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Abstract

While explainability is becoming increasingly crucial in
computer vision and machine learning, producing explana-
tions that can link decisions made by deep neural networks
to concepts that are easily understood by humans still re-
mains a challenge. To address this challenge, we propose a
framework that produces local concept-based explanations
for the classification decisions made by a deep neural net-
work. Our framework is based on the intuition that if there
is a high overlap between the regions of the image that are
associated with a human-defined concept and regions of the
image that are useful for decision-making, then the decision
is highly dependent on the concept. Our proposed CAVLI
framework combines a global approach (TCAV) with a lo-
cal approach (LIME). To test the effectiveness of the ap-
proach, we conducted experiments on both the ImageNet
and CelebA datasets. These experiments validate the abil-
ity of our framework to quantify the dependence of individ-
ual decisions on predefined concepts. By providing local
concept-based explanations, our framework has the poten-
tial to improve the transparency and interpretability of deep
neural networks in a variety of applications.

1. Introduction
As the capacity and use cases of deep neural networks

continue to expand, the need for interpreting and explain-
ing decisions made by these systems also increases. Under-
standing and reasoning about these networks can be critical
in settings with high risk and high impact. Furthermore, im-
proved interpretations and explanations of decisions made
by deep neural networks enhance their trustworthiness and
enable greater opportunities for human intervention in case
a mistake has been made.

Most explainability techniques can be classified into lo-
cal and global methods. Local methods focus on explain-
ing decisions for individual inputs and aim to identify the
factors involved in the decision. These methods employ
heatmaps [6, 25, 26], counterfactuals [1, 3, 5, 7, 10, 16, 21],
or feature perturbation [20, 22] methods to explain model

Figure 1. Overview of our proposed approach to estimate the de-
pendence of a concept (e.g., “grassland”) on a decision (e.g., “buf-
falo detection”). After decomposing the input image into super-
pixels, in Step 1 we find the regions of the image that have the
highest association with the concept, defined by a set of images.
In Step 2 we identify image regions with the highest involvement
in the classification decision. Finally, we measure the overlap be-
tween the two in order to quantify the dependence.

decisions. However, each of these methods has its own lim-
itations. In contrast, global [14, 15, 18] methods explain
the model, independent of decisions on inputs, and include
methods that attempt to understand the model’s decision-
making dependence on human-defined concepts or inter-
pret different layers of the model and their overall role in
decision-making. Concept-based methods [8,12,13,18,24]
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are popular global methods that try to quantify the depen-
dence of decisions of a neural network into a set of human-
defined concepts or label neurons or neuron combinations
[4, 11] with semantic attributes. A concept-based method
tries to establish a relationship between decisions made by
a machine learning model and human defined notions (e.g.,
gender, race, patterns) that cannot be measured directly as
inputs or outputs of a machine learning system.

In this paper we propose a novel framework for gener-
ating local human concept-based explanations that combine
aspects of both global and local approaches. As shown in
Figure 1, our proposed approach aims to quantify the im-
pact of human concepts on the decision-making process of
a neural network for a particular input. For example, given
a decision made by a smile classifier, our aim is to estimate
the dependence of the decision on human-defined concepts
like gender, race, eyeglasses, etc. The high-level architec-
ture of our approach consists of three main steps. In Step 1,
we identify the regions of an image that have the highest as-
sociation with a given human concept. We use a heatmap to
highlight the regions that are most relevant to the concept of
interest. In Step 2, we identify the image regions that have
the highest involvement in the decision-making process of
the neural network for a given input image. To achieve this,
we use attribution methods to compute the contribution of
each image region to the final decision. Finally, in Step 3,
we measure the overlap between the image regions identi-
fied in Steps 1 and 2. This overlap gives us a measure of the
degree to which the decision of the neural network is de-
pendent on the human concept of interest. Our framework
is based on the insight that if a model’s decision depends on
a concept, then there should be a high overlap in regions that
are used by the model for decision-making and regions of
the image that is used for concept modelling. For example,
if parts of the image that are used for classifying whether an
animal is a zebra or not are also associated with the concept
of stripes, then the decision zebra depends on the concept
stripes.

