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Abstract

Empirical studies have shown that attention-based
architectures outperform traditional convolutional neural
networks (CNN) in terms of accuracy and robustness. As a
result, attention-based architectures are increasingly used
in high-stakes domains such as radiology and wildlife
conservation to aid in decision-making. However, under-
standing how attention-based architectures compare to
CNNs regarding alignment with human perception is still
under-explored. Previous studies exploring how vision
architectures align with human perception evaluate a
single architecture with multiple explainability techniques
or multiple architectures with a single explainability tech-
nique. Through an empirical analysis, we investigate how
two attention-based architectures and two CNNs for two
saliency map techniques align with the ground truth for
human perception on 100 images from an interpretability
benchmark dataset. Using the Shared Interest metrics, we
found that CNNs align more with human perception when
using the XRAI saliency map technique. However, we found
the opposite for Grad-CAM. We discuss the implications of
our analysis for human-centered explainable AI and intro-
duce directions for future work.

1. Introduction
Image classification techniques have rapidly advanced

in the last few years since the introduction of attention-
based architectures. With the popularity of attention-
based architectures and their ability to outperform tradi-
tional CNNs, several domains, such as medical imaging and
wildlife conservation, are starting to question whether they
should start using attention-based architectures instead of
CNNs [4,6,14,15]. However, using these better-performing
architectures in high-stakes domains does not eliminate the
need or want for explanations.

Recent studies have qualitatively shown that saliency
maps can be confusing and misleading (e.g., [21]). From
our informal conversations with domain experts, it is evi-
dent that decision-makers in high-stakes domains are still
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Figure 1. The human attention map and saliency maps for two
techniques and four models are shown for the image of an African
Elephant from ImageNet. The Swin Transformer had the highest
IoU with the human attention map out of the Grad-CAM maps.
The EfficientNet B6 had the highest IoU with the human atten-
tion map out of the XRAI maps. All models correctly predicted
African Elephant.

relying on saliency maps to explain their models, as there
are limited alternatives. For example, conservationists and
biologists using a WildBook powered by WildMe.org’s in-
frastructure can view saliency maps to understand individ-
ual species identification.

Domain experts (i.e., conservationists) using an image
classification model in their workflow are faced with many
choices such as which architecture to choose and which
saliency map technique to use. These choices are espe-
cially difficult given that explanations based on different
techniques can disagree with one another [12, 20] or will
highlight spurious patterns [18]. Previous work has tried
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to simplify this choice by identifying techniques that align
with human perception [2, 27]. However, these studies are
limited in findings since they do not compare multiple ar-
chitectures with multiple saliency map techniques.

We argue that it is necessary to do these empirical anal-
yses with multiple architectures and multiple saliency tech-
niques to understand [RQ1] which saliency map technique
aligns more with human perception, [RQ2] which architec-
ture aligns more with human perception, and [RQ3] to what
extent the saliency technique and architecture choice play a
role in how much “shared interest” there is with human per-
ception. Through this empirical analysis, we address these
research questions and contribute the following:

• We provide insight into how the saliency technique and
architecture choices are not trivial when prioritizing
alignment with human perception.

• We conduct the first empirical analysis that evaluates
how multiple image classification architectures (i.e.,
attention-based architectures and CNNs) and multiple
saliency map techniques align with human perception
by using the Shared Interest metrics [3].

2. Related Work
Designing human-centered explainable AI (HCXAI) re-

quires a deep understanding of human perception. We dis-
cuss several user studies that investigate how different im-
age classification models or saliency map techniques align
with human perception. We highlight how previous litera-
ture has contributed to HCXAI and distinguish our contri-
butions to the field.

A recent study poses a similar question to ours: “Are
Convolutional Neural Networks or Transformers more
like human vision?” [24]. This empirical study inves-
tigates the “observed error overlap” of Google’s Vision
Transformer [8] to popular CNNs. They used Stylized-
ImageNet [9] to evaluate the models’ “observed error over-
lap”. Ultimately, they found that the errors the Vision
Transformer made were more aligned with human errors.

Instead of asking which architecture aligns more with
human perception, one study asks if “...Vision Transform-
ers See Like Convolutional Neural Networks?” [19] while
another study asks if, “transformers are more robust than
CNNs” [1]. Raghu et al. conducted rigorous quantitative
analyses that lead them to discover that Vision Transform-
ers (ViTs) are fundamentally different from CNNs.

While those two studies empirically evaluated trans-
formers and CNNs, they use quantitative metrics that do
not directly compare to human perception. Zhang et al.
conducted a user study to evaluate how the saliency maps
produced by SHAP for three different CNNs (Inception,
ResNet, and VGG) align with human perception [27]. By

collecting human input on regions of an image that are im-
portant to the class of the image, the authors compare the
agreement between humans and the SHAP saliency map.

Similarly, Banerjee et al. seek to understand how human
perception aligns with saliency maps produced by Grad-
CAM for three different CNNs (VGG, EfficientNet, and
ResNet) [2]. Unlike Zhang et al., Banerjee et al. use a
saliency benchmark dataset [5].

