This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Not All Operations Contribute Equally: Hierarchical Operation-adaptive
Predictor for Neural Architecture Search

Ziye Chen'? Yibing Zhan?

Baosheng Yu®

Mingming Gong* * Bo Du! *

'National Engineering Research Center for Multimedia Software, Institute of Artificial Intelligence,
Hubei Key Laboratory of Multimedia and Network Communication Engineering,
School of Computer Science, Wuhan University, Wuhan, China

2JD Explore Academy, China

3The University of Sydney, Australia

4School of Mathematics and Statistics, University of Melbourne, Australia

ziyechen@whu.edu.cn,

Abstract

Graph-based predictors have recently shown promising
results on neural architecture search (NAS). Despite their
efficiency, current graph-based predictors treat all opera-
tions equally, resulting in biased topological knowledge of
cell architectures. Intuitively, not all operations are equally
significant during forwarding propagation when aggregat-
ing information from these operations to another opera-
tion. To address the above issue, we propose a Hierar-
chical Operation-adaptive Predictor (HOP) for NAS. HOP
contains an operation-adaptive attention module (OAM) to
capture the diverse knowledge between operations by learn-
ing the relative significance of operations in cell architec-
tures during aggregation over iterations. In addition, a cell-
hierarchical gated module (CGM) further refines and en-
riches the obtained topological knowledge of cell architec-
tures, by integrating cell information from each iteration of
OAM. The experimental results compared with state-of-the-
art predictors demonstrate the capability of our proposed
HOP.

1. Introduction

Recently, neural architecture search (NAS) has aroused
significant interest due to its capability to automate the

*Corresponding Author. This work was supported in part by the
National Natural Science Foundation of China under Grants 61822113,
the Science and Technology Major Project of Hubei Province (Next-
Generation Al Technologies) under Grant 2019AEA170, and supported
by project 62002090. GM was supported by Australian Research Council
Project DE210101624. Dr Baosheng Yu is supported by ARC project FL-
170100117. This work was done by Ziye Chen when he was an intern in
JD Explore Academy, China.

zhanyibing@jd.com,
mingming.gong@unimelb.edu.au,

baosheng.yul@sydney.edu.au,
dubo@whu.edu.cn

architecture engineering process [43l [17]. NAS has ob-
tained competitive results compared with hand-crafted ar-
chitectures in various tasks, such as image classification
[18} 28], object detection [31, 25], and semantic segmenta-
tion [[10} 38]]. Current NAS algorithms can be roughly clas-
sified into four categories: reinforcement learning-based
methods, evolution-based methods, gradient-based meth-
ods, and predictor-based methods.

Reinforcement learning-based methods [48] 2] construct
an architecture by deriving discrete components with val-
idation accuracy as a reward. Evolution-based methods
[12} [14] utilize mutations and combinations of components
to generate architectures. Gradient-based methods [[13} 34]
construct a continuous search space where the architectures
share parameters in a super-network. However, the above
three types of methods are either time-consuming or space-
consuming. In contrast, predictor-based methods aim to
train a predictor that directly predicts the performance of
given network architectures concerning network architec-
tures’ topological knowledge. Due to the flexibility and low
computational cost, predictor-based methods have attracted
increasing attention recently. Current predictor-based meth-
ods mainly have two types: the sequence-based predictor
[L6,130] and the graph-based predictor [6,24]. We focus on
exploring graph-based predictors for cell search.

The graph-based predictors model cell architectures as
directed acyclic graphs (DAG) [8, 18] and accordingly use
graph neural networks (GNNs) [22] to encode the archi-
tectures’ topological knowledge. However, current graph-
based predictors generally treat all operations equally. They
consequently fail to capture the diverse knowledge in the
details of architectures, i.e., not all operations are equally
significant during forwarding propagation when aggregat-
ing information from these operations to another operation.

10508

To address the above issue, we propose a Hierarchical
Operation-adaptive Predictor (HOP) for NAS. The main
contributions of HOP lie in three fold:

» Within HOP, we design an operation-adaptive attention
module (OAM) for learning the relative significance
of operations when aggregating information flow from
these operations to a given node. OAM naturally mod-
els the information flow processes during the forward-
ing propagation of network architectures. Through it-
erations, the diverse knowledge of each operation is
effectively aggregated in the corresponding node em-
bedding. As far as we know, this is the first work of
NAS to discuss the relative significance of operations.

* HOP proposes a cell-hierarchical gated module
(CGM) for integrating hierarchical knowledge of cell
embeddings from different iterations of OAM. The cell
embeddings are obtained by averaging the node em-
beddings in the corresponding iterations. The inte-
grated knowledge comprehensively captures the topo-
logical knowledge and is used for performance predic-
tion. CGM could effectively refine and enrich the ob-
tained topological knowledge of architectures and thus
improve the performance.

* We conduct extensive experiments on commonly used
benchmarks. The experimental results demonstrate
that HOP achieves the new state-of-the-art. Specifi-
cally, we compare the performance of GATES [18]],
which is a representative GCN-based predictor, and
HOP. GATES is the state-of-the-art graph-based pre-
dictor that does not consider relative significance be-
tween operations. As shown in the experiments, HOP
significantly outperforms GCN, which indicate the ne-
cessity of considering relative significance of opera-
tions. Moreover, the experiments also demonstrate that
HOP has high interpretability of the cell architectures
and probably could inspire new network architecture
designs.

