
Visformer: The Vision-friendly Transformer

Zhengsu Chen1, Lingxi Xie2, Jianwei Niu1,5,6*, Xuefeng Liu1, Longhui Wei3, Qi Tian4

1Beihang University, 2Johns Hopkins University, 3University of Science and Technology of China,
4Xidian University, 5Hangzhou Innovation Institute of Beihang University, 6Zhengzhou University

danczs@buaa.edu.cn, 198808xc@gmail.com, niujianwei@buaa.edu.cn,
liu xuefeng@buaa.edu.cn, longhuiwei@pku.edu.cn

Abstract

The past year has witnessed the rapid development of
applying the Transformer module to vision problems. While
some researchers have demonstrated that Transformer-
based models enjoy a favorable ability of fitting data,
there are still growing number of evidences showing that
these models suffer over-fitting especially when the train-
ing data is limited. This paper offers an empirical study
by performing step-by-step operations to gradually transit
a Transformer-based model to a convolution-based model.
The results we obtain during the transition process deliver
useful messages for improving visual recognition. Based on
these observations, we propose a new architecture named
Visformer, which is abbreviated from the ‘Vision-friendly
Transformer’. With the same computational complexity,
Visformer outperforms both the Transformer-based and
convolution-based models in terms of ImageNet classifica-
tion accuracy, and the advantage becomes more significant
when the model complexity is lower or the training set is
smaller. The code is available at https://github.
com/danczs/Visformer.

1. Introduction
In the past decade, convolution used to play a central

role in the deep learning models [22, 29, 31, 15] for visual
recognition. This situation starts to change when the Trans-
former [35], a module that originates from natural language
processing [35, 13, 25], is transplanted to the vision scenar-
ios. It was shown in the ViT model [14] that an image can
be partitioned into a grid of patches and the Transformer is
directly applied upon the grid as if each patch is a visual
word. ViT requires a large amount of training data (e.g.,
the ImageNet-21K [12] or the JFT-300M dataset), arguably
because the Transformer is equipped with long-range atten-
tion and interaction and thus is prone to over-fitting. The

*Corresponding author: Jianwei Niu

Network ResNet-50 DeiT-S Visformer-S
FLOPs (G) 4.1 4.6 4.9
Parameters (M) 25.6 21.8 40.2
Full base setting 77.43 63.12 77.20
data elite setting 78.73 80.07 82.19
Part of 10% labels 58.37 40.41 58.74
data 10% classes 89.90 80.06 90.06

Table 1. The comparison among ResNet-50, DeiT-S, and the pro-
posed Visformer-S model in ImageNet classification. Although
DeiT-S performs well under the elite setting, its performance drops
dramatically when the base setting is used or when fewer data are
used for training. In comparison, Visformer-S is friendly to both
the base and elite settings, and reports smaller accuracy drops us-
ing a limited number of training data. Please refer to the main texts
for the detailed settings.

follow-up efforts [34] improved ViT to some extent, but
these models still perform badly especially under limited
training data or moderate data augmentation compared with
convolution-based models.

On the other hand, vision Transformers can achieve
much better performance than convolution-based mod-
els when trained with large amount of data. Namely,
vision Transformers have higher ‘upper-bound’ while
convolution-based models are better in ‘lower-bound’. Both
upper-bound and lower-bound are important properties for
neural networks. Upper-bound is the potential to achieve
higher performance and lower-bound enables networks to
perform better when trained with limited data or scaled to
different complexity.

Based on the observation of lower-bound and upper-
bound on Transformer-based and convolution-based net-
works, the main goal of this paper is to identify the reasons
behind the difference, by which we can design networks
with higher lower-bound and upper-bound. The gap be-
tween Transformer-based and convolution-based networks
can be revealed with two different training settings on Ima-
geNet. The first one is the base setting. It is the standard set-

589



ting for convolution-based models, i.e., the training sched-
ule is shorter and the data augmentation only contains basic
operators such as random-size cropping [32] and flipping.
The performance under this setting is called base perfor-
mance in this paper. The other one is the training setting
used in [34]. It is carefully tuned for Transformer-based
models, i.e., the training schedule is longer and the data
augmentation is stronger (e.g., RandAugment [11], Cut-
Mix [41], etc., have been added). We use the elite per-
formance to refer to the accuracy produced by it.

