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Abstract

We present BN-NAS, neural architecture search with
Batch Normalization (BN-NAS), to accelerate neural ar-
chitecture search (NAS). BN-NAS can significantly reduce
the time required by model training and evaluation in NAS.
Specifically, for fast evaluation, we propose a BN-based in-
dicator for predicting subnet performance at a very early
training stage. The BN-based indicator further facilitates
us to improve the training efficiency by only training the
BN parameters during the supernet training. This is based
on our observation that training the whole supernet is not
necessary while training only BN parameters accelerates
network convergence for network architecture search. Ex-
tensive experiments show that our method can significantly
shorten the time of training supernet by more than 10 times
and shorten the time of evaluating subnets by more than
600,000 times without losing accuracy. The source codes
are available at https://github.com/bychen515/BNNAS.

1. Introduction
Neural architecture search (NAS), which aims to find

the optimal network architecture automatically, has signif-
icantly improved the network performance in many com-
puter vision tasks, such as image classification [36, 11, 17,
8, 3], object detection [18, 6, 21], semantic segmentation
[4, 19], etc. However, a successful NAS method usually
means training and evaluating thousands of models, which
takes up to thousands of GPU days [36, 25]. The huge
searching budget makes NAS hard to be applied widely.

To overcome the above issue, one-shot methods [24, 11],
have been proposed to reduce the computational cost based
on the weight-sharing technique, reducing the search cost
from thousands of GPU days to tens of GPU days. These
methods construct a supernet that includes all candidate net-
work architectures. With the constructed supernet, one-shot
methods consist of three stages: supernet training, subnet
searching and subnet retraining.
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Figure 1. Designs and computational cost of SPOS and Our BN-
NAS. Compared with SPOS, our proposed BN-NAS can acceler-
ate the one-shot methods in two stages: training supernet more
than ten times faster, and searching subnets more than 600,000
times faster. The key to the speed-up is the BN-based indicator,
which saves the searching cost and facilitates the training only BN
paramters with much fewer epochs. SPOS needs 11 GPU hours in
total. Ours needs only 0.8 GPU hours.

In the supernet training stage, the supernet is trained by
back-propagation. In the subnet searching stage, subnets
are sampled from supernet and treated as the candidate ar-
chitectures. The sampled subnets are evaluated on valida-
tion data, from which the top-5 subnets with the highest
accuracy on validation data are selected in SPOS. The se-
lected subnets are then retrained from random initialization
in the subnet retraining stage. The primary benefit of one-
shot methods is that the subnets can inherit the weights of
supernet to reduce the computational burden significantly in
the searching stage. However, the process of training super-
net hundreds of epochs and evaluating thousands of subnets
is still time-consuming, leading to tens of GPU days cost.

In this paper, we identify the parameters learned at the
Batch Normalization (BN) layer as the key to significantly
reduce the excessive time required by one-shot methods in
training and searching stages. In searching stage, the moti-
vation is that BN parameter is a very light-weight measure
for the importance of operations and subnets. Existing one-
shot methods evaluate thousands of subnets on validation
data. Although the searching process efficiency has been
improved, the large computation required for these thou-
sands of subnets is still a burden. It is widely accepted that
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the BN parameter of a channel reflects the importance of
the channel [22, 15]. Hence, channels with smaller BN pa-
rameters are considered as less important and pruning these
channels will cause a small influence on the whole deep net-
work [22]. Therefore, it is natural to accumulate the BN pa-
rameters from multiple channels to measure the importance
of candidate operations and even the whole subnet. Based
on this observation, we propose a novel BN-based indicator
to measure the importance of operations as well as subnets,
which significantly reduces the searching cost from about 1
GPU day for SPOS to 0.14s on CPU for ours in the search-
ing stage, as shown in the column for ‘searching’ in Fig. 1.