2. Related Work
2.1. Neural Architecture Search

Neural Architecture Search (NAS) automates the design
of state-of-the-art neural networks. The early NAS ap-
proaches were mainly based on reinforcement learning (RL)
[47] and evolutionary learning (EA) [21]. RL-based meth-
ods [48, 2] apply policy networks to guide the selection of
the architecture components sequentially. EA-based meth-
ods [12} 14] evolve a population of initialized architectures
with the corresponding validation accuracy as fitness. How-
ever, both RL-based and EA-based methods consume sub-
stantial computational resources, since a large number of

candidate architectures are required to be trained for eval-
uation. In order to reduce the computational cost, parame-
ter sharing is introduced in [19]], where candidate architec-
tures are sub-graphs of a large computational graph, hence
forcing all architectures to share parameters. But the ar-
chitecture search is still inefficient, since the architectures
are searched over a discrete search space, requiring a large
number of architecture evaluations.

Gradient-based methods [13} 44] relax the search space
to be continuous based on parameter sharing, so that the
architecture can be optimized with respect to its valida-
tion loss by gradient descent. However, parameter sharing
may lead to performance inconsistency between the super-
net and the fully-trained sub-net [24} 34], and the predicted
ranking of candidate architectures may be far from the true
rankings [37, [15]. The results of gradient-based methods
can also be sensitive to initialization [24]], which hinders re-
producibility. Predictor-based methods [8l [9] utilize a per-
formance predictor to sample architectures that are worth
evaluating, which can improve the search and evaluation ef-
ficiency without affecting the effectiveness of NAS. In this
work, we focus on predictor-based NAS.

2.2. Architecture Performance Predictors

The encoding schemes are important for the architec-
ture performance predictors. There are different kinds of
encoding schemes, which mainly include Bayesian-based
ones [9 [1]], sequence-based ones [16, 30] and graph-based
ones [24}|18]]. For Bayesian-based methods, [9] learns a per-
formance predictor from a Bayesian perspective, where the
correlations between architectures and their performances
are modeled by the kernel function and mean function of a
Gaussian Process (GP). For sequence-based methods, [16]
builds a accuracy predictor based on LSTM and fully con-
nected layers which flatten an architecture into a string,
where the topological information of architectures could
only be modeled implicitly.

For graph-based methods, [24] utilizes a GCN-based
predictor as a surrogate model for Bayesian optimization to
select multiple related architectures in each iteration. How-
ever, it models operations as graph nodes, which cannot
be applied to search spaces where operations are on the
graph edges. [18] proposes another GCN-based predictor
which models data information as graph nodes, and treats
operations as the transformations of the data nodes, which
can model the data processing in a neural architecture more
reasonably. However, GCNs are unable to model the rela-
tive significance of different operations and different graph
layers due to the predefined graph structure, which moti-
vates our Hierarchical Operation-adaptive Predictor (HOP)
approach.

10509

2.3. Graph Neural Module

There are many applications involving data represented
in the form of graphs, such as visual relationship detection
[41} 40], scene graph generation [26} |45], and image re-
trieval [32] [42]]. Graph Neural Network (GNN) [22] is in-
troduced as a generalization of recursive neural networks to
directly operate on graphs. Graph Convolutional Network
(GCN) [[7] is a typical structure to learn representations
for nodes, which conducts spatial convolution by aggregat-
ing node features in local neighborhoods on graph [36, 3.
However, the graph convolution in GCN is restricted in the
predefined graph structure, which makes GCN unable to
model the relative importance of different nodes, thus limits
the representational ability of GCN.

Graph Attention Network (GAT) [27] leverages masked
self-attention layers to address the shortcomings of GCNss,
which enables the nodes to attend over their neighborhoods’
features by assigning different weights to different nodes
in a neighborhood during feature aggregation, without re-
quiring any costly matrix operation or any prior knowl-
edge of the graph. GAT has been successfully employed
in many applications. [29] proposed a relational GAT for
aspect-based sentiment analysis, [46] proposed a structured
GAT for vehicle re-identification, [39] proposed a spatio-
temporal dual GAT for query-poi matching. In this work,
inspired by GAT, we design an operation-adaptive attention
module (OAM) to encode neural architectures.

3. Hierarchical Operation-adaptive Predictor

As shown in Figure our proposed hierarchical
operation-adaptive predictor (HOP) consists of two mod-
ules: the operation-adaptive attention module (OAM) and
the cell-hierarchical gated module (CGM). Specifically, for
a cell architecture, HOP first uses OAM to obtain the diverse
knowledge of operations through iterations. Then, CGM is
adopted to integrate cell representations of different itera-
tions for the final topological knowledge and performance
prediction. In the remaining subsections, We first explain
several preliminaries. Then, we introduces the details of
OAM and CGM, sequentially.

3.1. Preliminary

Graphical Representation. Instead of searching for
an entire network architecture, a more feasible strategy is
to search for a repeatable structure [48]], which factorizes
the search space via cells and blocks. For the sake of sim-
plicity, we only conduct cell search in this paper following
[I8]. Specifically, to describe the topological knowledge in
a cell, HOP represents the cell of a given architecture as a
directed acyclic graph (DAG) G = {V, £}. Note that each
node/edge in the DAG corresponds to one specific operation
(e.g., Conv3x3) in the cell. We also treat input and output as

operations. The edge e;_,; represents the information flow
from the node v; to node v;. Therefore, the adjacent matrix
Ais defined as A;;j=a;;. If v; obtains information flow from
v, then a;; is calculated by HOP, otherwise a;; is set as 0.
We use Ne; denote the set of v;, in which a;; # 0.