Kapishnikov et al. propose a “region-based saliency
method” for deep neural networks called XRAI [11]. XRAI
is similar to Grad-CAM because it is also a gradient-
based attribution method. Kapishnikov et al. quantita-
tively compare XRAI to Grad-CAM for an Inception and
ResNet50 model, ultimately showing that it outperforms
Grad-CAM [11]. We build off these contributions by com-
paring Grad-CAM to XRAI for attention-based models.

A recent study proposes a saliency technique that is de-
signed specifically for attention-based architectures [17].
Using retinal disease images, they evaluate their approach
algorithmically and qualitatively through a user study with
four medical experts. From their user study, they observed
that Grad-CAM was comparable to their technique for one
dataset and significantly worse for another dataset.

3. Method

3.1. Pre-trained Models & Saliency Maps

Convolutional Neural Networks. We are using the Effi-
cientNet B6 from the EfficientNet-PyTorch Python Library1

and the ResNet-101 model from the timm library [25]. We
chose these pre-trained models since they are more compa-
rable to attention-based architectures in terms of the num-
ber of parameters and accuracy. ResNets and EfficientNets
have also been used in previous empirical analyses [27].

Vision Transformers. The two attention-based architec-
tures that we include in our empirical analysis are the small
Swin Transformer with a patch size of 4 and window size
of 7; and the small CaiT model [23]. We chose to look at
these two models specifically because their smaller versions
are more comparable to traditional convolutional neural net-
works in terms of the number of trainable parameters and
accuracy. Both models are pre-trained and provided by the
timm Python library [25].

Saliency Maps. While there are saliency map tech-
niques that have been designed specifically for attention-
based architectures, such as Focused Attention [17], we
chose to use Grad-CAM [10,22] and XRAI [11]. We chose
Grad-CAM because it is a very popular technique for image
classification and previous empirical studies include Grad-
CAM in their analyses. We chose XRAI because it is a
region-based saliency technique and is in the same family

1https://github.com/lukemelas/EfficientNet-PyTorch
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Figure 2. Overview of the design of our experiment. Using two attention-based architectures, two convolutional neural networks, and two
saliency map techniques, we generated a total of eight saliency maps for 100 hundred images from ImageNet. Then, we use the Shared
Interest metrics [3] to evaluate the saliency maps generated by the different techniques and architectures.

of attribution methods as Grad-CAM [11]. Grad-CAM was
also a part of the main comparison for XRAI [11].

3.2. Dataset

We use the ML Interpretability Benchmark images for
our empirical analysis [16]. There are a total of 20 classes
from ImageNet and five images per class totaling 100 im-
ages. Along with the original images from ImageNet,
the dataset includes aggregated human attention masks for
each image. The attention masks are based on real-human
data from a user study conducted by Mohseni et al. [16].
Throughout the paper, human attention masks and human
perception are used interchangeably.

3.3. Experimental Design

As shown in Figure 2, we evaluate each of the four
vision architectures on the 100 images from the ML In-
terpretability Benchmark dataset [16]. To generate the
saliency maps for the CNNs, we use the last layer of each
model. The last layer can be defined quite ambiguously
and the Grad-CAM library [10] will average the CAM
across the layers if it determines that multiple layers were
passed in. For Resnet-101, we defined the last layer as
layer4[-1]; for EfficientNet, blocks[-1]; for Swin
Transformer, layers[-1].blocks[-1]; and for CaiT,
blocks[-1].

Metrics. We leverage the three metrics proposed by
Boggust et al., also known as the Shared Interest met-
rics [3]: intersection over union (IoU), ground truth cov-
erage (GTC), and saliency coverage (SC). Specifically, we
look at the IoU, GTC, and SC between the model’s saliency
map and human attention mask for each given image. Bog-
gust et al. state that a high value for SC means that the
model, “relies almost exclusively on ground truth features”
and a high value for GTC indicates that, “the ground truth
features are the most relevant to the model’s decision”.

4. Results
By evaluating and comparing different architectures and

saliency map techniques to human attention masks using the
Shared Interest metrics, we highlight when models, saliency
maps, and human perception align. We present results for
all of the Shared Interest metrics but only discuss the IoU
results due to page limits.

4.1. RQ1: Shared Interest with Saliency Techniques

To understand if there is a saliency technique that gen-
erally aligns more with human perception than another,
we calculate the mean IoU for Grad-CAM and the mean
IoU for XRAI as if different models were not used. The
distribution of these values for each saliency technique is
shown at the top of Figure 3. The mean IoU for Grad-
CAM is 0.192 and 0.145 for XRAI. A t-test between the two
means shows that Grad-CAM is significantly different from
XRAI (p < 0.001) and that we can conclude Grad-CAM
aligns more with human perception than XRAI regardless
of the architecture for the layer specifications that we used.