The BN-indicator further motivates us to only train the
BN parameters of supernet in the supernet training stage.
To train a supernet, it is a general practice to train all pa-
rameters, i.e., parameters of convolutional layers, fully con-
nected layers, and BN layers. Yet training BN layers only is
not groundless. Frankle et al. [10] find that networks only
training BN parameters with other randomly initialized pa-
rameters fixed still have a certain capacity. During the su-
pernet training stage, our BN-NAS only trains BN parame-
ter but does not train the other parameters such as convolu-
tional or fully-connected layers for two reasons: 1) the net-
work can encode the knowledge from training data through
training only a part of parameters, as found in [10]; 2) we
focus on using BN parameters as the indicator for search-
ing instead of network accuracy. We empirically find that
training only BN parameters helps BN parameters become
stable at earlier training epochs. Besides, there is an extra
training speedup benefit from only training BN parameters.
Based on the observations above, we propose a new BN-
NAS. The BN-NAS train supernet with much fewer train-
ing epochs, and search subnets using the novel BN-based
indicator for much faster speed.

To summarize, the main contributions are as follows:

• We propose a BN-based indicator for evaluating net-
work architectures, which can significantly shorten the
time required by one-shot NAS methods for searching
candidate network architectures.

• We only train the BN parameters of the supernet and
significantly reduce the number of epochs required for
training the supernet, which is based on the use of
BN-based indicator when evaluating network architec-
tures. Training BN parameters only and reducing the
training epochs could have adverse effects on the net-
work architecture searching stage. However, with our
BN-based indicator for searching, the adverse effect is
overcome.

• Extensive experiments demonstrate that our method
can significantly improve the speed of NAS in the
training stage (more than 10X, for example, from
100 to 10, with an external 20% speed up for SPOS

as shown in Fig. 1) and searching stage (more than
600000X) without losing accuracy.

2. Related Works
2.1. Reinforcement Learning and Evolutionary Al-

gorithm for NAS

NAS methods are proposed for automatic network ar-
chitecture designing. Early methods utilize reinforcement
learning (RL) [36, 1] or Evolutionary algorithm(EA) [25]
to generate network architecture samples. The generated
network samples are evaluated on validation dataset and
their accuracies are treated as rewards to guide the RL and
EA to generate better architecture samples. Zhou et al. [35]
propose an optimal proxy for the Economical Neural Ar-
chitecture Search. However, the sampling and training pro-
cesses are still time-consuming, making it difficult for NAS
to be deployed on large-scale datasets such as ImageNet [9].

2.2. Weight-sharing NAS

To overcome the time-consuming problem of RL and
EA, methods based on weight-sharing mechanism are pro-
posed. These methods adopt the supernet constructed by all
candidates subnets and divide the NAS process into three
stages. Based on the difference in the training and searching
stage, these methods can be divided into one-shot methods
and differentiable methods.

One-Shot Methods. One-shot methods construct the su-
pernet with candidates subnets directly and train the su-
pernet based on sampled subnets for hundreds of epochs.
After supernet training, thousands of subnets are sampled
and evaluated on the validation set to find the optimal sub-
net architecture based on the validation accuracy. Since the
search space is enormous, EA algorithm is adopted to gen-
erate subnets to be evaluated. Most one-shot methods focus
on subnets sampling during the training. [11] constructs
the supernet and then trains the supernet through single-
path random sampling. Based on [11], [7] proposes a fair
sampling method to alleviate supernet bias and improve the
evaluation capacity. [34] proposes a sampling pool and
samples subnets in the pool during the supernet training,
improving the training efficiency. Unlike the above meth-
ods, we only train the BN parameters in supernet which are
based on different sampling policies for much fewer epochs.
Besides, we evaluate the subnets through our proposed BN-
based indicator instead of evaluating subnets on validation
set, accelerating the searching stage significantly.

Differentiable Methods. Different from one-shot meth-
ods, differentiable methods construct the supernet with ad-
ditional architecture parameters. During the supernet train-
ing, the subnet sampling is controlled by architecture pa-
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Figure 2. Overview of the proposed framework. We follow the three stages in one-shot methods. In supernet Training, we fix the con-
volution parameters and only train BN parameters for few epochs. In a iteration of supernet training, only a single path is sampled from
the supernet for forward propagation, e.g. following the green solid arrows, and back-propagation, e.g. green dashed arrows. In Subnet
Searching, we search the subnets (lines of the same color is a subnet) with proposed BN-based indicator. In Subnet Retraining, we train
best subnet from scratch.

rameters which are trained alternatively with subnet param-
eters. After the supernet training, the optimal architecture
is selected according to the magnitudes of the architecture
parameters. [20] treats the architecture parameters like
the weight for the subnet output and updates the architec-
ture parameters by back-propagation. [2] binarizes the ar-
chitecture parameters to save the GPU memory usage dur-
ing the supernet training. [31] introduces Gumbel ran-
dom variables to train the subnet and architecture param-
eters directly. However, the architecture parameters bring
the training tendency to certain operations during training,
especially for skip connection. Compared with these meth-
ods, our method does not need external parameters and can
ensure fairness among all candidates during training.