Search Space. There are two types of commonly used
search cell spaces: operation on nodes (OON) and operation
on edges (OOE) [18]. For the OON search spaces, the oper-
ations are performed on the nodes of the DAG, whereas, for
the OOE search spaces, the operations are performed on the
edges of the DAG. This requires HOP to have the ability to
deal with cell search under both situations.

3.2. Operation-adaptive Attention Module

The key of graph-based predictors for NAS is to un-
derstand and capture the topological knowledge of cells.
However, previous graph-based predictors ignore the di-
verse knowledge or the relative significance of each oper-
ation. They generally exploit GCNs, which are efficient
but cannot model the relative significance of the informa-
tion flow through operations from some nodes to another
node in DAG. Consequently, previous methods still obtain
biased topological knowledge and provide sub-optimal pre-
dictions for the cell architectures’ performance. To address
the above issues, we design an operation-adaptive attention
module (OAM), which exploits attention to explore the di-
verse knowledge of operations in the cell architectures.

Specifically, for a given cell architecture G, OAM first
generates the embedding (or the feature map) &; for each
node v; and the embedding o; for each corresponding op-
eration. If two operations contain the same operation cate-
gories, their operation embeddings are set as the same.

For the Node Embedding of OON. In the search spaces
of OON, the operations are performed on the node, there-
fore, OAM first obtains information from different nodes.

exp(mi;)
Qi = ; (D
! ZkeNei exp(mix)
where
mij = LeakyReLU(Wa [folHWmfj]), (2)

where Ne; is the set of nodes v; that can pass information
to node v;. W is a learnable transformation matrix. || is
the concatenation operation. We use LeakyReLU (with a
negative slope of 0.2) following [27]. We use the attention
process, because it can automatically notice the relative sig-
nificance between operations.

The new embedding of the i-th node in OON search
spaces is obtained by weighted aggregation of the informa-
tion flow from the corresponding operations. The process is
defined as follows:

B =o(Wedi) © Y ayWady, 3)

j€ENe;

10510

Output

,_________________

/ N |

| OAM Layer 1 Max Pool |

|

' |

: X Conv Cell
| @_, Node
|
| Qg3
|
I
|
\

|
|
|
|
|
| = leembdding
|
|
|
|
|
l

|
|
|
|
| A3
Max Pool as, Max Pool X
Node I az 1 6 h I
I x2 1x1 Conv 1 I
Max | N~ |
Pool Conv [U A, [
/ \ it
> | OAM Layer 2 ax Pool I |
|
1x1 | | x I || Cell | il
c""" | 1 onv | § Eembdding2 & mip S ©
: — N°de | B, Concat [Sigmoid < | :
Input I | a31 (l A | Weighted Sum |y Predicted
| | a, Max Pool X, | h| B i Score
| a 6 | 2 B Architecture
Input | 21 | —> N
f | | | . Embedding
Architecture | I\ x, | | = Layer Weights
~—— o 7/
Operation on Node | v iyt } ——————————— N |
I/ ___________________ \\ | | OAM Layer 3 x5 Max Pool : |
I Node Operation | [: sy Ogs | |
I Information Mask ! Xy 3x3 as, ' 'm
! ! | | Conv ! |
| INEEE ¢© HNEEEE | | X 3 |
I ! | 4 I
1 X, 1x1 Conv 1 : [/ I W Cell
Sesssssssspsssssssss I a | M |Eembdding3
T L i h
I |
|
| \ !
]

(a) Operation-adaptive Attention Module

oS

(b) Cell-Hierarchical Gated Module

Figure 1. The framework of the Hierarchical Operation-adaptive Predictor (HOP). The proposed method includes two modules. First, the
operation-adaptive attention module (OAM) to obtain node embeddings by learning the relative significance of operations in the cell. Then,
the cell-hierarchical gated module (CGM) to obtain comprehensive topological knowledge of the cell architecture by weighted integrating

of cell embeddings of OAM.

where 0; is the operation applied to the i-th node, which is
transformed by a learnable weight matrix W, € R *Ce,
and activated by sigmoid function ¢ to generate a soft oper-
ation mask.

For a comprehensive analysis, we obtain hierarchical-
level embeddings of nodes through iterations. Suppose F
represents the embedding of node v; at t-iteration. Then,
the update is #!/=71"".

For the node embedding of OOE. In the search spaces
of OOE, the operations are performed on the edges. Dif-
ferent from the process for search spaces of OON, OAM
first transforms information from different nodes by using
corresponding operations. Therefore, OAM defines the em-
bedding 0;; for the corresponding operation between nodes
v; and v;. The process is defined as:

gij = O'(Wo(ij) O} foj (4)

Then, OAM aggregates information flow from different
operations to the targeted node. We first calculate the rela-
tive significance of operations through an attention network.
The process is defined as:

exp(mi;)
> keNe, EXP(mir)’

®)

A5 =

where
m;; = LeakyReLU (W, [Z;||Z,])- (6)
Then, the embedding of the i-th node in OOE search
spaces is obtained by weighted aggregate of information
flow from different operations as follows:

= 2 o)
JENe;

With the learned attention coefficient a;; in Eq. (E') and
Eq. (), OAM is able to revalue the relative significance
between different operations when aggregating information
flow from these operations to the next nodes. The above
manner is reasonable and practical to model the forwarding
propagation, thus improving the ability of HOP to capture
the topological knowledge of cell architectures.