We propose CAVLI, a method that aims to explain lo-
cal decisions made by a deep neural network regarding
human concepts by combining two well-known methods,
TCAV [18] and LIME [22]. Even though both TCAV and
LIME are approaches used for model explainability, they
differ widely in their usage. TCAV is a global technique that
explains how well the model understands human concepts.
It requires an understanding of model layers and weights
and uses extensive images for training concepts. LIME is
model agnostic, treats the model as a black box, and works
on individual inputs. Merging these two approaches leads
to a unique method capable of local concept-based explain-
ability. Overall our major contributions can be summarized
as follows.

• We propose a novel approach for building local

concept-based explanation models that focuses on un-
derstanding the overlap between image pixels involved
in decision-making and image pixels that are related
with a concept.

• Through our framework we provide both a quantita-
tive explanation in terms of a Concept Dependency
Score (CDS) and a visual explanation using concept
heatmaps that indicate the dependence of the model on
a given concept.

• We perform qualitative and quantitative experiments
on the ImageNet dataset [9, 23] and the CelebA [19]
to validate the utility of our methods.

2. Methodology

2.1. Notation

Consider a trained neural network F : X → {1, ....K},
on a dataset X = {x1,x2, ...xt} and associated labels
Y = {y1, y2, ...yt}, where yi ∈ {0, 1}K with K classes.
Fk(xi) := hl(fl(xi)), where fl(xi) are the output logits of
the lth layer and hl is the activation function of the lth layer.

2.2. TCAV and LIME

TCAV [18] uses human-defined concepts (e.g., “gender”
or “stripes”) instead of input features to provide explana-
tions for a machine learning model. To express a concept it
finds a Concept Activation Vector (CAV) a ∈ Rd (a layer
with dimension d) in the network’s activation space [24]
that points in the direction of the concepts. This is achieved
by training a classifier that distinguishes concept activations
(“striped” or “dotted”) from activations of negative samples
and taking a unit norm vector vc orthogonal to its decision
boundary. The inner product in Equation 1. denotes the
similarity of the activstion to the required concept and vc

denotes the direction of the concept vector. This is defined
as the Conceptual Sensitivity CS of a given layer l for the
network’s output class k and the concept C:

CSk
C,l(F,xi) = ∇hl(fl(xi))

Tvc (1)

The TCAV score is given as the ratio of the number of inputs
with positive conceptual sensitivity to the number of inputs
for a class.

LIME [21, 22] is a black box method for understanding
local explanations of a machine learning model. In order to
explain the prediction of a model F on an image xi it:

1. Decomposes xi in r homogeneous image patches or
superpixels.

2. Creates a set of new images xi1 , .....xin by selecting n
subsets of the superpixels

3. Queries the model for each of these images yij =
F (xij ) ∀j ∈ {1, 2...n}
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4. Builds a local weighted surrogate model β̂i fitting the
yij ’s to the presence or absence of superpixels.

Each coefficient of β̂i is associated with a superpixel of
the original image xi. Intuitively, the more positive the
value of the coefficient, the more important the superpixel
is for the prediction of the model. Generally, the user visu-
alizes β̂i by highlighting the superpixels associated with the
top positive coefficients.

2.3. Proposed Approach

We propose a hybrid TCAV-LIME-based approach as a
solution to the problem. Algorithm 1 describes our pro-
posed framework. First, we try to understand how well the
model captures a concept for an individual decision. We
frame the question by trying to understand what parts of
the image the model associates the most with a specific at-
tribute. Techniques like TCAV cannot be used directly be-
cause of their global nature. We start by dividing the image
into r homogeneous superpixels using the SLIC [2] super-
pixel algorithm. The second part of our pipeline investigates
the question, for a given decision, what parts of the image
were the most influential in making the decision? We make
use of LIME to generate these regions in the image (Steps
1, 2, 6, and 7). Finally, we measure the overlap between the
two parts. The intuition behind the approach is that if there
is a clear overlap between image patches that have a high
dependency on a concept and image patches that have the
highest weight in decision-making, then the decision made
by the network is heavily dependent on the concept (Steps
8 and 9).

