
Figure 5. Additional qualitative validation of text-to-concept. Observe that the samples least similar to the concept vector for “in snow”
break a common spurious correlation for their classes. Text-to-concept may then be used to identify challenging natural images within
datasets, towards mitigating spurious correlation dependencies.

A. Prompts for Text-to-concept

When not otherwise specified, we use the default templates introduced in the original CLIP paper for ImageNet zero-shot
classification. They are as follows: ‘itap of a {}’, ‘a bad photo of the {}’, ‘a origami {}’, ‘a photo of the large {}’, ‘a {} in

a video game’, ‘art of the {}’, ‘a photo of the small {}’.
For Figure 1 and Figure 5, we append “in a tree” and “in snow” to the above templates, and also replace the ’{}’ with names

for all ImageNet classes. The final concept vector is then an average of NUMBER OF TEMPLATES ⇥ NUMBER OF CLASES
vectors. We do this because these correspond to contexts, which should be object agnostic. Similar results are obtained
without refinement (i.e. replacing {} with ‘object’). We note that embedding text to CLIP’s space is very quick, only taking
seconds to encode a batch of thousands of short phrases.

B. Zero-shot Classification

We now provide additional experimental details for Zero-shot classification via Text2Concept. We also include zero-shot
accuracy for edge cases like recognizes characters or ‘primitive’ concepts, such as textures, colors, and shapes.

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Mazda Moayeri

Dataset Example Classes Prompt Citation

Coarse Grained Concepts In Distribution

IN9 dog, bird, wheeled vehicle a photo of {} [34]
Living17 salamander, turtle, lizard a photo of a {} [29]

Nonliving26 bag, ball, boat a photo of a {} [29]
Entity13 garment, bird, reptile a photo of a {} [29]
Entity30 serpentes, passerine, saurian a photo of a {} [29]

Coarse Grained Concepts Out of Distribution

CIFAR10 airplane, automobile, bird a pixelated photo of a {} [17]
STL10 airplane, bird, car a photo of a {} [6]

Fashion MNIST T-shirt/top, Trouser, Pullover a black and white photo of {} [33]
CelebA Hair brown hair, blonde hair a headshot of a person with {} [20]

Character Recognition

SVHN zero, one, two a photo of the digit ”{}” on a building [24]
MNIST zero, one, two a photo of the digit ”{}” [18]

Primitive Concepts

Textures banded, blotchy, braided a photo of something with {} texture [5]
Color black, blue, brown a swatch of the color {} -
Shape circle, octagon, square a diagram of the shape {} [16]

Table 1. List of datasets studied in Zero-Shot classification experiments (Section 3.2), along with example classes and the specific prompt
used. Note that we use an internal simple dataset for Color.

B.1. Experimental Details

We carry out zero-shot experiments over many datasets. We use slightly different prompts for each task, though we stress
that we did not optimize prompt engineering to obtain better results. All evaluated models use the same prompts. Table 1
shows details for prompts used, as well as example classes for each dataset, to give an idea as to what kind of text is used to
generate concept vectors. We refer readers to the original sources for more details on the datasets studied.

Figure 6. Edge cases for zero-shot classification. (Left) Models strug-
gle with OCR. (Right) Models can recognize some primitive concepts
by name. Same legend as figure 2.

For color recognition, we construct a simple dataset
that consists of one sample per the following classes:
black, blue, brown, gray, green, orange, pink, purple,

red, white, yellow. The sample in each class is a mono-
color patch, with every pixel set to have the color given
by the class name. Also, for shape recognition, we use a
subset of the shapes in the original dataset. Specifically,
we include the following shapes: circle, octagon, square,

star, triangle.