3.3. Cell-hierarchical Gated Module

Note that OAM only provides node embeddings of
Cells. Despite that each node embedding capture the di-
verse knowledge of operations, there still lacks an efficient
mechanism to incorporate all node embedding for the final
knowledge of the cell. Previous methods generally use the
last iteration of stacked GNNs for the prediction. However,
such a manner ignores hierarchical details of the topolog-
ical knowledge of the graph, concerning each iteration of

10511

stacked GNNs only can capture limited characteristics of
the cell [33}4]. Motivated from the above analysis, we pro-
pose a cell-hierarchical gated module to comprehensively
describe the cell architectures.

Cell embedding. In our proposed CGM, we first obtain
the cell embedding of each iteration of OAM. The cell em-
bedding of each iteration of OAM is treated as a specific
view of topological knowledge of the overall cell architec-
tures. The cell embedding is calculated as:

1 N
. .
he = ﬁ;x (8)

where N is the number of nodes and ¢ indicates the ¢-th
iteration.

Hierarchical gated fusion. To obtain more robust per-
formance, we adopt an gated module to fuse all cell embed-
dings. The process is defined as:

§=MLP() Bih), ©)
t

where .
B = Sigmoid(MLP(||h¢)), (10)

where (; is the t-th element of B, which contains the
weights of different layers. MLP(.) is a multilayer percep-
tron. H/_it indicates the concatenation of all cell embeddings.
With the help of the hierarchical layer attention in Eq. (9),
each feature layer is assigned with a attention weight which
indicates its importance for the prediction of the architec-
ture performance, thus significance of different layers is
well handled, and the topology knowledge of architectures
is comprehensively described, leading to the performance
improvement of the predictor.

3.4. Loss Function

We introduce the optimization process of the proposed
predictor HOP. Since our goal is to obtain the accurate rel-
ative ranking order of architectures rather than the absolute
performance values, we adopt ranking loss instead of re-
gression loss like MSE for better ranking correlation pre-
diction. Specifically, we train the predictors with a hinge
pair-wise ranking loss as follows:

M
1 Z 1 Z
L= M i=1 |T;] JET: Max (0, m — (s; — SJ)) an

where T; = {j : y; > y;}. s; denotes the performance
score of the i-th input architecture. And each architecture
1 is matched with every other architecture j, and 7; is the
collection which only keeps the pairs with y; > y;, where
vy; 1s the ground-truth performance of the -th architecture;
|T;| is the size of the set T;, M is the number of training
architectures in a batch, m is the compare margin which is
set to 0.1 in our experiments.

Algorithm 1: The search process of the predictor-
based NAS with HOP
Input : A: search space (OON or OOE),
P: performance predictor HOP,
T: the number of iterations,
N': the number of architectures randomly
sampled from A,
K: the number of architectures selected
with the predictor.
1 Initialize an iteration counter ¢ = 0, an architecture
set S = (), and the corresponding true performance

setY = 0.
2 whilet < T do
3 Randomly sample IV architectures from the
search space A.
4 Select a subset of architectures

S® = {a, ..., a'D} from the N architectures
with P from S without repeat.
5 Evaluate each architecture in S(*) by training to
obtain the corresponding ground-truth
performance set), = {y(()t), s y%)}.
6 Merge S® into S and merge Y*) into), where
S=8SUSWandy =Yyuy®.
7 Optimize P with the training architecture set S
and the ground-truth performance set).
8 t=t+1
9 end

Output: Output the architecture a* € S with the
best corresponding true performance
y ey

3.5. Neural Architecture Search with HOP

The predictor-based NAS search process with our pro-
posed HOP is summarized in Alg. Specifically, the
predictor-based neural architecture search process includes
three steps: 1) the architecture sampling with the predictor,
2) the evaluation of the sampled architectures with training,
and 3) the training of the performance predictor.

For the step of architecture sampling, we randomly sam-
ple N architectures from the search space A, then choose
the best K among them according to the predictor’s per-
formance evaluation results. For the architecture evaluation
step, we evaluate each sampled architecture by training to
get its ground-truth performance, which is a computational
expensive process. Finally, we train the predictor with the
sampled architectures and their corresponding ground-truth
performance. These three steps are repeated until an accu-
rate predictor is obtained.

Compared with the architecture evaluation with training,
the architecture evaluation with the predictor is more effi-
cient, which only needs a forward pass. Suppose the pre-

10512

Predictor Proportions of 381262 training samples
0.05% 0.1% 0.5% 1% 5% 10% 50% 100%
MLP [30] 0.3971 0.5272 0.6463 0.7312 0.8592 0.8718 0.8893 0.8955
LSTM [30] 0.5509 0.5993 0.7112 0.7747 0.8440 0.8576 0.8859 0.8931
BOGCN [24] 0.5343 0.5790 0.7915 0.8277 0.8641 0.8747 0.8918 0.8950
GATES [18] 0.7634 0.7789 0.8434 0.8594 0.8841 0.8922 0.9001 0.9030
HOP (w.0. CGM) | 0.7773 0.8041 0.8512 0.8706 0.8922 0.8959 0.9035 0.9063
HOP (CGM) 0.7819 0.8134 0.8573 0.8792 0.8977 0.8994 0.9057 0.9086

Table 1. Kendall’s Tau of different predictors on NAS-Bench-101 dataset, where 90% (381262) architectures in the dataset are used for
training, and the reaming 42363 architectures are used for testing. The proportion of the training samples varies from 0.05% (190) to
100%. The performance on a small number of training samples shows the generalization ability of the predictor.

dictor is accurate and has a good generalization ability, in
which case, it can predict the performance well on the un-
seen architectures with only a small number of trained ar-
chitectures, thus the searching efficiency of NAS will be
greatly improved.

0.05% (190) 0.01% (381)

Predictor NG5 NQi0 [NG5 NGQI0
MLP [30] — — 57 38

LSTM [30] — s oams

BOGCN [24] | 2477 1404 | 2025 1362
GATES 18] | 83 83 | 22 22
FOP (wo. CGM) | 35 35 | 3 3
HOP(CGM) | 21 21 | 2 1

Table 2. N@5 and N@10 of different predictors on NAS-Bench-
101 dataset, where all predictors are trained on 0.05% (190) and
0.1% (381) architectures.

4. Experiments

We evaluate the performance of the proposed Hierarchi-
cal Operation-adaptive Predictor (HOP) for Neural Archi-
tecture Search (NAS) via extensive experiments on both the
OON and OOE search spaces. First, we introduce the repre-
sentative datasets and evaluation metrics on the two search
spaces. Next, we validate the accuracy and the generaliza-
tion ability of HOP on these datasets. Finally, we demon-
strate the improvement of the searching efficiency of NAS
with HOP on the ENAS search space.

4.1. Datasets and Evaluation Metrics

NAS-Bench-101 [35] is a typical dataset on OON search
space for improving the reproducibility. It contains 423,624
unique neural network architectures generated from a fixed
graph-based search space which includes 7 nodes and 3 pos-
sible operations: conv 3 X 3, conv 1 x 1, and max pooling
3 x 3. It provides the trained and evaluated performance
of these architectures on CIFAR-10 dataset. NAS-Bench-
201 [5]] is another NAS benchmark dataset on OOE search

space, which includes 15,625 architectures in total and pro-
vides the performance of each architecture on CIFAR-10,
CIFAR-100, and ImageNet-16-120 datasets. It consists of 4
nodes and 5 possible operations: zeroize, skip connection,
conv 1 x 1, conv 3 x 3, average pooling 3 x 3. We use the
performance on CIFAR-10 in our experiments.

We use two metrics for evaluation of the performance
of the predictor. The first is Kendall’s Tau [23]] which is
used to describe the correlation between the predicted and
the ground-truth relative ranking order of architectures. The
Kendall’s Tau of two identical rankings is 1, of two unre-
lated rankings is 0. The other metric is NQK which rep-
resents the best true ranking among the top-K architectures
chosen with the predicted scores.

4.2. HOP Evaluation on OON Search Space

Implementation Details We evaluate HOP for OON
search space with NAS-Bench-101. Following [[18], the first
90% (381,262) architectures are used as the training data,
and the remaining 10% (42362) architectures are used as
the testing data. We use different proportions of the training
data, from 0.05% (i.e., 190 architectures) to 100%, to eval-
uate the generalization ability of the predictor. The number
of graph layers L in HOP is set to 5. The margin of the
hinge pairwise loss in Eq. is setto 0.1.

Optimization is done by Adam with learning rate set to
0.001. The model is trained for 200 epochs with batch
size set to 512. We compare the proposed HOP with the
sequence-based predictors (MLP, LSTM) [30], GCN-based
predictors (operation as node, feature as node) [24,18]]. The
mentioned training settings are the same for all predictors
for fair comparison.

Results As shown in Table[T]and Table 2] HOP achieves
the highest Kendall’s Tau and the best N@Q5 and NQ10
on the testing set of NAS-Bench-101 consistently with dif-
ferent training proportions compared with various baseline
predictors. And the proposed OAM and CGM modules all
bring performance improvement. The superiority of HOP
over other predictors is significantly obvious when there are
only a few training samples.

10513

Proportions of 7813 training samples

Predictor % 5% 10% 50% 100%
MLP [30] 0.0974 03959 05388 08229 0.8703
LSTM [30] | 05550 0.6407 0.7268 0.8791 0.9002

GATES [13] 0.7401 0.8628 0.8802 0.9192 0.9259
HOP (w.0. CGM) | 0.7562 0.8693 0.8933 0.9240 0.9297
HOP (CGM) 0.7613 0.8757 0.8972 0.9291 0.9348
Table 3. Kendall’s Tau of different predictors on NAS-Bench-201
dataset, where the first 50% (7,813) architectures are used for
training, and the reaming are used for testing. The proportion of
training samples varies from 1% (78) to 100%.

. 1% (78) 10% (781)
Predictor NG5 NQI0 | NG5 NQI0
MLP [30] — [1538 224

LSTM [30] — | 250 234

GATES [18] 19 19 1 1
HOP (w.0. CGM) | 2 I I I

HOP (CGM) 1 1 1 1

Table 4. N@5 and N@10 of different predictors on NAS-Bench-
201 dataset, where the proportions of training samples are 1% (78)
and 10% (781).