We take DeiT-S [34] and ResNet-50 [15] as the exam-
ples of Transformer-based and convolution-based models.
As shown in Table 1, Deit-S and ResNet-50 employ com-
parable FLOPs and parameters. However, they behave very
differently trained on the full data under these two settings.
Deit-S has higher elite performance, but changing the set-
ting from elite to base can cause a 10%+ accuracy drop
for DeiT-S. ResNet-50 performs much better under the base
setting, yet the improvement for the elite setting is merely
1.3%. This motivates us to study the difference between
these models. With these two settings, we can roughly esti-
mate the lower-bound and upper-bound of the models. The
methodology we use is to perform step-by-step operations
to gradually transit one model into another, by which we
can identify the properties of modules and designs in these
two networks. The entire transition process, taking a total
of 8 steps, is illustrated in Figure 1.

Specifically, from DeiT-S to ResNet-50, one should (i)
use global average pooling (not the classification token), (ii)
introduce step-wise patch embeddings (not large patch flat-
tening), (iii) adopt the stage-wise backbone design, (iv) use
batch normalization [20] (not layer normalization [1]), (v)
leverage 3 × 3 convolutions, (vi) discard the position em-
bedding scheme, (vii) replace self-attention with convolu-
tion, and finally (viii) adjust the network shape (e.g., depth,
width, etc.). After a thorough analysis on the reasons behind
the results, we absorb all the factors that are helpful to vi-
sual recognition and derive the Visformer, i.e., the Vision-
friendly Transformer.

Evaluated on ImageNet classification, Visformer claims
better performance than the competitors, DeiT and ResNet,
as shown in Table 1. With the elite setting, the Visformer-
S model outperforms DeiT-S and ResNet-50 by 2.12% and
3.46%, respectively, under a comparable model complexity.
Different from Deit-S, Visformer-S also survives two extra
challenges, namely, when the model is trained with 10% la-
bels (images) and 10% classes. Visformer-S even performs
better than ResNet-50, which reveals the high lower-bound
of Visformer-S. Additionally, for tiny models, Visformer-Ti
significantly outperforms Deit-Ti by more than 6%.

The contribution of this paper is three-fold. First, for
the first time, we introduce the lower-bound and upper-
bound to investigate the performance of Transformer-based

vision models. Second, we close the gap between the
Transformer-based and convolution-based models by a
gradual transition process and thus identify the properties of
the designs in the Transformer-based and convolution-based
models. Third, we propose the Visformer as the final model
that achieves satisfying lower-bound and upper-bound and
enjoys good scalability at the same time.

2. Related work
Image classification is a fundamental task in computer

vision. In the deep learning era, the most popular method is
to use deep neural networks [21, 29, 15]. One of the funda-
mental units to build such networks is convolution, where
a number of convolutional kernels are used to capture re-
peatable local patterns in the input image and intermediate
data. To reduce the computational costs as well as alleviate
the risk of over-fitting, it was believed that the convolutional
kernels should be of a small size, e.g., 3× 3. However, this
brings the difficulty for faraway contexts in the image to
communicate with each other – this is partly the reason that
the number of layers has been increasing. Despite stack-
ing more and more layers, researchers consider another path
which is to use attention-based approaches to ease the prop-
agation of visual information.

Since Transformers achieved remarkable success in nat-
ural language processing (NLP) [35, 13, 25], many efforts
have been made to introduce Transformers to vision tasks.
These works mainly fall into two categories. The first cat-
egory consists of pure attention models [27, 18, 43, 10, 14,
34, 36]. These models usually only utilize self-attention and
attempt to build vision models without convolutions. How-
ever, it is computationally expensive to relate all pixels with
self-attention for realistic full-sized images. Thus, there has
some interest in forcing self-attention to only concentrate
on the pixels in local neighborhoods (e.g., SASA [27], LR-
Net [18], SANet [43]). These methods replace convolu-
tions with local self-attentions to learn local relations and
achieve promising results. However, it requires complex
engineering to efficiently apply self-attention to every lo-
cal region in an image. Another way to solve the complex-
ity problem is to apply self-attention to reduced resolution.
These methods either reduce the resolution and color space
first [10] or regard image patches rather pixels as tokens
(i.e., words) [14, 34]. However, resolution reduction and
patch flattening usually make it more difficult to utilize the
local prior in natural images. Thus, these methods usually
obtain suboptimal results [10] or require huge dataset [14]
and heavy augmentation [34].