B.2. Edge Cases

To stress test Text2Concept, we consider tasks that re-
quire models to recognize characters (specifically digits)
or primitive concepts, like textures, colors, and shapes.
We observe most models only marginally surpass ran-
dom accuracy for character recognition tasks. Oddly, the
adversarially trained ResNet is roughly twice as good as

other models in zero-shot MNIST classification, though it still performs far worse than the baseline CLIP model, which also
struggles. This suggests models simply may not have any notion as to what distinguishes digits from one another, which is
not surprising given that it would not be very useful for understanding ImageNet images. On the other hand, models achieve

Figure 7. Quality of using similarity to text-to-concept vectors for predicting RIVAL10 attributes. AUROC shown per attribute. Attributes
corresponding to parts are predicting more reliably. Over 70% of attributes achieve an AUROC of at least 0.75.

Figure 8. Extra examples of inference using the concept-bottleneck model (enabling direct measurement of each concept’s contribution to
a class logit, as shown) built atop a fixed vision encoder and text-to-concept. We include a misclassification in the rightmost panel.

D. Limitations

We note that the concept vectors we find are not always perfect. However, more refined concept vectors can be obtained
with (1) better prompt engineering and (2) extraction of exemplar data to that concept. Note that Text2Concept enables step
2 without needing to collect new data. That is, we can better organize our data by sorting it with respect to similarity to
certain Text2Concept vectors. Then, the images with highest and least similarity can serve as good positive and negative
examples for the concept. Moreover, we can select data in a class balanced way, so to disentangle a concept from a class that
it is correlated with. As an example, consider the concept “in snow”. Arbitrarily selecting images with highest and lowest
similarity likely will lead to un-informative negative examples. However, if we select examples within classes that are have
high average similarity to the concept, then we can obtain more challenging negative examples that better distill the essence
of the concept of interest. See Figure 5: simply reorganizing data based on similarity to the corresponding Text2Concept
vectors leads to easy access of informative exemplars within the data one has already collected, towards more refined CAVs.

These images can be further used to find a better concept vector, either by simply taking average of their encoded rep-
resentations for positive examples, or by training a linear classifier in feature space to distinguish the positive and negative
examples, as was originally performed in [14].

E. Alignment

We now more formally describe our procedure for linearly mapping a source feature space to a target space (e.g. CLIP’s
latent space). We also provide experimental results over an expansive set of diverse model pairs, demonstrating the surprising
effectiveness of the simple linear mapping.

We use X to denote the set of all possible input images. Let Dtrain, Dtest ⇢ X denote the training and test datasets. We
define a vision encoder as a model f that maps images x 2 X to vectors f(x) 2 Rd. Given two vision encoders fs, ft,

Sup
ResNets

Robust
ResNets

Sup
ViTs

SS
ResNets

SS
ViTs

CLIPs

Target

Sup
ResNets

Robust
ResNets

Sup
ViTs

SS
ResNets

SS
ViTs

CLIPs

S
ou

rc
e

0.98 1.03 0.82 0.86 0.79 0.80

0.87 0.98 0.76 0.80 0.73 0.73

1.01 1.08 0.96 0.93 0.86 0.68

0.88 0.94 0.77 0.90 0.78 0.79

0.93 0.97 0.83 0.81 0.88 0.82

0.72 0.76 0.58 0.55 0.46 0.80

0.25

0.50

0.75

1.00

(a) The average of retained accuracy.

Sup
ResNets

Robust
ResNets

Sup
ViTs

SS
ResNets

SS
ViTs

CLIPs

Target

Sup
ResNets

Robust
ResNets

Sup
ViTs

SS
ResNets

SS
ViTs

CLIPs

S
ou

rc
e

0.77 0.59 0.35 0.47 0.77 0.67

0.59 0.79 0.36 0.53 0.79 0.68

0.38 0.36 0.54 0.34 0.69 0.60

0.60 0.65 0.42 0.76 0.85 0.73

0.54 0.56 0.38 0.51 0.87 0.71

0.42 0.43 0.23 0.39 0.72 0.77

0.25

0.50

0.75

1.00

(b) The average of R2.

