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Abstract

Most existing image retrieval systems use text queries

as a way for the user to express what they are looking

for. However, fine-grained image retrieval often requires the

ability to also express where in the image the content they

are looking for is. The text modality can only cumbersomely

express such localization preferences, whereas pointing is a

more natural fit. In this paper, we propose an image re-

trieval setup with a new form of multimodal queries, where

the user simultaneously uses both spoken natural language

(the what) and mouse traces over an empty canvas (the

where) to express the characteristics of the desired target

image. We then describe simple modifications to an exist-

ing image retrieval model, enabling it to operate in this

setup. Qualitative and quantitative experiments show that

our model effectively takes this spatial guidance into ac-

count, and provides significantly more accurate retrieval re-

sults compared to text-only equivalent systems.

1. Introduction

Gargantuan amounts of pictures are taken and shared

every day, at an ever accelerating pace. Finding the pic-

ture that one has in mind should be easier and faster than

painfully scrolling through hundreds of pictures in a digital-

camera roll. Building effective image retrieval systems for

finding specific images among large collections is, there-

fore, of paramount importance. To speed the search up,

image retrieval systems build an index that represents a

collection of images by automatically analyzing their con-

tent [83, 53, 21, 66, 43, 62, 70, 71, 17, 37, 44, 39, 12].

A query is a description of what a user is looking for

in an image, a translation of their mental model of the tar-

get image into a concrete form that can be understood by

a retrieval system. At a coarse level, a query can be a list

of specific classes of objects (e.g., cars, people) the user

wants to be contained by the target image [67]. At a finer-

grained level is a natural language description of its con-

tents [70, 71, 17, 37, 44, 39, 12]. The latter is the most

common paradigm in the recent literature, partly due to the
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Figure 1: Different types of textual queries to represent the

what and the where in the target image: (a) spatial information is

usually lacking in textual descriptions and (b) it is cumbersome to

express in written form, while (c) it is natural using mouse traces

synchronized with the text.

availability of captioning datasets that can be used as train-

ing and testing data [42, 10, 78, 55]. These types of queries

generally focus on what is present in the image, but fall

short of expressing where in the image the user expects it.

As an example, consider the image in Fig. 1. One textual

query could be “A horse in a city, occluding a bike and a

car” (Fig. 1a). The retrieved image, while not the one the

user had in mind, is a perfect match for this description: the

what in the image is similar to the intended target. Express-

ing the where part using the textual query is not only cum-

bersome for the user to write, but also hard for the retrieval

system to process (Fig. 1b).

In this paper, we propose a new query modality where

the user describes the characteristics of the desired target

image simultaneously using spoken natural language, the

what, and mouse traces over an empty canvas, the where

(Fig. 1c). Roughly pointing to an object’s location comes

naturally to humans [18, 13] and is an effective way of com-

municating the image layout the user has in mind. When the

localization information is also temporally aligned with the

natural language query, it becomes a natural grounding sig-

nal that can be exploited to make retrieval more precise.

We propose an image retrieval model that takes this new

type of multimodal query as input. We start from an image-
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Ranked retrieved images

(b) Query: Caption

(a) Query: Caption + Mouse Trace (Ours)

In this image we can see a person 

wearing cap and holding a tennis 

racket. Also we can see a ball. In the 

back we can see net and wall. 

In this image we can see a 

person wearing cap and 

holding a tennis racket. 

Also we can see a ball. In 

the back we can see net 

and wall. 

Figure 2: Qualitative results: Querying with (a) text and mouse traces, versus (b) only text. The target image is marked in green. Adding

mouse traces to express the spatial location of the image content allows us to get a better retrieval result even given the same textual query.

In this particular case, notice that the exact position of the racket and the ball allow the model to detect the correct target image.

to-text matching model that is repurposed as an image re-

triever by ranking image-text pairs according to their affin-

ity, as in previous literature [32, 17, 37, 80]. We then aug-

ment the text input to also take the rough position in the

blank canvas of each of the words into account (Fig. 4).

The data for training and evaluating such a model comes

from Localized Narratives [56], a captioning dataset where

annotators describe the images with their voice while simul-

taneously moving their mouse over the objects they are de-

scribing. The mouse traces are effectively grounding each

word of the caption in the image. To use this data in an im-

age retrieval scenario, we take the caption and correspond-

ing mouse trace as input query, and the image on which the

annotation is generated as target image.