The second category contains the networks built with not
only self-attentions but also convolutions. Self-attention
was first introduced to CNNs by non-local neural net-
works [37]. These networks aim to capture global depen-
dencies in images and videos. Note that non-local neural

590



networks are inspired by the classical non-local method in
vision tasks [5] and unlike those in Transformers, the self-
attentions in non-local networks are usually not equipped
with multi-heads and position embedding [37, 6, 23]. Af-
terwards, Transformers achieve remarkable success in NLP
tasks [13, 25] and, therefore, self-attentions that inherits
NLP settings (e.g., multi-heads, position encodings, clas-
sification token, etc.) are combined with convolutions to
improve vision tasks [27, 3, 2]. A common combination
is to utilize convolutions first and apply self-attention after-
wards [14, 30]. [14] builds hybrids of self-attention and
convolution by adding a ResNet backbone before Trans-
formers. Besides utilizing convolution in early layers, Bot-
Net [30] designs bottleneck cells for self-attention. Addi-
tionally, self-attention has been used in many downstream
vision tasks (detection [7], segmentation [9]) and low vision
tasks [8]. These methods mostly utilize both self-attentions
and convolutions.

3. Methodology

3.1. Transformer-based and convolution-based vi-
sual recognition models

Recognition is the fundamental task in computer vision.
This work mainly considers image classification, where the
input image is propagated through a deep network to derive
the output class label. Most deep networks are designed in
a hierarchical manner and composed of a series of layers.

We consider two popular layers named convolution and
Transformer. Convolution originates from the intuition to
capture local patterns which are believed more repeatable
than global patterns. It uses a number of learnable kernels
to compute the responses of the input to different patterns,
for which a sliding window is moved along both axes of
the input data and the inner-product between the data and
kernel is calculated. In this paper, we constrain our study
in the scope of residual blocks, a combination of 2 or 3
convolutional layers and a skip-connection. Non-linearities
such as activation and normalization are inserted between
the neighboring convolutional layers.

On the other hand, Transformer originates from natural
language processing and aims to frequently formulate the
relationship between any two elements (called tokens) even
when they are far from each other. This is achieved by gen-
erating three features for each token, named the query, key,
and value, respectively. Then, the response of each token
is calculated as a weighted sum over all the values, where
the weights are determined by the similarity between its
query and the corresponding keys. This is often referred
to as multi-head self-attention (MHSA), followed by other
operations including normalization and linear mapping.

Throughout the remaining part, we consider DeiT-S [34]
and ResNet-50 [15] as the representative of Transformer-

based and convolution-based models, respectively. Besides
the basic building block, there are also differences in de-
sign, e.g., ResNet-50 has a few down-sampling layers that
partition the model into stages, but the number of tokens re-
mains unchanged throughout DeiT-S. The impact of these
details will be elaborated in Section 3.3.

3.2. Settings: The base and elite performance

Although DeiT-S reports a 80.1% accuracy which is
higher than 78.7% of ResNet-50, we notice that DeiT-S has
changed the training strategy significantly, e.g., the number
of epochs is enlarged by more than 3× and the data augmen-
tation becomes much stronger. Interestingly, DeiT-S seems
to heavily rely on the carefully-tuned training strategy, and
other Transformer-based models including ViT [14] and
PIT [8] also reported their dependency on other factors, e.g.,
a large-scale training set. In what follows, we provide a
comprehensive study on this phenomenon.

We evaluate all classification models on the ImageNet
dataset [28] which has 1K classes, 1.28M training images
and 50K testing images. Each class has roughly the same
number of training images. This is one of the most popular
datasets for visual recognition.

There are two settings to optimize each recognition
model. The first one is named the base setting which is
widely adopted by convolution-based networks. Specifi-
cally, the model is trained for 90 epochs with the SGD
optimizer. The learning rate starts with 0.2 for batch size
512 and gradually decays to 0.00001 following the cosine
annealing function. A moderate data augmentation strat-
egy with random-size cropping [32] and flipping is used.
The second one is named the elite setting which has been
verified effective to improve the Transformer-based models.
The Adamw optimizer with an initial learning rate of 0.0005
for batch size 512 is used. The data augmentation and reg-
ularization strategy is made much stronger to avoid over-
fitting, for which intensive operations including RandAug-
ment [11], Mixup [42], CutMix [41], Random Erasing [44],
Repeated Augmentation [4, 17] and Stochastic Depth [19]
are used. Correspondingly, the training lasts 300 epochs,
much longer than that of the base setting.