Figure 9. (Left) shows the average of retained accuracy. More precisely, the value in row r and column c is the average of retained accuracy
when doing alignment from representation space of model s to that of model t where s is a model in group r and t is a model of group c.
(Right) shows the average of R2, i.e., same as above, value in row r and column c is the average of R2 in linear alignment from models in
group r to models of group c. Note that “Sup” stands for Supervised while “SS” stands for Self-Supervised training procedure. Note that
all models are pretrained on ImagenNet-1K except CLIPs. More details on models used here can be found in Section E.2.

Figure 10. For each model s, average of retained accuracy when doing alignment from model s to all other models is reported.

representation space alignment of model fs to model ft is the task of learning a mapping h : fs(X) ! ft(X). We restrict h
to the class of affine transformations, i.e., hW,b(z) := WT z + b.

100 200 300 400 500 600 700 800 900 1000

Number of Classes

45

50

55

60

65

70

A
lig

ne
d

A
cc

ur
ac

y

Model

Dino ViTs8

MoCo ResNet50

ResNet50

Target Model (SimCLR ResNet50X1)

104 105 2 ⇥ 105 3 ⇥ 105 4 ⇥ 105 5 ⇥ 105

Number of Samples

35

40

45

50

55

60

65

70

A
lig

ne
d

A
cc

ur
ac

y

Model

Dino ViTs8

MoCo ResNet50

ResNet50

Target Model (SimCLR ResNet50X1)

Figure 11. (Left) shows the aligned accuracy when linear transformation is only optimized on images with particular labels. We randomly
select labels and increase the number of labels(classes) to see how retained accuracy changes. while (Right) shows the aligned accuracy
when linear alignment is solved on a random subset of images. Alignment is done from three different models to SimCLR ResNet50X1.
We observe that all training images are not necessary to have a reliable alignment. In other words, aligned accuracy can reach to its
maximum by only considering small portion of images or classes.

To maximally retain the original semantics of representation spaces, we design the following optimization problem

W, b = argmin
W,b

1

|Dtrain|
X

x2Dtrain

kWT fs(x) + b � ft(x)k22. (1)

The above optimization can be viewed as multiple linear regression problems; thus we evaluate the linear alignment on
Dtest by considering the quality of the solution on those linear regression problems. We use Coefficient of Determination,
i.e., R2 which is the proportion of the variation in the dependent variables that is predictable from the independent variables.
Furthermore, we note that for the vision encoder fs, there usually exists a classification head gs : Rd ! C that classifies a
representation in the space of model fs. Indeed, the predicted label for input x is gs (fs(x)). Note that C denotes the set of
labels, e.g., ImageNet classes. We define aligned accuracy as the accuracy of classification on Dtest when we use fs as the
vision encoder, then do the linear transformation to obtain the corresponding representation in space of ft, and finally, use gt
for classification. If alignment works well, aligned accuracy should be admissible and comparable to the accuracy of model
ft when no alignment is used. Then, we define retained accuracy as the ratio of aligned accuracy to the accuracy of model
ft without any alignment. Note that we use ImageNet-1K train and test datasets as Dtrain and Dtest in linear alignment.

Interestingly, we observe that simple linear alignment works well in terms of both R2 and aligned accuracy across various
models. Figure 9 shows the aligned accuracy and R2 between diverse pairs of models. We find that various models are

highly alignable to CLIP models. This is surprising as CLIP models are trained on other datasets than ImageNet and their
training procedure involves vision/text supervision which is drastically different from other models. High-quality alignment
to CLIP representation space enables models to adopt a wide variety of CLIP models capabilities, which we analyze in
this work. On the other hand, we observe that retained accuracy when aligning CLIP models to other models is not high.
This is mainly due to the fact that CLIP models encode images and texts in relatively low-dimensional spaces and in linear
regression, approximating dependent variables becomes harder as the number of independent variables decreases. Indeed,
linear alignment works worse when we align from a representation space with lower dimensionality to a representation space
with higher dimensionality.

E.1. Optimizing the Linear Transformation

With a proper set of hyperparameters, around 6 epochs are enough to converge to the optimal solution. However, re-scaling
representation spaces of models so that the variance of elements in the space becomes constant, is crucial. This is due to the
fact that some models embed inputs into very low variance spaces, which degrades the performance of linear alignment due
to precision in computations.