In specific, compared with the GCN-based predic-
tor GATES, HOP shows an improvement of 1.85% for
Kendall’s Tau, 62 places for N@5, and 62 places for N@Q10
when only 0.05% (190) architectures are used for training;
3.45% for Kendall’s Tau, 20 places for N@Q5, and 21 places
for N@10 when 0.1% (381) architectures are used for train-
ing. This indicates that HOP has a good generalization abil-
ity which enables it to predict well on unseen architectures
even trained on a small number of architectures. This im-
proves the NAS efficiency, since only a few architectures
are needed to be trained to get an accurate predictor.

4.3. HOP Evaluation on OOE Search Space

Implementation Details We evaluate HOP for OOE
search space with NAS-Bench-201. Following [[18]], we use
the first 50% (7,813) architectures as the training data, and
the other 50% architectures as the testing data. The pro-
portion of the training samples varies from 1% (i.e., 78 ar-
chitectures) to 100%. Except for the encoding scheme of
the predictor, other model and training settings are the same
as the experiments on OON search space. The GCN-based
predictors which treats operations as graph nodes are not in-
cluded in the experiments of this section, since they could
not be directly applied to OOE search spaces.

Results As shown in Table[3]and Table [, HOP achieves
the best results on Kendall’s Tau, N@Q5 and NQ10 respec-
tively with different training proportions compared with the
baselines. The performance improvement of HOP is more
significant especially when there are only a few training ar-
chitectures. For example, with only 78 training architec-
tures, HOP improves Kendall’s Tau by 2.12%, N@5 by 18

Number of Layers Kendall’s Tau
NAS-Bench-101 | NAS-Bench-201
6 0.7852 0.7659
5 0.7819 0.7613
4 0.7746 0.7423
3 0.7291 0.6337
2 0.6440 0.5764

Table 5. The Kendall’s Tau of HOP predictor on NAS-Bench-101
and NAS-Bench-201 datasets with different number of graph lay-
ers, where the proportion of training architectures on NAS-Bench-
101 is 0.05% (190), and the proportion of training samples on
NAS-Bench-201 is 1% (78).

. Kendall’s Tau
Fusion Method e g o101 | NAS-Bench-201
No Fusion 0.7773 0.7562
Mean 0.7704 0.7523
CGM 0.7819 0.7613

Table 6. The Kendall’s Tau of HOP predictor on NAS-Bench-101
and NAS-Bench-201 datasets with different layer fusion method,
where the proportion of training architectures on NAS-Bench-101
is 0.05% (190), and the proportion of training samples on NAS-
Bench-201 is 1% (78).

places, N@10 by 18 places compared with the GCN-based
predictor GATES.

4.4. Ablation Studies

Number of OAM Layers We study the influence of the
number of OAM layers on the performance of the predictor.
As can be seen in Table[5] the performance is improved with
the increase of OAM layers. This suggests that OAM can
effectively aggregate the diverse knowledge of each opera-
tion by learning the relative significance of operations. Al-
though adding more OAM layers can bring consistent per-
formance improvement, we set the number of OAM layers
to 5 considering the searching efficiency of NAS.

Layer Fusion Method We study the influence of the
graph layer fusion method on the performance of the predic-
tor. We try three different kinds of fusion methods, namely,
No Fusion method, which only utilizes the cell embed-
ding from the last OAM layer for prediction, Mean method
which averages the cell embeddings from all OAM layers,
CGM method which applies an gated manner to integrate
the cell embeddings from all OAM layers. As shown in Ta-
ble @ CGM achieves the best performance, which demon-
strates that CGM could effectively refine and enrich the the
obtained topological knowledge of architectures. However,
directly averaging all OAM layers doesn’t improve the per-
formance or even deteriorate it. This is because the impor-
tance of different OAM layers is different for the prediction,
averaging all OAM layers will degrade the significance of
the OAM layers with valuable information.

10514

Ground-truth Score: X
Output HOP Predicted S X
GCN Predicted S 2 0.

1.0000
Node

0.7079 1.0000
1.0000

3x3 Conv 1x1 Conv
1.0000

Input

0.4134

0.3743

Ground-truth Score: 0.9036
HOP Predicted Score: 0.9148
GCN Predicted Score: 0.7590

Output

1.0000
6

0.7397 1.0000
1.0000

3x3 Conv 1x1 Conv
1.0000

Input

Ground-truth Score: 0.8934
HOP Predicted Score: 0.8894
GCN Predicted Score: 0.9084

3x3
Conv 1x1Conv

0.6060

0.3940 1.0000

3x3 Conv
1.0000

1x1 Conv
1.0000

Input

Ground-truth Score: 0.4951
HOP Predicted Score: 0.5458
GCN Predicted Score: 0.8073

3x3
0.4279 Conv 1x1Conv

0.5721 1.0000
3x3 Conv

1.0000

Max Pool
1.0000

Input

Figure 2. The visualization of attention coefficients between different individual operations of the architectures predicted by HOP.

4.5. Visualization of Operation Attention in OAM

In order to demonstrate the relative significance of op-
erations, we select two pairs of architectures predicted by
HOP to display. As shown in Figure[2] the architectures in
each pair have the same structure, except for one operation.
For the architectures in the left pair, their true performances
are very close. The results predicted by HOP are consis-
tent with the ground-truth. However, the results predicted
by the GCN-based predictor are quite different. This is be-
cause the changed operation is not significant in the given
architecture. Thus the corresponding attention coefficients
are small, which keeps HOP from the influence of the oper-
ation. The situation on the right pair is the opposite, where
the changed operation is important. The prediction of HOP
is still accurate due to the transferred attention, while the
GCN-based predictor fails due to the fixed graph structure.