Throughout the remaining part of this paper, we refer to
the classification accuracy under the base and elite settings
as base performance and elite performance, respectively.
We expect the numbers to provide complementary views for
us to understand the studied models.

3.3. The transition from DeiT-S to ResNet-50

This subsection displays a step-by-step process in which
we gradually transit a model from DeiT-S to ResNet-50.
There are eight steps in total. The key steps are illustrated in
Figure 1, and the results, including the base and elite perfor-
mance and the model statistics, are summarized in Table 2.

591



Linear

Norm

MHSA

Norm

Linear

Linear

Deit in transformer view

L x

classifier

…

Conv,16x16,s16

Norm

MHSA

Norm

Conv,1x1

Conv,1x1

Deit in convolution view

L x

classifier

Conv,2x2,s2

MHSA cell

FF cell
L/3 x

Classifier

Conv,2x2,s2

MHSA cell

FF cell
L/3 x

Conv,4x4,s4

MHSA cell

FF cell
L/3 x

Conv,2x2,s2

FF cell

FF cell
L1 x

Classifier

Conv,2x2,s2

FF cell

FF cell
L2 x

FF cell

FF cell
L3 x

Conv,7x7,s2…

Conv,4x4,s4

Conv,7x7,s2

3x3 Convolution

Global Self-attention

Norm

384,1x1,1536

1536,1x1, 384

Norm

384,1x1,320

320,1x1, 384

320,3x3,320

MLP Bottleneck

Figure 1. The transition process that starts with DeiT and ends with ResNet-50. To save space, we only show three important movements.
The first movement converts DeiT from the Transformer to convolution view (Section 3.3.1). The second movement replaces the patch
flattening module with step-wise patch embedding (elaborated in Section 3.3.2) and introduces the stage-wise design (Section 3.3.3) .
The third movement replaces the self-attention module with convolution (Section 3.3.7). The upper-right area shows a relatively minor
modifications, inserting 3 × 3 convolution (Section 3.3.5). The lower-right area compares the receptive fields of a 3 × 3 convolution and
self-attention. This figure is best viewed in color.

3.3.1 Using global average pooling to replace the clas-
sification token

The first step of the transition is to remove the classification
token and add global average pooling to the Transformer-
based models. Unlike the convolution-based models, Trans-
formers usually add a classification token to the inputs and
utilize the corresponding output token to perform classifica-
tion, which is inherited from NLP tasks [13]. As a contrast,
the classification features in convolution-based models are
obtained by conducting global average pooling in the space
dimension.

By removing the classification token, the Transformer
can be equivalent translated to the convolutional version as
shown in Figure 1. Specifically, the patch embedding oper-
ation is equivalent to a convolution whose kernel size and
stride is the patch size [14]. The shape of the intermedi-
ate features can be naturally converted from a sequence of
tokens (i.e., words) to a bundle feature maps and the to-
kens become the vector in channel dimension (illustrated in
Figure 1. The linear layers in MHSA and MLP blocks are
equivalent to 1× 1 convolutions.

The performance of the obtained network (Net1) is
shown in Table 2. As can be seen, this transition can sub-
stantially improve the base performance. Our further ex-
periments show that adding global pooling itself can im-
prove the base performance from 64.17% to 69.44%. In
other words, the global average pooling operation which is

widely used in convolution-based models since NIN [24],
enables the network to learn more efficiently under moder-
ate augmentation. Furthermore, this transition can slightly
improve the elite performance.

3.3.2 Replacing patch flattening with step-wise patch
embedding

DeiT and ViT models directly encode the image pixels with
a patch embedding layer which is equivalent to a convolu-
tion with large kernel size and stride (e.g., 16). This oper-
ation flattens the image patches to a sequence of tokens so
that Transformers can handle images. However, patch flat-
tening impairs the position information within each patch
and makes it more difficult to extract the patterns within
patches. To solve this problem, existing methods usually
attach a preprocessing module before patch embedding.
The preprocessing module can be a feature extraction con-
vnet [14] or a specially designed Transformer [40].