Additionally, we take into account the optimization problem given in (1) and consider the effect of the number of images
that we involve in optimizing (1). We observe that using only a random subset of the training set of ImageNet is sufficient to
find W and b, as seen in Figure 11, 1/5 of ImageNet training samples is roughly enough to retrieve the target model accuracy.
if we use only images of some particular classes to optimize (1), we can retrieve the target accuracy by just using around 1/3
of ImageNet classes.

The specific hyperparameters we use to solve alignment are as follows: we use SGD optimizer and learning rate scheduler
(implemented in Torch [26]) with following hyperparameters:

optimizer = optim.SGD(lr=0.01, momentum=0.9, weight decay=5e-4)
scheduler = torch.optim.lr scheduler.CosineAnnealingLR(T max=200)

We run optimization for 6 epochs. Note that before optimizing we re-scale representation spaces of models such that
variance of elements in matrix

�
fs(xtrain

1), fs(xtrain
2), ..., fs(xtrain

N)
�

becomes 4.5.

E.2. Models in our Study

In this paper we have considered several different models in different categories [27], [4], [3], [11], [28], [27]. All these
models except CLIP models are trained on ImageNet-1K [8]. For almost all of these models, pretraiend weights are obtained
from timm library [32] and [12]. Our models are categorized in following groups.

• Supervised ResNets include ResNet50, and ResNet18.

• Robust ResNets include Robust Resnet50 `2, ✏ = 0.25, Robust Resnet50 `2, ✏ = 1.0, and Robust Resnet50 `2, ✏ = 3.0.

• Supervised Vision Transormers include Swin, Deit, and Convit models.

– Swin with patch size of 4 and window size of 7 includes Swin Small (S) and Swin Tiny (T).
– Deit with patch size of 16 includes Deit Small (S) and Deit Tiny (T).
– Convit includes Convit Small (S) and Convit Tiny (T).

• Self-Supervised ResNets include MoCo ResNet50, Dino ResNet50, SimCLR ResNet50X1, and SimCLR ResNet50X2.

• Self-Supervised Vision Transformers include MoCo ViT base (B), MoCo ViT small (S), Dino ViTs 16, and
Dino ViTs 8, .

• CLIP include

– CLIP ResNet101, CLIP ResNet50, CLIP ViT-B/16, and CLIP ViT-B/32 trained on OpenAI dataset.
– CLIP ResNet101 and CLIP ResNet50 trained on YFCC [31].
– CLIP CLIP ViT-B/16 and CLIP CLIP ViT-B/32 trained on LAION [30].

F. Discussion and Future Work

While our proposed method is very simple, we believe it can open the door to many variants that are better suited for
specific aims. A central takeaway (and surprising observation, on which our method is based) is that the representation spaces
of diverse models are surprisingly similar, to where even the simplest manner of mapping them (i.e. via linear regression)
can be effective. Other optimizations, such as Nystrom kernel regression or maximizing similarity measures like CKA or
HSIC, may be promising. More simply, we can use Text2Concept vectors to organize data, essentially mining for positive
and negative examples within an existing dataset. Then, a refined CAV can be obtained in the traditional fashion (i.e. training
a binary classifier linearly separating positive and negative examples of a concept in feature space). Lastly, it may be possible
to obtain aligners in closed form, given the simplicity of our optimization task.

We mention these approaches as potential future directions for improving Text2Concept. Also, there are numerous inter-
pretability benefits beyond what we present that may be worth pursuing. The ability to generate new CAVs for free should
open the door to many new forms of interpretability. Finally, we situate our work in the broader moment of what we see as a
rise of multi-modal methods in AI. Having developed very effective specialized models, bridging modalities may have mas-
sive impact in better utilizing the models we already have. Our work focuses on building these bridges in a highly efficient
(w.r.t. time and samples) and extensible fashion, in contrast to other methods that have much greater computational and data
requirements [35] or are more task-specific in their formulation [21].