3. Method
3.1. Preliminary

Since our approach is based on the One-shot NAS
method [11, 7] and the Batch Normalization Layer [14]. A
brief introduction of them is provided in this subsection.

3.1.1 One Shot NAS

In One-Shot (e.g. SPOS) methods, a supernet N with
weights W is constructed by all candidate operations forms
the search space A. The whole pipeline of these methods
can be divided into three stages, i.e. supernet Training, Sub-
net Searching, and Subnet Retraining.
Search Space. The supernet architecture is constructed by
a series of candidate operations as shown in Fig. 3. A layer
contains multiple (N ) candidate operations. Every candi-
date operation in the layer follows the repeating structure of
‘Conv-BN-ReLU’ with different kernel sizes and expansion
ratios (number of channels).

Supernet Training The supernet N is trained by sampling
a single-path architecture a ∈ A based on a sampling pol-
icy at each iteration. In the single path architecture search
method, only a single candidate operation in each layer is
activated. Then the weights of the sampled architecture, de-
noted by Wa, are optimized by normal network training, i.e.
back-propagation.

Since the accuracy of subnet with weights inherited from
the supernet should be highly predictive on the validation
set, the supernet training often requires hundreds of epochs.

Subnet Searching After training the supernet, the next step
is to find the optimal architecture with the best performance.
In SPOS, the accuracy on validation set is used for eval-
uating the subnet performance. The optimal subnet is se-
lected according to the subnet accuracy on the validation
set. To get a reliable searching result, thousands of subnets
are needed to be evaluated.

Subnet Retraining In the retraining stage, the K subnets
found at the subnet searching stage with the highest accu-
racy are retrained. They are then evaluated on the validation
set and the subnet with the highest accuracy is chosen as the
final optimal subnet.

3.1.2 Batch Normalization Layer

Batch Normalization (BN) layer has been used in network
pruning [22, 33, 15], which is a good evaluation of channel
importance. Given the input xin of BN layer, the output
xout is calculated through:

z =
xin − µ̂√
σ̂2 + ϵ

,

xout = γ · z + β,

(1)
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where ϵ is a small positive value for numerical stability,
µ̂ ≡ E

[
xin

]
and σ̂2 ≡ Var

[
xin

]
are means and varia-

tions calculated across mini-batches. The scaling param-
eter γ and bias parameter β are learnable parameters in BN
layers to affine the normalized features z.

3.2. Algorithm Overview

The pipeline of our proposed NAS method is shown as
Fig. 2. We follow the three stages in one-shot methods, i.e.
supernet training, subnet searching, and subnet retraining.
In supernet training stage, the supernet containing all can-
didate operations are randomly initialized. Only BN layer
parameters are updated through standard forward-backward
training, while the other parameters of the supernet are fixed
after initialization (Section 3.4). In subnet searching stage,
subnets are sampled and evaluated based on our BN indi-
cator (Section 3.3). In the subnet retraining stage, the best
subnet chosen in the subnet searching stage is retrained.

In the following, we start from the second stage (Subnet
Searching). The order of the following description is con-
sistent with the order of our exploration in this direction.

3.3. Subnet Searching with BN Indicator

Given the trained supernet, we need to evaluate the per-
formance of sampled subnets in the Optimal Subnet Search-
ing stage. We utilize BN parameters to evaluate the perfor-
mance of candidate operations.