We found that there is a rather simple solution, which
is factorizing the large patch embedding to step-wise small
patch embeddings. Specifically, We first add the stem layer
in ResNet to the Transformer, which is a 7× 7 convolution
layer with a stride of two. The stem layer can be seen as
a 2 × 2 patching embedding operation with pixel overlap
(i.e., 7 × 7 kernel size). Since the patch size in the original
DeiT model is 16, we still need to embed 8×8 patches after
the stem. We further factorize the 8 × 8 patch embedding

592



Model Name added removed base perf. elite perf. FLOPs (G) Params (M)
DeiT-S – 64.17 80.07 4.60 22.1
Net1 global average pooling classification token 69.81 (+5.64) 80.16 (+0.09) 4.57 22.0
Net2 step-wise embeddings large patch embedding 73.01 (+3.20) 81.35 (+1.19) 4.77 23.9
Net3 stages-wise design – 75.76 (+2.75) 80.19 (-1.14) 4.79 39.5
Net4 batch norm layer norm 76.49 (+0.73) 80.97 (+0.78) 4.79 39.5
Net5 3× 3 convolution – 77.37 (+0.88) 80.15 (-0.82) 4.76 39.2
Net6 – position embedding 77.31 (-0.06) 79.86 (-0.29) 4.76 39.0
Net7 convolution self-attention 76.24 (-1.07) 79.01 (-0.85) 4.83 45.0
ResNet-50 network shape adjustment 77.43 (+1.19) 78.73 (-0.28) 4.09 25.6

Table 2. The classification accuracy on ImageNet during the transition procedure from DeiT-S to ResNet-50. Both the base setting and the
elite setting are considered (for the details, see Section 3.2), and we mark the positive modifications in red and the negative modifications
in blue. Note that a modification can impact the base and elite performance differently. Though the number of parameters increases
considerably at the intermediate status, the computational costs measured by FLOPs does not change significantly.

to a 4 × 4 embedding and a 2 × 2 embedding, which are
4× 4 and 2× 2 convolution layers with stride 4 and 2 in the
perspective of convolution. Additionally, we add an extra
2×2 convolution to further upgrade the patch size from 16×
16 to 32× 32 before classification. These patch embedding
layers can also be seen as the down-sampling layers and we
double the channel numbers after embedding following the
practice in convolution-based models.

By utilizing step-wise embeddings, the position prior
within patches is encoded into features. As a result, the
model can learn patterns more efficiently. As can be seen
in Table 2, this transition can significantly improve the base
performance and elite performance of the network. It indi-
cates that step-wise embedding is a better choice than larger
patch embedding in Transformer-based models. Addition-
ally, this transition is computationally efficient and only in-
troduces about 4% extra FLOPs.

3.3.3 Stage-wise design

In this section, we split networks into stages like ResNets.
The blocks in the same stage share the same feature res-
olution. Since step-wise embeddings in the last transition
have split the network into different stages, the transition
in this section is to reassign the blocks to different stages
as shown in Figure 1. However, unlike convolution blocks,
the complexity of self-attention blocks increases by O

(
N4

)
with respect to the feature size. Thus we only insert blocks
to the 8× 8, 16× 16 and 32× 32 patch embedding stages,
which correspond to 28 × 28, 14 × 14 and 7 × 7 feature
resolutions respectively for 224× 224 inputs. Additionally,
we halve the head dimension and feature dimension before
self-attention in 28 × 28 stage to ensure that the blocks in
different stages utilize similar FLOPs.

This transition leads to interesting results. The base per-
formance is further improved. It is conjectured that the
stage-wise design leverages the image local priors and thus

can perform better under moderate augmentation. However,
the elite performance of the network decreases markedly.
To study reasons, we conduct ablation experiments and find
that self-attention does not work well in very large resolu-
tions. We conjecture that large resolution contains too many
tokens and it is much more difficult for self-attention to
learn relations among them. We will detail it in section 3.4.

3.3.4 Replacing LayerNorm with BatchNorm

Transformer-based models usually normalize the features
with LayerNorm [1], which is inherited from NLP tasks [35,
13]. As a contrast, convolution-based models like ResNets
usually utilize BatchNorm [20] to stabilize the training pro-
cess. LayerNorm is independent of batch size and more
friendly for specific tasks compared with BatchNorm, while
BatchNorm usually can achieve better performance given
appropriate batch size [38]. We replace all the LayerNorm
layers with BatchNorm layers and the results show that
BatchNorm performs better than LayerNorm. It can im-
prove both the base performance and elite performance of
the network.

In addition, we also try to add BatchNorm to Net2 to
further improve the elite performance. However, this Net2-
BN network suffers from convergence problems. This may
explain why BatchNorm is not widely used in the pure self-
attention models. But for our mixed model, BatchNorm is
a reliable method to advance performance.