4.6. NAS with HOP on ENAS Search Space

Implementation Details We conduct neural architecture
search with HOP predictor on ENAS search space which is
an OOE search space that is much larger than NAS-Bench-
201. According to Alg. [I], we first randomly sample 600
architectures and train them for 80 epochs. Then we use the
obtained ground-truth performance of these architectures to
train HOP predictor. Next, we use the trained HOP predic-
tor to sample 200 architectures with the highest predicted
scores from 10k randomly sampled architectures. Then we
train these 200 architectures for 80 epochs and pick the one
with the best validation accuracy as the selected architec-
ture. Finally, we apply channel and layer augmentation to
the selected architecture and train it for 600 epochs from
scratch.

Results As shown in Table [7, HOP achieves a top-1 er-
ror of 2.52% on the testing set of CIFAR-10, which out-
performs the one-shot NAS algorithms which applies pa-
rameter sharing or continuous relaxation for super-net train-
ing. Compared with other sampled-based methods, HOP
requires much fewer architectures to be fully trained to dis-
cover an architecture with comparable performance. This

Method Top-1 Err (%) Params (M) Archs Eva.
NAONet-WS 3.53 2.5 -
ENAST 2.89 4.6 -
DARTS' 2.76 33 -
AmoebaNet-BF [20] 2.55 2.8 27000
NASNet-A' 2.65 33 20000
PNAS 341 32 1160
NAONet 2.98 28.6 1000
GATES' 2.58 4.1 800
HOPT 2.52 39 600

Table 7. Performance of architectures searched with different NAS
algorithms on CIFAR-10. { means applying cutout as data aug-
mentation. Since one-shot NAS methods (2nd row) do not explore
architectures one by one, the number of architectures evaluated is
not reported.

demonstrates that the HOP predictor is accurate and has a
good generalization ability which improves the searching
efficiency of NAS.

5. Conclusion

In this paper, we propose a Hierarchical Operation-
adaptive Predictor (HOP) to improve the searching effi-
ciency of Predictor-based NAS by considering the rela-
tive significance between operations in a neural architec-
ture. HOP contains an operation-adaptive attention Module
(OAM) to capture the diverse knowledge between opera-
tions, and a cell-hierarchical gated module (CGM) to fur-
ther refine and enrich the obtained topological knowledge
of cell architectures. Extensive experiments on different
search spaces demonstrate the effectiveness and efficiency
of the proposed HOP.

10515

References

(1]

(2]

(3]

(4]

(53]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

Andrés Camero, Hao Wang, Enrique Alba, and Thomas
Biéck. Bayesian neural architecture search using a training-
free performance metric. arXiv preprint arXiv:2001.10726,
2020.

Xin Chen, Yawen Duan, Zewei Chen, Hang Xu, Zihao
Chen, Xiaodan Liang, Tong Zhang, and Zhenguo Li. Catch:
Context-based meta reinforcement learning for transferrable
architecture search. In European Conference on Computer
Vision, pages 185-202. Springer, 2020.

Xiaolin Chen, Xuemeng Song, Guozhen Peng, Shanshan
Feng, and Liqgiang Nie. Adversarial-enhanced hybrid graph
network for user identity linkage. In The International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 1084-1093. ACM, 2021.

Xiaolin Chen, Xuemeng Song, Ruiyang Ren, Lei Zhu, Zhiy-
ong Cheng, and Ligiang Nie. Fine-grained privacy detection
with graph-regularized hierarchical attentive representation
learning. ACM Transactions on Information Systems (TOIS),
38:1-26, 2020.

Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan
Gabrys. Nats-bench: Benchmarking nas algorithms for ar-
chitecture topology and size. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen,
Peilin Zhao, and Junzhou Huang. Nat: Neural architec-
ture transformer for accurate and compact architectures. In
Advances in Neural Information Processing Systems, vol-
ume 32, pages 735-747, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Wei Li, Shaogang Gong, and Xiatian Zhu. Neural graph em-
bedding for neural architecture search. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
pages 4707-4714, 2020.

Zhihang Li, Teng Xi, Jiankang Deng, Gang Zhang,
Shengzhao Wen, and Ran He. Gp-nas: Gaussian pro-
cess based neural architecture search. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11933-11942, 2020.

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-
deeplab: Hierarchical neural architecture search for semantic
image segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
82-92, 2019.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In Proceedings of the European conference on com-
puter vision (ECCV), pages 19-34, 2018.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha
Fernando, and Koray Kavukcuoglu. Hierarchical representa-
tions for efficient architecture search. In International Con-
ference on Learning Representations, 2018.

[13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

10516

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2018.

Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang
Banzhaf, and Vishnu Naresh Boddeti. Nsganetv2: Evolu-
tionary multi-objective surrogate-assisted neural architecture
search. In European Conference on Computer Vision, pages
35-51. Springer, 2020.

Rengian Luo, Tao Qin, and Enhong Chen. Understand-
ing and improving one-shot neural architecture optimization.
arXiv preprint arXiv:1909.10815, 44, 2019.

Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan
Liu. Neural architecture optimization. In Advances in Neural
Information Processing Systems, volume 31, 2018.