Change of Denotation for BN layer. Different from
channel pruning, we focus on the operation-level outputs
instead of channel-level. Take the c-th channel of activated
operation ol output (C channels in total) in layer l as the
example, the denotation for the BN layer need to be changed
correspondingly. Eqn. (1) can be rewritten as follows for the
c-th channel of operation ol:

zc =
xin
c − µ̂c√
σ̂2
c + ϵ

,

xout
c = γc · zc + βc,

(2)

where symbol with subscript c represents the parameters
in the c-th channel as the definition in Eqn. (1). Assume
the normalized features in z follow the normal distribu-
tion N(0, 1), a smaller scaling parameter γ means a smaller
magnitude of BN layers output xout. Since the output of a
channel with smaller magnitudes contribute less for whole
network [22], we can treat the scaling parameter γ as the
importance of the channel.

BN Indicator for An Operation. When we evaluate the
n-th (n = 1, . . . N ) candidate operation on,l from the l-th
layer (l = 1, . . . L), its BN indicator Son,l

is calculated as
follows:

Son,l
=

1

C

C∑
c=1

∣∣γon,l
c

∣∣, (3)
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Figure 3. The single-path based search space. Only one opera-
tion is activated in each layer during network forwarding. We fo-
cus on the most popular search space for mobile setting network
searching [27, 30] as the shown in right. The candidate operation
consists of a series of Conv-BN-ReLU and ends with Batch Nor-
malization(BN). We search the optimal kernel size and expansion
ratio of convolution layers in an ‘Op’. There are totally 6 different
candidates of kernel size and expansion ratio in each ‘Op’.

where γ
on,l
c is the learned parameters of c-th channel in

chosen candidate operation on,l. A candidate operation
has many CONV, BN, and RELU layers. During the
forward-propagation of an operation, features are normal-
ized several times and the final outputs are only determined
by the last scaling parameters. Thus we utilize only the
last BN layer of each building operation as shown by the
red box in the right side of Fig. 3 to indicate the per-
formance of the candidate operation. BN indicator needs
the last layer of each operation to be a BN layer, so it is
not directly applicable to search for models (such as pre-
activation ResNes) where BN layers are placed at the be-
ginning of the ops. However, most existing NAS methods
apply similar search space as ours, such as recently pub-
lished works [27, 30, 34, 11, 7, 29]. The BN-indicator can
be directly applied to those methods to reduce the computa-
tion cost.

BN-based Indicator for An Architecture. Assuming
that there are L search layers in the supernet, we randomly
sample the candidate operation oal,l from l-th layer to con-
struct the subnet architecture a = [oa1,1, ..., oal,l, ..., oaL,L].
The estimated BN score of the subnet Na is calculated by

SNa
=

L∑
l=1

Soal,l
. (4)

Searching Architecture using BN-based Indicator
Through calculating the BN score of the subnet, we can es-
timate the subnet performance without evaluating it on the
validation set and the searching stage can be formulated as

a∗ = argmax
a∈A

SNa
,

s.t. FLOPs(a) < Constraint.
(5)

For searching an optimal subnet, we randomly sample sub-
nets Na under the FLOPs constraint and evaluate them
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Algorithm 1 BN-based one-shot NAS
Inputs: supernet N representing Search space A , Subnet
sampling policy on the search space P (A), Training epoch
T , Sampling subnet number Ns for searching, Training set
Ttrain, FLOPs Constraint F
Output: Searched Model.

1) Training:
for epoch ∈ 0, 1, . . . , T do

Train supernet through Sampling Policy P (A) on
training set Ttrain.

end for
2) Searching:
Sample Ns subnets under Constraint F and evaluate them
based on our BN-based indicator via Eqn.(3) and (4).
Choose the architecture a∗ with highest score as the
searching result, Eqn.(5).
3) Retraining:
Train the optimal architecture a∗ from scratch on training
set Ttrain and get the trained searched model Ma∗ .

Return: Ma∗

based on our BN-based indicator. The optimal subnet is
the one with the highest BN score SNa

. Accuracy on vali-
dation dataset is a common metric for evaluating subnets in
most exsiting NAS methods, while BN-indicator is used in
our BN-NAS for evaluating subnets.

3.4. Training Only BN Layer

Previous work [10] shows that only training BN layers
can still improve the expressive ability of DNN. Since only
BN parameters, instead of subnet accuracies, are used dur-
ing the subnet searching stage, we can only train BN lay-
ers instead of the whole supernet in the supernet training
stage. Specifically, only BN parameters are updated during
the back-propagation.