3.3.5 Introducing 3× 3 convolutions

Since the tokens of the network are present as feature maps,
it is natural to introduce convolutions with kernel sizes
larger than 1× 1. The specific meaning of large kernel con-
volution is illustrated at the bottom right of Figure 1. When
global self-attentions attempt to build the relations among
all the tokens (i.e., pixels), convolutions focus on relating

593



the tokens within local neighborhoods. We chose to insert
3× 3 convolutions between the 1× 1 convolutions in feed-
forward blocks, which transforms the MLP blocks into bot-
tleneck blocks as exhibited at the top right of Figure 1. Note
that the channel numbers of the 3×3 convolution layers are
tuned to ensure that the FLOPs of the feed-forward blocks
are nearly unchanged. The obtained bottleneck blocks are
similar to the bottleneck blocks in ResNet-50, although they
have different bottleneck ratios (i.e., the factor of reducing
the channel numbers before the 3× 3 convolution). We re-
place the MLP blocks with bottleneck blocks in all three
stages.

Not surprisingly, 3× 3 convolutions which can leverage
the local priors in images further improve the network base
performance. The base performance (77.37%) becomes
comparable with ResNet-50 (77.43%). However, the elite
performance decreases by 0.82%. We conduct more exper-
iments to study the reasons. Instead of adding 3× 3 convo-
lutions to all stages, we insert 3 × 3 convolutions to differ-
ent stages separately. We observe that 3 × 3 convolutions
only work well on the high-resolution features. We conjec-
ture that leveraging local relations is important for the high-
resolution features in natural images. For the low-resolution
features, however, local convolutions become unimportant
when equipped with global self-attention. We will detail it
in section 3.4.

3.3.6 Removing position embedding

In Transformer-based models, position embedding is pro-
posed to encode the position information inter tokens. In the
transition network, we utilize learnable position embedding
as in [13] and add them to features after patch embeddings.
To approaching ResNet-50, position embedding should be
removed.

The results are exhibited in Table 2. The base perfor-
mance is almost unchanged and the elite performance de-
clines slightly (0.29%). As a comparison, We test to remove
the position embedding of DeiT-S and elite performance de-
creases significantly by 3.95%. It reveals that position em-
bedding is less important in the transition model than that
in the pure Transformer-based models. It is because that
the position prior inter tokens is preserved by the feature
maps and convolutions with spatial kernels can encode and
leverage it. Consequently, the harm of removing position
embedding is remarkably reduced in the transition network.
It also explains why convolution-based models do not need
position embedding.

3.3.7 Replacing self-attention with feed-forward

In this section, we remove the self-attention blocks in each
stage and utilize a feed-forward layer instead, so that the
network becomes a pure convolution-based network. To

keep the FLOPs unchanged, several bottleneck blocks are
added to each stage. After the replacement, the obtained
network consists of bottleneck blocks like ResNet-50.

The performance of the obtained network (Net7) is
shown in Table 2. The pure convolution-based network per-
forms much worse both in base performance and elite per-
formance. It indicates that self-attentions do drive neural
networks to higher elite performance and is not responsible
for the poor base performance in ViT or DeiT. It is possible
to design a self-attention network with high base perfor-
mance and elite performance.

3.3.8 Adjusting the shape of network

There are still many differences between Net7 and ResNet-
50. First, the shape of Net7 is different from ResNet-
50. Their depths, widths, bottleneck ratios and block num-
bers in network stages are different. Second, they normal-
ize the features in different positions. Net7 only normal-
izes input features in a block, while ResNet-50 normalizes
features after each convolutional layer. Third, ResNet-50
down-samples the features with bottleneck blocks but Net7
utilizes a single convolution layer (i.e., patch embedding
layer). In addition, Net7 employs a few more FLOPs. Nev-
ertheless, both these two networks are convolution-based
networks. The performance gap between these two net-
works can be attributed to architecture design strategy.

As shown in Table 2, the base performance is improved
after transition. It demonstrates that ResNet-50 has bet-
ter network architecture and can perform better with fewer
FLOPs. However, ResNet-50 obtains worse elite perfor-
mance. It indicates that the inconsistencies between base
performance and elite performance exist not only in self-
attention models but also in pure convolution-based net-
works.