4.2. RQ2: Shared Interest with Architectures

If we don’t consider the saliency map techniques, we
can calculate the mean IoU for each model. As shown in
the bottom boxplot in Figure 3, the CaiT model is the only
model that has a significantly different IoU compared to the
other three models (p < 0.001). However, the Swin-T, Effi-
cientNet, and ResNet are not significantly different.

4.3. RQ3: Shared Interest with Technique and
Architecture

Table 1 reports mean values for all images regardless of
all four models predicting the same class. After filtering
for when all four models predict the same exact class, the
trends and significance remain the same.

A one-way ANOVA for the IoU for each model for Grad-
CAM shows that the mean IoU between the four models
is significantly different (p < 0.001). From a pairwise
posthoc Tukey HSD test, we can conclude that the IoU for
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Figure 3. Two boxplots showing the distribution of IoU scores
based on saliency technique (top) and model type (bottom).

all four models is significantly different from each other
(p < 0.01) except the ResNet-101 and EfficientNet B6, and
the ResNet-101 and Swin-T.

A one-way ANOVA for the IoU for each model for
XRAI shows that the mean IoU between the four models
is significantly different (p < 0.001). From a pairwise
posthoc Tukey HSD test, we can conclude that there is a
significant difference between the attention-based architec-
tures and the CNNs (p < 0.01). We can also conclude that
there is no significant difference between the EfficientNet
B6 and ResNet-101, and the Swin-T and CaiT.

5. Discussion and Future Work

We found that when XRAI is paired with EfficientNet
B6, it aligns more with human perception than Grad-CAM
paired with EfficientNet B6. However, we observed the op-
posite trend for the ResNet-101. These trends do not align
with those found by Kapishnikov et al. where XRAI out-
performed Grad-CAM when paired with an Inception and
ResNet50 model [11]. However, we observed Grad-CAM
to be more aligned with human perception than XRAI when
disregarding the model.

COMPARISON WITH HUMAN PERCEPTION

EXPLANATION MODEL IoU SC GTC

XRAI SWIN-T 0.079 0.255 0.109
CAIT 0.082 0.271 0.103
RESNET 0.197 0.435 0.253
EFFICIENTNET 0.221 0.463 0.284

GRAD-CAM SWIN-T 0.264 0.511 0.347
CAIT 0.101 0.273 0.142
RESNET 0.216 0.466 0.287
EFFICIENTNET 0.189 0.411 0.264

Table 1. We report the mean for each shared interest metrics be-
tween the saliency map and the human attention masks.

We observed that saliency map techniques have
shared interest with human perception... sometimes. It
depends on the architecture being used, whether that be an
attention-based architecture or a CNN. Human-centered ex-
plainable AI should take “shared interest...sometimes” into
consideration when designing and evaluating techniques
and architectures with human perception.

Based on our findings, it is evident that choosing a
saliency map technique is not trivial when it comes to
prioritizing interpretability. We encourage technical re-
searchers to deeply understand what components of the
saliency map techniques and architectures lead to increased
alignment with human perception in order to design human-
centered explainable AI.

We acknowledge this is preliminary work, making it dif-
ficult to generalize. For example, we only evaluated two
saliency map techniques for four different models on 100
images. It is also difficult to capture the “ground truth” for
human perception at scale. Therefore, to scale this empiri-
cal analysis, we plan to use a model to generate an approx-
imation of human attention for a given image on a larger
dataset such as the ImageNet Validation Set [7] or the Hu-
man Saliency Benchmark [26]. This can be achieved by
using the Deep Gaze IIE [13] model by predicting where
humans would look in an image.

6. Conclusion

We evaluated how attention-based architectures, CNNs,
Grad-CAM, and XRAI align with human perception by us-
ing the Shared Interest metrics [3]. Using 100 images and
attention maps from an interpretability benchmark [16], we
are able to understand which architectures, saliency map
techniques, and combination of the two align the most with
human perception. We observed that while a saliency tech-
nique may align with human perception, this changes when
paired with a particular type of architecture. As artificial in-
telligence continues growing, the design and evaluation of
human-centered explainable AI need to adapt.
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Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 32–42, 2021.
2

[24] Shikhar Tuli, Ishita Dasgupta, Erin Grant, and Thomas L
Griffiths. Are convolutional neural networks or transformers
more like human vision? arXiv preprint arXiv:2105.07197,
2021. 2

[25] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 2

3780



[26] Yi Yang, Yueyuan Zheng, Didan Deng, Jindi Zhang, Yongx-
iang Huang, Yumeng Yang, Janet H Hsiao, and Caleb Chen
Cao. Hsi: Human saliency imitator for benchmarking
saliency-based model explanations. In Proceedings of the
AAAI Conference on Human Computation and Crowdsourc-
ing, volume 10, pages 231–242, 2022. 4

[27] Zijian Zhang, Jaspreet Singh, Ujwal Gadiraju, and Avishek
Anand. Dissonance between human and machine under-
standing. Proceedings of the ACM on Human-Computer In-
teraction, 3(CSCW):1–23, 2019. 2

3781