Benteng Ma, Jing Zhang, Yong Xia, and Dacheng Tao. Auto
learning attention. Advances in Neural Information Process-
ing Systems, 33, 2020.

Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and
Huazhong Yang. A generic graph-based neural architec-
ture encoding scheme for predictor-based nas. arXiv preprint
arXiv:2004.01899, 2020.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In International Conference on Machine Learning,
pages 4095-4104. PMLR, 2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780-4789, 2019.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Ku-
rakin. Large-scale evolution of image classifiers. In Interna-
tional Conference on Machine Learning, pages 2902-2911.
PMLR, 2017.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-
genbuchner, and Gabriele Monfardini. The graph neural
network model. [EEE transactions on neural networks,
20(1):61-80, 2008.

Pranab Kumar Sen. Estimates of the regression coefficient
based on kendall’s tau. Journal of the American statistical
association, 63(324):1379-1389, 1968.

Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and
Tong Zhang. Bridging the gap between sample-based and
one-shot neural architecture search with bonas. In Advances
in Neural Information Processing Systems, volume 33, pages
1808-1819, 2020.

Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet:
Scalable and efficient object detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10781-10790, 2020.

Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and
Hanwang Zhang. Unbiased scene graph generation from bi-
ased training. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3716—
3725, 2020.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-
tention networks. arXiv preprint arXiv:1710.10903, 2017.

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-
dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,
Kan Chen, et al. Fbnetv2: Differentiable neural architecture
search for spatial and channel dimensions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12965-12974, 2020.

Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan, and
Rui Wang. Relational graph attention network for aspect-
based sentiment analysis. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pages 3229-3238, 2020.

Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and
Rodrigo Fonseca. Alphax: exploring neural architectures
with deep neural networks and monte carlo tree search. arXiv
preprint arXiv:1903.11059, 2019.

Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian,
Chunhua Shen, and Yanning Zhang. Nas-fcos: Fast neural
architecture search for object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11943-11951, 2020.

Haokun Wen, Xuemeng Song, Xin Yang, Yibing Zhan, and
Ligiang Nie. Comprehensive linguistic-visual composition
network for image retrieval. In Proceedings of the 44th In-
ternational ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 1369-1378, 2021.
Jianyu Yang, Wu Liu, Junsong Yuan, and Tao Mei. Hier-
archical soft quantization for skeleton-based human action
recognition. IEEE Transactions on Multimedia, 23:883-898,
2020.

Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian,
and Zhouchen Lin. Ista-nas: Efficient and consistent neu-
ral architecture search by sparse coding. arXiv preprint
arXiv:2010.06176, 2020.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,
Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In International
Conference on Machine Learning, pages 7105-7114. PMLR,
2019.

Jun Yu, Hao Zhou, Yibing Zhan, and Dacheng Tao. Deep
graph-neighbor coherence preserving network for unsuper-
vised cross-modal hashing. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages 4626—
4634, 2021.

Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat,
and Mathieu Salzmann. Evaluating the search phase of
neural architecture search. In International Conference on
Learning Representations, 2019.

Qihang Yu, Dong Yang, Holger Roth, Yutong Bai, Yixiao
Zhang, Alan L Yuille, and Daguang Xu. C2fnas: Coarse-
to-fine neural architecture search for 3d medical image seg-
mentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4126—
4135, 2020.

Zixuan Yuan, Hao Liu, Yanchi Liu, Denghui Zhang, Fei Yi,
Nengjun Zhu, and Hui Xiong. Spatio-temporal dual graph
attention network for query-poi matching. In Proceedings of
the 43rd International ACM SIGIR Conference on Research

(40]

(41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

10517

and Development in Information Retrieval, pages 629—-638,
2020.

Yibing Zhan, Jun Yu, Ting Yu, and Dacheng Tao. On explor-
ing undetermined relationships for visual relationship detec-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 5128-5137,
2019.

Yibing Zhan, Jun Yu, Ting Yu, and Dacheng Tao. Multi-task
compositional network for visual relationship detection. In-
ternational Journal of Computer Vision, 128(8):2146-2165,
2020.

Yibing Zhan, Jun Yu, Zhou Yu, Rong Zhang, Dacheng Tao,
and Qi Tian. Comprehensive distance-preserving autoen-
coders for cross-modal retrieval. In Proceedings of the 26th
ACM international conference on Multimedia, pages 1137-
1145, 2018.

Jing Zhang and Dacheng Tao. Empowering things with in-
telligence: a survey of the progress, challenges, and oppor-
tunities in artificial intelligence of things. IEEE Internet of
Things Journal, 8(10):7789-7817, 2020.

Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and
Steven Su. Overcoming multi-model forgetting in one-
shot nas with diversity maximization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7809-7818, 2020.

Na Zheng, Xuemeng Song, Qingying Niu, Xue Dong, Yib-
ing Zhan, and Ligiang Nie. Collocation and try-on network:
Whether an outfit is compatible. In Proceedings of the ACM
International Conference on Multimedia. ACM, 2021.
Yangchun Zhu, Zheng-Jun Zha, Tianzhu Zhang, Jiawei Liu,
and Jiebo Luo. A structured graph attention network for ve-
hicle re-identification. In Proceedings of the 28th ACM inter-
national conference on Multimedia, pages 646—654, 2020.
Barret Zoph and Quoc V Le. Neural architecture search
with reinforcement learning. In International Conference on
Learning Representations, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697-8710,
2018.