3.4. Summary: the Visformer model

We aim to build a network with high base performance
and elite performance. The transition study has shown that
there are some inconsistencies between base performance
and elite performance. The first problem is the stage-wise
design, which increases the base performance but decreases
the elite performance. To study the reasons, we replace the
self-attention blocks with bottleneck blocks in each stage
separately for Net5, by which we can estimate the impor-
tance of self-attention in different stages. The results are
shown in Table 3. The replacement of self-attention in all
three stages reduces both the base performance and the elite
performance. There is a trend that self-attentions in lower
resolutions play more important roles than those in higher
resolutions. Additionally, replacing the self-attentions in
the first stage almost has no effect on the network perfor-
mance. Larger resolutions contain much more tokens and

594



Network base perf.(%) elite perf.(%)
Net5 77.37 80.15
Net5-DS1 77.29 (-0.08) 80.13 (-0.02)
Net5-DS2 77.34 (-0.02) 79.75 (-0.40)
Net5-DS3 77.05 (-0.32) 79.59 (-0.56)

Table 3. Impact of replacing the self-attention blocks with the bot-
tleneck blocks in each stage of Net5. These experiments are per-
formed individually.

Network base perf.(%) elite perf.(%)
Net4 76.49 80.97
Net4-S1 77.02 (+0.53) 81.10 (+0.13)
Net4-S2 76.55 (+0.06) 80.50 (-0.47)
Net4-S3 76.82 (+0.33) 80.44 (-0.53)
Net5 77.37 (+0.88) 80.15 (-0.82)

Table 4. Impact of replacing the MLP layers with the bottleneck
blocks in each stage of Net4. These experiments are performed
individually.

we conjecture that it is more difficult for self-attentions to
learn relations among them.

The second problem is adding 3× 3 convolutions to the
feed-forward blocks, which decreases the elite performance
by 0.82%. Based on Net4, we replace MLP blocks with
bottleneck blocks in each stage separately. As can be seen
in Table 4, although all stages obtain improvements in base
performance, only the first stage benefits from bottleneck
blocks in elite performance. The 3 × 3 convolutions are
not necessary for the other two low-resolution stages when
self-attentions already have a global view in these positions.
On the high-resolution stage, for which self-attentions have
difficulty in handling all tokens, the 3× 3 convolutions can
provide improvement.

Integrating the observation above, we propose the Vis-
former as vision-friendly, Transformer-based models. The
detailed architectures are shown in Table 5. Besides the pos-
itive transitions, Visformer adopts the stage-wise design for
higher base performance. But self-attentions are only uti-
lized in the last two stages, considered that self-attention in
the high-resolution stage is relatively inefficient even when
the FLOPs are balanced. Visformer employs bottleneck
blocks in the first stage and utilizes group 3 × 3 convolu-
tions in bottleneck blocks inspired by ResNeXt [39]. We
also introduce BatchNorm to patch embedding modules as
in CNNs. We name Visformer-S to denote the model that
directly comes from DeiT-S. In addition, we can adjust the
complexity by changing the output dimensionality of multi-
head attentions. Here, we shrink the dimensionality by half
and derive the Visformer-Ti model, which requires around
1/4 computational costs of the Visformer-S model.

output size Visformer-Ti Visformer-S
stem 112× 112 7× 7, 16, stride 2 7× 7, 32, stride 2
emb. 28× 28 4× 4, 96, stride 4 4× 4, 192, stride 4

s1 28× 28


1× 1, 192
3× 3, 384
(group = 8)
1× 1, 96

 ×7


1× 1, 384
3× 3, 768
(group = 8)
1× 1, 192

 ×7

emb. 14× 14 2× 2, 192, stride 2 2× 2, 384, stride 2

s2 14× 14

MHSA, 192
1× 1, 768
1× 1, 192

 ×4

MHSA, 384
1× 1, 1536
1× 1, 384

 ×4

emb. 7× 7 2× 2, 384, stride 2 2× 2, 768, stride 2

s3 7× 7

MHSA, 384
1× 1, 1536
1× 1, 384

 ×4

MHSA, 768
1× 1, 3072
1× 1, 768

 ×4

1× 1 global average pool, 1000-d fc, softmax
FLOPs 1.3× 109 4.9× 109

Table 5. The configuration for constructing the Visformer-Ti and
Visformer-S models, where ‘emb.’ stands for feature embedding,
and ‘s1’–‘s3’ indicate the three stages with different spatial reso-
lutions.

4. