train-

Figure 4. Concept similarities can reveal distribution shifts, like in
ObjectNet, where photos are taken within people’s homes.

ing we conduct is that of the final classification head and
the aligner, both of which are linear layers, making them
very time and sample efficient to optimize. The resultant
CBM achieves 93.8% accuracy, and yields the desired in-
terpretability advantages, as shown in figure 3. Moreover,
using image-attribute similarities (via Text2Concept) as a
score for predicting attributes achieves an AUROC of 0.8,
with 72% of attributes achieving at least an AUROC of 0.75.
Thus, zero-shots concepts are relatively accurate in predict-
ing RIVAL10 attributes. See appendix C for details.

4.2. Concept-Based Dataset Summarization and

Distribution Shift Diagnosis

The interpretability benefits of Text2Concept also apply
to demystifying large datasets. Namely, one can discern the
presence of a concept in their data by using Text2Concept
to obtain a corresponding vector, and computing the simi-
larity of this vector to all (mapped) images representations.
As modern datasets continue to grow, the need for efficient
concept-based summaries of these datasets will also grow;
Text2Concept can provide such summaries easily.

Moreover, one can track the distribution of concept sim-
ilarities for a stream of data over time. Suppose for exam-
ple a model is deployed to a new setting and it begins to
fail. By comparing the distribution of concept similarities
in the training set to the new data, one can diagnose the dis-
tribution shifts at play. As a proof of concept, we inspect
ObjectNet [2], a challenging distribution shift for ImageNet
models consisting of images taken within people’s homes.
Figure 4 shows the distribution of image similarities to the
vector for the concept ‘indoors’ for representations obtained
from a ResNet-50 of ImageNet and ObjectNet samples. For
ObjectNet, the distribution is significantly (according to a
Kolmogorov-Smirnov test) shifted to the right compared to
ImageNet. In practice, one may maintain a bank of concepts
and track similarities over their stream of data, automati-
cally flagging concepts that experience significant shift.
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