The time required for training supernet by our design is
8% (10% × 80% = 8%) of the time required by SPOS.
The reduction in training time comes from two aspects, the
fewer epochs (10%) and training BN only (further 80%).

1. Fewer epochs. The original SPOS method needs to
train supernet for 100 epochs while our method needs only
10 epochs (equal to 10% of original training time).

2. Training BN only. When we train the supernet, we fix
the parameters of all convolutional and fully-connected lay-
ers. Only the scaling and bias parameters of BN layers are
trained through forward-backward propagation. Although
the gradients of freezing parameters are calculated during
backward propagation, these calculated gradients will not
be stored or used for updating. Thus, it will be faster than
training all parameters. Through only training the BN lay-
ers of the supernet, the time for training supernet can be

（a） （b）

30

10

Figure 4. Early-bird Characteristic when training the supernet for
all parameters (a) and training only BN parameters (b). For bet-
ter visualization, we normalize the similarity comparison between
0 and 1. The i, j-th element in the figure means similarity be-
tween i-th and j-th epoch. Deeper color means higher similarity.
We treat the inverted normalized L2-distance as the similarity of
two masks from two epochs. Higher value (close to 1) indicates
a higher similarity and is highlighted with a darker color. Com-
paring with training all parameters, training on BN will achieve a
faster convergence of BN parameters.

saved by about 20% (equal to 80%).

3.4.1 Analysis on Early-bird Characteristics of BN-
based Indicator.

If accuracy is used for evaluating network architectures, re-
ducing the number of epochs or training only BN would
have adverse effect at searching stage. Specifically, the rank
from the subnets sampled from the supernet trained in this
way would have low correlation with the retrained subnets,
resulting in the subnet sampled from the under-trained su-
pernet unreliable for evaluating the real performance. This
adverse effect is observed by the experimental results in
Section 4.5. On the other hand, the BN-based Indicator has
the early-bird characteristics, which helps us to overcome
the potential adverse effect.

Early-bird Characteristics when training all param-
eters. Inspired by the inspection of BN parameters for each
channel in [33], we investigate the early-bird characteris-
tics of our BN-based indicator. In this setting, all param-
eters are used. Given the trained supernet, we can evalu-
ate sampled subnets through our proposed BN-based indi-
cator. For every epoch during the supernet training, we de-
fine a local ranking vector among N candidate operations in
the same layer l according to the candidate operation score
So1,l , So2,l , . . . , SoN,l

. We set the ranking of operation with
the highest score as 1 and operation with the lowest score
as rank N . By concatenating the L local rank vectors, we
can map the trained supernet of an epoch to a ranking vector
with size N · L. For two ranking vectors from two differ-
ent training epochs of a supernet, we calculate the L2 dis-
tance of the two ranking vectors. We visualize the distances
among different epochs and find that BN parameters in our
supernet training show a similar characteristic as BN in net-
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Table 1. Comparison of baseline methods and our method on ImageNet.
SPOS SPOS+Ours FairNAS FairNAS+Ours

Top1-ACC (%) 75.73 75.67 74.07 74.12
FLOPs(M) 470 470 325 326
supernet training epochs 100 10 150 15
supernet training parameters All BN All BN
Subnets searching cost 1 GPU day 0.14s on CPU 1 GPU day 0.14s on CPU
Subnets searching data validation set None validation set None

work pruning [33]. Fig. 4(a) shows the pairwise ranking
vector distance matrices (80 × 80) of the supernet training.
We can find from Fig. 4(a) that the similarity between the
rank vector at the 30th epoch and the rank vector at the 80th
epoch is high. And the rank vector tends to be stable after
around the 30th epoch. This means we can get the optimal
architecture information at around the 30th epoch. There-
fore, the BN parameters at early training stages are already
useful for indicating network performance.