Our experimental evaluation shows that this query

modality provides a +7% absolute better recall (43% rel-

ative error rate decrease) for the top image compared to a

model using only text queries. As we show in Fig. 2, hav-

ing the rough location of the objects mentioned in the query

restricts the space of plausible images and thus allows for

more effective retrieval results.

In summary, our main contributions are:

(a) A novel query modality for fine-grained image retrieval

that allows for a more natural specification of localiza-

tion preferences.

(b) One concrete implementation of this idea that is simple

and broadly applicable through a strong transformer-

based model capable of incorporating the mouse traces.

(c) An experimental setup that suggests that Localized Nar-

ratives can be used to measure progress on this task.

(d) Empirical image retrieval results that demonstrate sig-

nificant accuracy gains when the user is empowered

with the ability to point to the where.

2. Related Work

Query Modality for Image Retrieval. The closest line of

work to ours is text-based image retrieval (discussed in de-

tail below), in which a natural language description serves

as input to an image retrieval system. We augment this in-

put with mouse traces drawn on an empty canvas to express

where in the image the content should appear.

Other works also augment the text query with a certain

structure that indicates the where, either limited to a closed

vocabulary [28, 48, 25, 19, 61, 30] or derived automati-

cally from the natural language descriptions [35, 38, 63, 72]

(challenging in itself [77, 41, 79]). In contrast, our mouse

traces cover all words and are drawn as input.

Drawing sketches on an empty canvas [62, 66, 43, 2, 81]

was also used to represent an abstraction of an object cat-

egory. We argue that expressing the what in natural lan-

guage is significantly more intuitive and faster than drawing

a sketch (e.g. compare using “horse” versus drawing one

with enough detail to differentiate it from a zebra).

In content-based image retrieval, the query is an image

and the target image depicts either (i) the same object [83,

58, 53, 21], typically from another viewpoint, at another

time of the day, etc. (instance-level); or (ii) another object of

the same category [5, 64, 52] (category-level). One can also

add some natural language text that describes the desired

modifications to the input image [22, 69, 11]. However,

querying by image is a rather inflexible way to express what

the user has in mind, as it already has its content fixed (both

the what and the where).

We believe that our query modality makes the most ef-

ficient use of both natural language and mouse traces: the

former to express a fine-grained what naturally and fast, and

the latter to specify the where effectively and intuitively.
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A woman sitting on the grass besides a plant with the 

basket. She wears a cap. On the background we can see 

many trees. And this is the sky with heavy clouds. 

A woman sitting on the grass 

besides a plant with the basket. 

She wears a cap. On the background 

we can see many trees. And this 

is the sky with heavy clouds. 

Query

Target Image

Localized Narrative

Figure 3: Localized Narratives annotations (left) can be transformed into training and testing data for image retrieval (right) by using the

mouse traces as if they were drawn on a blank canvas, forming part of the query.

Approach to Caption-Based Image Retrieval. We focus

on the most relevant works to ours, given the vast litera-

ture [84, 9] . Typical methods learn deep representations of

images and texts, fuse them, and score the fused representa-

tions. To this end, a variety of factors have contributed to re-

trieval performance, including image and text features and

encoders, types of cross-modal interaction, approaches to

hard negative mining, loss functions, and pre-training data

sources. [3, 7, 24] investigate the effects of these factors.

Convolutional and recurrent neural networks with late

fusion were popular in earlier works [70, 32, 29, 33, 54,

47, 17, 26, 82], whereas recent works use transformers [44,

39, 12, 46, 80, 50, 49], graph neural networks [40, 73, 15],

or architectures with more complex cross-modal interac-

tions [37, 74, 6]. The latter often leverage region-based

“bottom-up” visual features [1, 55, 37]. Moreover, multi-

ple losses are explored, often requiring image-text triplets

and hard negative mining [71, 17, 16, 51, 82, 76, 8]. Fi-

nally, pre-training image retrieval systems with large-scale

image-text data sources has been shown to be extremely

beneficial [20, 44, 40, 39, 12, 57, 4, 59, 27].

Our base image-text matching model (Sec. 4) follows

most recent work [44, 39, 12] that uses transformers [68]

with region-based Faster R-CNN visual features [60]

trained on Visual Genome [35]. In addition, we explore the

use of the Conceptual Captions [65], following [44], and

Localized Narratives [56] as additional pre-training data

sources. Finally, we adopt late image-text fusion [32, 17]

due to its simplicity, scalability, and effectiveness over

early-fusion-based approaches in scenarios where large-

scale pre-training data and contrastive learning with a large

batch size are used [4, 59, 27].

Building on top of our strong caption-based image re-

trieval system, our approach to connecting text tokens and

image regions via box representations (Sec. 4, the orange

boxes in Fig. 4) is largely inspired by position/location em-

beddings that are used extensively in recent work from both

the computer vision and NLP communities [68, 14, 44, 56].

3. New Query Modality

Description. We propose a new query modality for im-

age retrieval in which the user provides a mouse trace on

a blank canvas and a natural language description that are

synchronized with each other. This allows the user to seam-

lessly specify what they want (through language) and where

they want it (through mouse traces, Fig. 1). We argue that

pointing is a more natural means for taking into account the

user’s spatial preferences than existing approaches (Sec. 2).

What+Where Image Retrieval Setting. As a second con-

tribution, we construct the setting of what+where image re-

trieval, and leverage the recent Localized Narratives [56]

dataset for this purpose. It is a collection of image-caption

pairs, where each caption word is grounded in the image

by a mouse trace segment (Fig. 3 left). They were obtained

by annotators describing the images with their voice while

simultaneously moving their mouse over the objects they

were describing.

We transform the original Localized Narratives into use-

ful annotations for image retrieval, by forming a query-

image pair for each Localized Narrative as follows. We first

strip away the image and keep only the caption and syn-

chronized mouse trace, as if it had been drawn on an empty

canvas. This forms our input query. Then we place the un-

derlying image in our database, forming the intended target

for that query (Fig. 3 right).

In the remainder of the paper we describe an image re-

trieval model that can operate in this setting (Sec. 4), and

then experimentally show that this leads to more accurate

results with respect to the user’s intent (Sec. 5).

4. Technical Model

In this section, we describe an approach that enables a

strong image retrieval system to operate in the what+where

setting (Sec. 3). We first describe our base image retrieval

system based on image-text matching (Sec. 4.1). We then
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Figure 4: Model: Our model performs early fusion of text token representations (blue) and the box representations (orange) using

transformers. Similarly, the model embeds the global and regional image embeddings (yellow). During the late fusion, the model combines

the two streams and computes the similarity score between the image embedding and the text+traces embedding.

propose a modification to incorporate the extra input in the

form of bounding boxes (Sec. 4.2) and show how we derive

them from mouse trace segments (Sec. 4.3).

4.1. Base image retrieval model

As in much of the previous work (Sec. 2), we turn the

standard text-based image retrieval problem into learning

image-text matching. Let us denote by x = (x1, . . . , xN )
a set of feature vectors representing the image (e.g. the

output of a CNN or an object detector run on the im-

age) and y = (y1, . . . , yK) a set of feature vectors

representing the text (e.g. random or pre-trained charac-

ter/subword/wordpiece/word embeddings of text tokens).

We fix both N and K in our experiments and use padding

and masking as necessary.

Our base model learns a similarity function

s(x, y) = p
(

f(x), g(y)
)

, (1)

where f , g, and p are an image tower, a text tower, and

an image-text fuser, respectively. Each tower reduces a set

of feature vectors into a fixed-length vector and the fuser

combines them to produce the final score. In this paper, we

choose the dot product as the image-text fuser p and use

the symmetric batched contrastive loss for parameter esti-

mation, treating all other image-text pairs within the batch

of size B as negative examples:

L =
1

2
(Lx−→y + Ly−→x) (2)

La−→b =

B
∑

i

log
exp (s(a(i), b(i)))

∑B

j=1 exp (s(a
(i), b(j)))

(3)

At training time, we learn the parameters of f , g, and p

from a collection of image-text pairs. At test time, given a

query text y′, we use the learned p to compute a similarity
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score between y′ and each of the images x in the database.

We then output a ranking of all database images sorted by

their score, which represents our retrieval result.

Figure 4 (without the trace inputs and the trace box em-

bedder, in orange) illustrates our base model. We adopt

a two-stream model in which the image tower f and the

text tower g do not share weights. Each tower consists of

three components: (i) an embedder, (ii) a contextualizer,

and (iii) a pooler. Both towers use a 6-layer Transformer

architecture [68] for (ii) and mean pooling for (iii). We use

the vanilla architecture, where each transformer layer con-

sists of a multi-head self-attention and feed-forward fully-

connected network. We refer the reader to [68] for details

about the Transformer architecture. Below, we describe the

first component of each tower.

The Image Region Embedder (IRE). The input of the IRE

is a fixed-length feature vector representing the whole im-

age (CNN output) or a region of the image (one of an ob-

ject detector’s region outputs). The IRE transforms each

of these feature vectors into an embedded semantic feature

vector, and their corresponding 5D geometric feature of box

coordinates (xmin, xmax, ymin, ymax) and box area into an

embedded location feature. Adding the two together gives a

location-aware semantic feature vector of the region, which

goes through a 2-layer Multi-Layer Perceptron (MLP) be-

fore it is used as input of the image transformer.

The Text Token Embedder (TTE). Given a fixed-length

vector representing a text token (a character, a subword, a

word, etc.), the TTE applies a 2-layer MLP and adds a po-

sition embedding to the output, resulting in a token embed-

ding that is position aware.

We will use what we described here as our base image re-

trieval model throughout the paper, unless stated otherwise.

The end of Section 2 discusses our modeling choices with

respect to prior work. Additionally, we verify that our im-

plementation is strong, achieving a Recall@1 of 36.9 on the

task of zero-shot image retrieval on Flickr30k [78, 55] with

Conceptual Captions [65] as pre-training data, outperform-

ing ViLBERT [44], a leading early-fusion, larger model.

4.2. Incorporating mouse traces

Our high-level idea is to inject the traces to our base

model by introducing the trace-box embedding (TBE) mod-

ule whose encoded 1D text positions and 2D image loca-

tions act as a glue between text tokens and image regions.

Given mouse traces t as an additional input, we modify

our similarity function in (1) by injecting it into the text

stream of the model:

s(x, y) = p
(

f(x), h(y, t)
)

, (4)

where h is a text-trace fuser/embedder, and f and p are the

same as in (1).

Similarly to the setting in Section 4.1, at training time

we learn the parameters of f , h, and p from a collection

of positive image-text-trace triplets. At test time, given a

query text y′ and its corresponding query trace t′, we use

the learned p to compute a similarity score between (y′, t′)
and each of the images in the database and output a ranking

of the images. Note that our setting assumes the existence

of traces both during training and testing, as we envisage

these new “text+trace” queries to be cast by users using an

interface analog to the one used for Localized Narratives

annotation [56].

Figure 4 depicts our full model, with the components de-

scribed in Section 4.1 unchanged. The extra component, the

mouse trace input t, is encoded in the form of a sequence

of boxes by the Trace Box Embedder (TBE, bottom right of

Fig. 4), described below, and then fuse it with the text query.

The Trace Box Embedder (TBE). Analogous to the lo-

cation input of IRE, each of the trace boxes is represented

using a 5D vector consisting of coordinates and area (xmin,

xmax, ymin, ymax, area). Since these boxes correspond to

parts of the text query, they also have the notion of 1D time-

location “position” in the query. Thus, we add a position

embedding to the transformed trace embedding vector, re-

sulting in a trace embedding vector that is both location-

aware (visually) and position-aware (textually).

Fusing texts and traces. We concatenate all the outputs of

TTE (Sec. 4.1) and TBE, and use the result as input to the

text-trace transformer. We believe this is both simple and

powerful, as the transformer self-attention layers allow text

tokens and trace boxes to attend to each other freely. Note

that it is this early fusion of text and traces that is capable of

modeling where in the image certain parts of the query are

expected to be relevant.

4.3. From mouse traces to bounding boxes

A Localized Narrative annotation has each utterance in

the caption associated with a mouse trace segment, which

grounds the utterance on the image. In other words, it de-

fines the rough position in the image where the semantic

content from the utterance (the what) is located (the where).

The mouse trace segment for a certain utterance corre-

sponds to the sequence of image points the mouse traversed

during the time interval (t1, t2) while the annotator spoke

the utterance. We observe that the mouse traces around

the time when an utterance was spoken can still refer to the

same utterance, so we explore adding temporal padding tp
to better define the trace segment. That is, we consider the

trace segment in the time interval (t1 − tp, t2 + tp).

As our model inputs bounding boxes that locate the

query in the image (Fig 4), we convert the mouse trace seg-

ments to boxes. We start from the tightest box (Fig. 5, yel-

low) that fully contains the trace segment defined by the
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[...] a refrigerator, 
behind it we can see [...]

Caption:

Mouse trace segment:

Temporal padding:

Spatial padding:

Final box for 
“refrigerator”:

Mouse trace:

Figure 5: From a mouse trace segment to its box: We first

prolong the mouse trace segment along the temporal dimension

(green), and then we add spatial 2D padding (blue).

time segment (t1 − tp, t2 + tp), and we enlarge it in all

dimensions by a certain spatial padding sp (Fig. 5, blue).

5. Experiments

5.1. Setup

Overview. The main goal of our experiments is to test

whether incorporating mouse traces into the query improves

the accuracy of image retrieval. We will test this hypoth-

esis in multiple scenarios, including several vision-and-

language pre-training settings, inspired by [44, 45, 39, 12].

Datasets. Table 1 summarizes the main datasets used in our

experiments. We use one dataset as our main task with mul-

tiple evaluation sets and two datasets as pre-training data

sources. For the main task, we use Flickr30k Localized

Narratives (Flickr30k LocNar) [75]. This comes with the

same set of 31,783 images as Flickr30k, but we use the Lo-

calized Narratives captions and their synchronized mouse

traces instead of the original captions without mouse traces.

We either train or fine-tune our models on the training split

(29,783 images), perform model selection on the valida-

tion split (1,000 images), and report our quantitative re-

sults on the test split (1,000 images, Sec. 5.2). We further

evaluate on different splits of Flickr30k and on two out-

of-domain datasets: COCO Localized Narratives (COCO

LocNar) and ADE20K Localized Narratives (ADE20K Loc-

Nar) [75], without additional fine-tuning (Sec. 5.3).

For pre-training, we use the training splits of Concep-

tual Captions (CC) [65] and Open Images Localized Narra-

tives (OID LocNar) [75]. The former contains 3.3M pairs

of (image, alt-text) harvested from the web. The latter is a

subset of the 9M images in the Open Images dataset [36, 34]

that is annotated with Localized Narratives. We use these

annotations to pre-train both the image and the language

branches of our model (Fig. 4). We explore two pre-training

data sources due to their complementary strengths: CC

is larger-scale with more semantically specific terms (e.g.

Stage Dataset Size #Tok/cap

Main Flickr30k LocNar 31,783 57.1

Pretrain Conceptual Captions (train) 3.3M 10.3

Pretrain Open Images LocNar (train) 507K 35.5

Table 1: Main datasets used in our experiments. LocNar is short

for Localized Narratives. #tok/cap is the average number of tokens

per caption.

croissant vs. food), while the style of descriptions in OID

LocNar is more similar to our target task of Flickr30k Loc-

Nar. Furthermore, the existence of mouse traces in the OID

LocNar enables us to explore incorporating traces during

pre-training (using the model in Sec. 4.2).

Settings. We consider the from-scratch (no pre-training)

setting and multiple pre-training settings: (i) on CC only,

(ii) on OID LocNar only (with and without mouse traces),

and (iii) on CC followed by OID LocNar (with and without

mouse traces). Setting (iii) is based on our intuition (which

will be verified in the experiments) that the domain of OID

LocNar is closer to that of Flickr30k LocNar.

In each of these settings, we then compare the retrieval

performance of the model with text-only queries (Sec. 4.1)

against that of the model with text+trace queries (Sec. 4.2)

on the Flickr30k LocNar. Note that when pre-training is

involved, we make use of all available pre-trained weights

and randomly initialize the rest (e.g. the TBE weights when

the mouse traces are not used during pre-training).

Evaluation metrics. We use Recall@K (denoted as R@K

for K=1,5,10): the percentage of images in the test set for

which the target image falls within the top-K of the model’s

output ranking, when using its corresponding text(+trace)

as the input query. We also report mean Average Precision

(mAP) in our main experiments. Since we observe a con-

sistent trend with that from R@K, we focus on R@K on the

other experiments.

Implementation details. We use subtokens and random

embeddings to represent text units (e.g. “standing” −→
“stand”, “ing”) . We use a vocabulary size of 10,000. We

represent an image with two types of features: A 2048D

global feature vector of ResNet152 [23] and top 16 regional

feature vectors by a Faster-RCNN [60] trained on Visual

Genome [35] with a ResNet101 backbone [23]. Our box

coordinates and area of a region are represented with rel-

ative numbers between 0 and 1, such that the 5D location

information xmin, xmax, ymin, ymax, and area of the whole

image is 0.0, 0.0, 1.0, 1.0, 1.0, respectively. We concatenate

the two sets of features and permute the 16 regional vectors

during training. We use Adam [31] and contrastive learning

treating all other image-text pairs in each batch as negatives

(Sec. 4.1). We tune an initial learning rate but always use a

linear warm-up of 20 epochs and multiply the learning rate

by 0.95 every 25 epochs after that.
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Scenario Recall@K= mAP

Pre-train? Query 1 5 10

text 63.5 87.4 92.8 74.0

text+trace 68.2 88.8 94.4 77.7

X text 83.4 97.6 98.5 89.7

X text+trace 90.6 98.2 99.4 94.0

Table 2: Main results. The image retrieval performance on the

Flickr30k LocNar 1K test set.

Pre-training Final Recall@K=

data query query 1 5 10

CC
text text 74.2 93.9 96.2

text text+trace 79.5 95.1 97.8

text text 81.5 97.6 99.0

OID LocNar text text+trace 83.9 97.1 98.5

text+trace text+trace 90.6 98.2 99.4

CC −→
OID LocNar

text text 83.4 97.6 98.5

text text+trace 83.5 97.2 98.2

both text+trace 90.2 98.4 99.0

Table 3: Pre-training with different data sources and query

modalities affects image retrieval performance on the Flickr30k

LocNar 1K test set.

5.2. Main Results

Table 2 compares the image retrieval performance on

Flickr30k LocNar of the models using the text-only queries

and the ones using text+trace queries, i.e. our new

what+where setting (Sec. 3).

Regardless of whether we perform pre-training, incor-

porating the mouse trace (the “where”) leads to significant

gains in absolute R@1: +4.7% without pre-training (Row 1

vs. Row 2), and +7.2% with pre-training (Row 3 vs. Row 4).

Overall, the best result is obtained when we both pre-train

and inject the trace to our model; we improve over the base-

line model by an absolute +27.1%, +10.8%, +6.6% in

R@{1,5,10}, and +20.0% in mAP (Row 1 vs. Row 4).

Our results suggest that the top retrieved image will be

much more accurate if the user gets to “point to the where”.

Furthermore, pre-training and our new query modality are

complementary: the main benefit of pre-training with the

text-only query modality is on improving “telling the what”.

5.3. Detailed Results and Ablation Studies

Pre-training data sources. In Table 3, we observe that OID

LocNar is superior to CC as a pre-training data source for

this task, supporting our intuition that the domain of the

OID LocNar is closer to that of Flickr30k LocNar. How-

ever, they are complementary when the trace is not involved.

Pre-training query modality. In Table 3, the largest ben-

efit of pre-training is observed when text+traces are used

during both the pre-training and final stages; in the case of

OID LocNar, this leads to the best R@1 of 90.6. When this

is not possible (i.e. pre-training data does not come with

Pre-training Query Recall@K=

data 1 5 10

CC text 21.0 42.2 54.0

OID LocNar text 79.0 95.7 98.3

CC −→ OID LocNar text 79.1 95.7 97.9

OID LocNar text+trace 88.0 97.7 99.1

CC −→ OID LocNar text+trace 86.7 98.0 98.8

Table 4: Zero-shot image retrieval performance on the

Flickr30k LocNar 1K test set. Best viewed together with Table 3.

Eval data Query Recall@K= mAP

1 5 10

ADE20K
text 47.4 73.8 84.6 59.5

text+trace 60.3 84.1 90.7 70.7

COCO
text 73.7 94.3 97.6 82.5

text+trace 82.4 96.6 98.4 88.7

Table 5: Out-of-domain evaluation. Image retrieval perfor-

mance on ADE20K LocNar val (2K images) and COCO LocNar

val (averaged over 5-fold 1K images).

traces as in CC), we still observe significant improvements

in R@1 when using text+trace in the final stage. This sug-

gests that text+trace queries are generally superior, working

robustly across pre-training scenarios.

Zero-shot image retrieval. We test our models when they

have not seen any image of the test domain (Flickr30k Loc-

Nar), i.e. only trained on the pre-training data and evaluated

on the Flickr30k LocNar test set (Tab. 4). Together with Ta-

ble 3, we see that fine-tuning on Flickr30k LocNar is bene-

ficial in all cases. Notably, the zero-shot performance of the

CC model is much lower than the one fine-tuned on OID

LocNar, indicating a big domain gap between Conceptual

Captions and Localized Narratives-style datasets.

Out-of-domain evaluation. We take the best text-only and

text+trace models (last two rows of Tab. 2) as-is and evalu-

ate their performance on two additional datasets, ADE20K

LocNar and COCO LocNar (without fine-tuning on their

training sets, Tab. 5). The text+trace modality is still far

superior to the text-only one (+12.9% on ADE20K and

+8.7% in R@1 on COCO). We stress that these datasets

are in a different domain than the training sets (Open Im-

ages and Flickr30k). Thus, our improvements cannot be

achieved simply by overfitting on the training domain.

Statistical significance. We re-split the union of the train-

ing and test subsets of Flickr30k LocNar (keeping val in-

tact) and then re-train and re-evaluate our best text+trace

model (last row in Tab. 2). Over 5 re-splits, the R@1 is

90.6% ± 0.9, which suggests that our gain of +7.2% over

the text-only model is statistically very significant.

Trace-only query modality. In Tab. 6, our trace-only

query achieves a R@1 of 14.5 without pre-training (Row

3). When compared to the text+trace and text-only queries
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In this image we can see person riding horse. 

In the background we can see fencing, 

advertisement, persons, tents and trees.
Ranked retrieved images

(b) Query: Caption

(a) Query: Caption + Mouse Trace (Ours)

In this image we can see 

person riding horse. In the 

background we can see 

fencing, advertisement, 

persons, tents and trees.

Figure 6: Qualitative results: Comparison between our best method (a) to that without trace supervision (b). In green, the target image

that corresponds to the query on the left.

Image Text Trace Recall@K=

sem loc tok pos 1 5 10

X X X X X 68.2 88.8 94.4

X X X X 63.5 87.4 92.8

X X X 14.5 31.7 42.7

X X X X 66.8 89.4 94.5

X X X X 65.1 87.8 93.9

Table 6: Benefits of retrieval components on the image retrieval

performance on the Flickr30k LocNar 1K test set. The image fea-

tures consist of semantic (sem) and 2D location (loc) embeddings.

The text features consist of token (tok) and 1D position (pos) em-

beddings. See Sec. 4 and Fig. 4 for details of these components.

(Row 1-2), this shows that while text plays a major role,

both elements are important to achieve strong performance.

Position and location embeddings. Table 6 also investi-

gates the benefits of 1D word position (TTE) and 2D image

region location (IRE) embeddings, both of which are con-

nected to TBE in Figure 4. We find that they are important

as their absences lead to degradation in the top retrieved im-

age (Row 1 vs. Row 4-5).

Drawing traces on an empty canvas. Analog to all mod-

ern text-to-image retrieval works that leverage image cap-

tioning datasets, our experiments are limited by the fact that

our trace queries were drawn while the annotator was look-

ing at the target image. What if the traces were drawn on an

empty canvas? We select 7 images from the Flickr30k Loc-

Nar test set on which our best text+trace model retrieved the

correct image in the top rank, but our best text-only model

did not. We then ask an annotator to briefly look at these 7

images, and then draw a trace for each image on an empty

canvas, while reading the original caption (without seeing

the image). In this scenario, our text+trace model retrieves

the correct image in 6 out of 7 cases, suggesting that our

model can maintain high accuracy even when the traces are

not exactly aligned with the image regions.

Architecture. In the supplementary material (Sec. B), we

experiment with the number of layers of text (M) and image

(L) transformer encoders of our model (Fig. 4). We find that

the benefit of the text+trace query modality over the text-

only one generalizes to all our ablation studies.

Qualitative results. Figure 6 shows qualitative results,

comparing our best model with text+trace query and our

best model with text-only query. Note that the exact posi-

tions of the fence and the advertisement allows the model to

distinguish between images with very similar content. More

qualitative results are in Figure 2 and in the supplementary

material (Sec. C).

6. Conclusions

In this paper, we propose a new query modality for

content-based image retrieval systems where the user de-

scribes the characteristics of the desired target image si-

multaneously using spoken natural language (the “what”)

and mouse traces over an empty canvas (the “where”). We

present an image retrieval model that takes this new type

of multimodal query as input. We train and evaluate our

model using Localized Narratives, where the caption and its

corresponding mouse trace is used as input query, and the

corresponding image as target. Our experimental evaluation

shows that this query modality provides a 43% relative er-

ror rate decrease for the top image compared to the model

that only uses text-based queries.
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