The coefficients of α̂i indicate the level of association
between different superpixels and a particular concept. A
higher coefficient value suggests that the model considers
the concept to be more closely related to that region, and
vice versa. Similarly, coefficients of β̂i corresponds to a
superpixel in the original image xi. The higher the weight
of the superpixel, the more significant its contribution to
the model’s decision-making process. We are interested in
measuring whether the superpixels associated with the the
given concepts are also associated with decisions made by
the algorithm. We calculate the Pearson correlation γi cor-
relation of β̂i and α̂i to measure the overlap between the
two decisions. A larger value of γi indicates that there is
a high overlap between the regions of the image that the
model associates with the concept and those it uses for the
decision. The Concept Dependency Score CDSi, is calcu-
lated as the product of γi and CSk

C,l(F, xi), ensuring that
relevant concepts are given higher values. For a qualitative
understanding, the coefficients of α̂i associated with the su-
perpixels can be represented as a concept heatmap. This
heatmap gives us a visualization of what parts of the image
are more likely to be associated with a concept.

Algorithm 1 CAVLI
1: Train a TCAV model for a given concept C, a model F , and a

layer l, resulting in the CAV vector vc.
2: Decompose the input image xi ∈X in a set of r homogeneous

superpixels {S}.
3: Create a new set of images {xi1 , .....,xin} from xi by ran-

domly masking parts of the image and selecting n uniformly
sampled subsets of {S}

4: Calculate the Conceptual Sensitivities zij =CSk
C,l(F,xij)

∀xij ∈ {xi1 , .....xin}.
5: Build a local weighted surrogate model α̂i fitting the zij ’s to

the presence or absence of superpixels.
6: Query the model for each of these image patches yij =

F (xij ) ∀xij ∈ {xi1 , .....,xin}.
7: Build a local weighted surrogate model β̂i fitting the yij ’s to

the presence or absence of superpixels.
8: Calculate the Pearson correlation γi between the coefficients

of α̂i and β̂i.
9: Calculate the Concept Dependency Score, CDSi= γi ·

CSk
C,l(F, xi)

3. Evaluation
3.1. ImageNet Dataset

In our initial experiments, we assess the effectiveness of
CDS in explaining model decisions in terms of concepts.
To establish a baseline, we compare the performance of
TCAV with the average CDS scores across different sam-
ples. We propose a hypothesis that if there exists a cor-
relation between the mean CDS scores and global concept
methods like TCAV, it indicates that our metric is capable of
accurately capturing the dependence between the model de-
cisions and underlying concepts.We conducted experiments
on the ImageNet dataset, using similar settings to Kim et al.
[17] and Schrouff et al. [24] to validate our model. Specifi-
cally, we focused on the Zebra and basketball classes, using
three different models (GoogleNet, ResNet-50, and Incep-
tionNet) for each class. Our goal was to measure the av-
erage statistics for each class using 100 images per set and
calculating the mean correlation across all CDS scores. The
experiments were conducted on the penultimate layer of all
models.

Zebra. We ran experiments similar to Schrouff et
al. [24] that focus on four different concepts: “stripes,”
“zigzagged,” “dotted,” “horse,” and “grasslands.” The re-
sults of the experiments are presented in Table 1, which
shows that ResNet and GoogleNet both exhibited the high-
est mean CDS score for the concept stripes and the lowest
mean CDS score for the concept indoor within the Zebra
class. For InceptionNet, the concept grassland was more
strongly associated with the Zebra class. The TCAV scores,
which serve as global indicators of concept dependency, fol-
lowed a similar trend. This pattern suggests that, on aver-
age, the CDS scores resemble the TCAV score. It is worth
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Stripes Grassland Indoor Horse
Model CDS TCAV CDS TCAV CDS TCAV CDS TCAV
GoogleNet 0.17 0.78 0.26 0.62 0.13 0.12 0.02 0.41
ResNet 0.23 0.87 0.26 0.81 0.11 0.48 0.11 0.51
InceptionNet 0.45 0.84 0.21 0.71 -0.13 0.43 0.16 0.35

Table 1. A comparison of mean CDS values and TCAV values of different concepts for the class Zebra in the ImageNet dataset.
Ball Jersey Female Race

Model CDS TCAV CDS TCAV CDS TCAV CDS TCAV
GoogleNet 0.29 0.56 0.38 0.93 -0.03 0.26 0.24 0.46
ResNet 0.27 0.68 0.21 0.46 -0.20 0.45 0.22 0.73
InceptionNet 0.41 0.87 0.05 0.31 0.09 0.31 0.18 0.57

Table 2. A comparison of mean CDS values and TCAV values of different concepts for the class basketball in the ImageNet dataset.

Male Female
Smile 0.004 0.013

Non-Smile 0.005 0.007

Table 3. Average CDS scores for different subgroups in the
CelebA dataset.

noting that higher CDS values indicate greater dependency
on a concept, while lower values indicate lower dependency
on the concept.

Basketball. We examined four human concepts (“ball,”
“jersey,” “gender,” and “race”) in a manner similar to the
Zebra class. The results in Table 2 show higher mean CDS
scores for “jersey” and “ball,” and a lower score for “fe-
male.” We trained a race concept classifier with positive
class images of African American faces. Our results further
confirm the previous findings of a correlation between deci-
sion made on the basketball class and concept race. [24].

3.2. CelebA dataset

We are interested in exploring whether our approach can
detect biases in model decisions caused by unbalanced data.
Through our experiments we are interested in measuring
whether these confounds can be detected by our metric. The
CelebA dataset [19] is known to have naturally occurring
confounds. We train a smile classifier in a biased setting,
where the training set is subsampled to create a higher pos-
itive correlation between the female-smiling and male-non-
smiling attributes. We analyze the average CDS scores for
different subgroups on the test data, as shown in Table 3.
We observe that the highest average CDS scores were for
the “female smiling” group, while the lowest were for the
“male smiling” group. These experimental findings align
with the existing biases present in the dataset.

3.3. Qualitative Analysis

Our method generates concept heatmaps that illustrate
the image regions and their dependence on human-defined
concepts. These heatmaps aid in visually interpreting
a model’s image dependency, as shown in Figure 2 for
the Buffalo-grasslands class-concept pair. The qualitative

Figure 2. We use concept and decision heatmaps to analyze a clas-
sifier’s decisions and their dependence on a specific concept, such
as identifying whether an image contains a buffalo and what parts
are the most useful in decision making. Here we focus on grass-
lands, and the concept heatmap displays the areas of the image that
the model associates most strongly with this concept.

analysis reveals not only the parts of the image used for
decision-making, but also whether the model links these
parts to a concept. Additionally, this visual representation
can identify spurious correlations where a classification de-
cision (buffalo) is based on a concept (grassland) that is not
directly related to the class.

4. Conclusion
This paper presents a new approach for generating lo-

cal post-hoc explanations based on concepts. The three-
step approach proposed here successfully utilizes a hybrid
LIME and TCAV-based strategy to produce concept-based
explanations. While there are limitations to this approach
that need to be explored, this work represents a significant
step towards developing more effective and reliable mod-
els for generating local explanations. Further research will
be necessary to fully explore the potential of this approach,
including more rigorous experimentation and user studies.
Ultimately, however, the proposed method shows promise
for improving our understanding of complex machine learn-
ing models and their decision-making processes.
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