Early-bird Characteristics when training BN only.
When we only train BN layers parameters, Fig. 4(b) shows
that the ‘rank vector’ tends to become stable much earlier
(at about the 10th epoch) than that for training all parame-
ters in Fig. 4(a) (becoming stable at about the 30th epoch).
This means we can use BN-parameters at a very early train-
ing stage to find the optimal architecture. We conjecture the
reason for faster convergence is that when freezing other
parameters and training only BN parameters, the BN pa-
rameters try to fit the label with fixed parameters instead
of changing parameters, which makes the BN parameters
converge much more earlier. Thus, we can further shorten
the training stage through training only BN parameters by
one-tenth. For clarity, the whole pipeline of our proposed
BN-NAS is shown in Algorithm 1.

Summary of the Early-bird Characteristics. From
the results in Fig. 4, we find that: 1) BN-indicator helps
the ranking to be stable and facilitates training using fewer
epochs; 2) training BN only drives the early-bird character-
istics to appear at earlier epochs and facilitates us to train
the supernet using much fewer epochs.

4. Experiments
We first evaluate the BN-based indicator on two ba-

sic one-shot NAS methods, including SPOS and FairNAS.
Then, we show the ablation experiments to demonstrate the
effectiveness of only training BN layers during the supernet
training and the early-bird character of the BN indicator.
Finally, we verify the transfer ability of the searched model
on object detection. Our experiments are tested on NVIDIA
GTX 1080Ti GPU with the Pytorch framework.

4.1. Implementation Details

Dataset. We evaluate our method on ImageNet [9],
with 1.28M training samples and 50,000 validation sam-
ples. Since we do not need to evaluate our model on the

validation set, we only utilize the training samples to train
our supernet and the searched subnet.
Search Space. We follow the search space in [13] ,
which is composed of MobileNetV2 blocks with kernel size
{3,5,7}, expansion ratio {3,6}. Since our BN-based in-
dicator acts on the BN layer, we do not involve identity
operations. We follow the searched depth result of SPOS
in [13] and search other operations during network architec-
ture searching. Since the search space is shrunk, the result
of SPOS has been improved. Our experiments are based on
the improved version. For the FairNAS search space in [13],
there are no identity operations.
Hyper-parameters. We train the supernet and searched ar-
chitecture with the same hyper-parameters except the train-
ing epoch in all experiments, including only training BN.
For network parameters training, we adopt mini-batch Nes-
terov SGD optimizer with a momentum of 0.9. We utilize
the learning rate warm-up technique from 0.2 to 0.8 in the
first five epochs and adopt cosine annealing learning rate
decay from 0.8 to 0. We train the network with a batch
size of 1024 and L2 regularization with weight of 1e-4. Be-
sides, the label smoothing is applied with a 0.1 smooth ratio.
For baseline supernet training, we train 100 epochs and 150
epochs for SPOS and FairNAS. For our BN supernet train-
ing, we use one-tenth of baseline epochs, i.e., 10 epochs and
15 epochs. For searched architecture retraining, we train
the searched architecture from scratch for 240 epochs. For
subnet searching, we follow the EA setting in [11]. The
population size is 50 and max iterations is 20, sampling
Ns = 1000 subnets under the FLOPs constraint in total.

4.2. Comparison with Baseline Methods

We compare our method with the baseline methods,
SPOS and FairNAS. The comparisons are shown in Table 1.
Our method shortens the NAS process in two stages: super-
net training, subnet searching.

During supernet training, benefited from the early-bird
characteristic of the proposed BN-based indicator, we sig-
nificantly reduce the training epochs of supernet, from 100
to 10 for SPOS and 150 to 15 for FairNAS. Besides, we
only train BN parameters instead of all parameters, which
has an additional 20% speedup for supernet training.

During subnet searching, baseline methods adopt EA al-
gorithm to sample 1000 subnets and evaluate each on the
validation set. The cost of evaluating 1000 subnets is about
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Table 2. ImageNet classification results of our method and SOTA. Searching on a small dataset (i.e. CIFAR [16]) will significantly reduce
the search cost. Transferring these methods directly to ImageNet may cause a massive increase in search cost. Some methods even cannot
be applied to search on ImageNet due to computational cost.

Top1-ACC params FLOPs Search Cost Search Search
(%) (M) (M) (GPU days) method dataset

ResNet50 [12] 75.3 25.6 4100 - manual -
MobileNetV2(1.4x) [26] 74.7 6.9 585 - manual -
ShuffleNetV2(2x) [23] 74.9 7.4 591 - manual -
EfficientNet-B0(+SE) [27] 76.3 5.3 390 - grid search ImageNet
NASNet-A [36] 74.0 5.3 564 2000 RL CIFAR
AmoebaNet-A [25] 74.5 5.1 555 3150 evolution CIFAR
SNAS(mild) [31] 72.7 4.3 522 1.5 gradient CIFAR
DARTS [20] 73.3 4.7 574 4 gradient CIFAR
PDARTS [5] 75.6 4.9 557 0.3 gradient CIFAR
CARS-G [32] 74.2 4.7 537 0.4 evolution CIFAR
ProxylessNAS(GPU) [2] 75.1 7.1 465 8.3 gradient ImageNet
FBNet-C [30] 74.9 5.5 375 9 gradient ImageNet
FairNAS [7] 74.07 4.2 325 16 evolution ImageNet
SPOS [11] 75.73 5.9 470 11 evolution ImageNet
FairNAS(Ours) 74.12 3.7 326 1.2 evolution ImageNet
SPOS(Ours) 75.67 5.4 470 0.8 evolution ImageNet
SPOS(Ours)+SE 76.78 7.6 473 0.8 evolution ImageNet

1 GPU day. Our method also samples 1000 subnets but uti-
lize the BN-indicator for subnet evaluation, greatly reducing
the evaluation cost from 1 GPU day to 0.14s on CPU.

Overall, our method accelerates the one-shot NAS
method about ten times compared with baseline methods
while the performance is still comparable.

4.3. Comparison with State-of-The-Art Methods

We compare our method with state-of-the-art (SOTA)
methods as the Table 2 shows. Compared with the man-
ual designed networks, our searched model based on SPOS
achieves higher performance with fewer FLOPs. Compar-
ing with SOTA NAS methods, regardless of the gradient-
based method (Proxyless) or evolution-based (CARS-G)
method, our searched model also performs better with the
fewer or similar FLOPs.

For the search cost, our method needs comparable search
costs with methods searching on CIFAR and transferring
the architecture to ImageNet. For the methods directly
searching the architecture on ImageNet, our method re-
quires less than one-tenth of the search cost. Compared with
EfficientNet-B0, the grid search in EfficientNet-B0 needs to
train plenty of models fully on ImageNet, which has much
more search cost than many evolution methods.

4.4. Detection

We further validate the transfer ability of our BN-NAS
on object detection. We utilize our BN-NAS(SPOS) pre-
trained on ImageNet as the feature extractor and follow the
training setting in EfficientDet [28] and use the same detec-
tion head as [28]. With similar FLOPs as [28], our searched
model achieves comparable performance. Comparing with

other manual designed light networks, our searched model
achieves better performance with much fewer FLOPs. The
model searched with our method has a good transfer ability.

Table 3. Performance of our searched model and some SOTA light
models on COCO dataset. Our methods achieve comparable per-
formance with EfficientDet-D0 with much less search cost.

backbone FLOPs (B) mAP
ShuffleNetv2 14 27.6
MobileNetV2 8 31.7
ResNet18 21 32.2
EfficientDet-D0 2.5 33.46
Ours 2.7 33.32

4.5. Ablation Experiments

In this section, we design experiments to show the ef-
fectiveness of BN-indicator (in Section 4.5.1) and show the
similar correlation relationship between the BN-indicator
score and retrain accuracy compared with SPOS [11] (in
Section 4.5.2). More experiments about different initializa-
tion methods are in supplementary materials.

4.5.1 Indicators

Our BN-indicator is used for evaluating subnet during the
searching process. Most existing NAS methods utilize
the model accuracy on validation dataset to evaluate sub-
net, which is denoted as Acc-indicator here. Besides, we
also randomly sampled five subnets from the supernet and
choose the subnet with the highest accuracy as the random
basline, as shown in red dotted line in Fig. 5.

Training all parameters for 100 epochs. We train the
supernet for 100 epochs and search the subnet based on
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Figure 5. The accuracy of searched architectures with different
training settings on ImageNet. ‘All/BN/k’ means training all pa-
rameters of the supernet for k epochs and using BN-indicator to
find optimal subnets. In ‘All/Acc/k’, Acc-indicator is used instead
of BN-indicator. In ‘BN/BN/k’, only BN parameters of the super-
net is trained. Red dotted line shows accuracy of random baseline.

BN-indicator (‘All/BN/100’ in Fig. 5) and Acc-indicator
(‘All/Acc/100’ in Fig. 5). The searched subnets with these
two indicators perform similarly, showing that BN-indicator
is on par with accuracy as the Acc-indicator when all pa-
rameters are trained for enough training epochs. However,
both training the SurperNet for 100 epochs and evaluating
model accuracy leads to much computation cost.

Training all parameters for 30 epochs. We reduce the
training epochs of supernet from 100 to 30 and test the per-
formance of two indicator under this setting, as shown in
Fig. 5. With less training epochs, the performance of sub-
nets from BN-indicator (‘All/BN/30’ in Fig. 5) perform bet-
ter than those from Acc-indicator (‘All/Acc/30’ in Fig. 5).
It shows that longer training epoch of supernet is essential
for Acc-indicator but not important for BN-indicator. The
searched model using Acc-indicator (‘All/Acc/30’ in Fig. 5)
performs only better than random baseline (red dotted line
in Fig. 5) by a small margin of 0.1%. The performance
drop on the low correlation is caused by the incomplete
training. The accuracy of subnets from supernet which only
trained for 30 epochs cannot represent the retraining accu-
racy precisely, causing the searched model performs near
random baseline. On the other hand, the BN parameters
of the supernet shows Early-bird characteristics. As shown
in Fig. 4(a), it shows stronger correlation between the su-
pernets trained for 30 epochs and 80 epochs, considering
only their BN values. The Early-bard characteristics ex-
plains well why the proposed BN-indicator still keeps good
performance for 30 epochs.

Training all parameters for 10 epochs. When further re-
ducing the training epochs from 30 to 10, our BN-indicator
cannot keep good performance, as shown in Fig. 5. The
reason is that the BN parameters are not trained well at
10 epoch during the supernet training if all parameters are
trained, as show in Fig. 4 (a). Training all parameters leads
to inconsistent convolution parameters at different train-
ing epochs, hindering the BN parameters from converging

BN-NAS SPOS

Retrain Acc

BN Score Subnet Acc

Kendall Tau τ

τ = 0.551 τ = 0.548

Figure 6. Model correlations for Ours and SPOS.

faster. Inspired by this insight, we try to reduce the required
training epoch of supernet by only training the BN param-
eters. As shown in Fig. 4 (b), the Early-bird characteristic
appears even earlier at about 10 epoch when we only train
BN parameters in the supernet. By training BN-only, our
BN-NAS returns to its excellent performance during subnet
searching, as shown by ‘BN/BN/10’ in Fig. 5.

4.5.2 Correlation with retrain accuracy
For one-shot NAS methods, a well-known problem is the
low performance consistency of different subnets. Indicator
plays an important role to keep high performance consis-
tency in one-shot NAS. To evaluate the effectiveness of our
proposed BN-indicator, we conduct the correlation exper-
iments on CIFAR10 dataset. We follow the search space
in [13] and train the supernet for 600 epochs. Then we
randomly sample 100 architectures and retrain them from
scratch. We utilize Kendall Tau τ metric to show the cor-
relation between the BN-score obtained by Eqn.(4) and the
retrain accuracy of sampled models. We also show the cor-
relation between validation accuracy and retrain accuracy of
models which are sampled based on Acc-indicator (SPOS).
As shown in Fig. 6, our method achieves similar Kendall
Tau τ as SPOS, which means the proposed BN-indicator
has a good indication ability as the Acc-indicator used in
SPOS. Our experiments in achieving similar accuracy of the
searched model also support this conclusion.

5. Conclusions
NAS has greatly boosted the SOTA methods with deep

networks in computer vision. However, existing NAS meth-
ods are time-consuming. We propose a novel BN-based in-
dicator to efficiently evaluate the performance of subnets se-
lected from the supernet, drastically accelerating the search-
ing process for NAS. Thanks to the Early-bird character, we
can train the supernet by only training the BN layers, further
reducing supernet training time. Our extensive experiments
validate that the proposed BN-NAS can decrease the whole
time consumption for one-shot NAS.
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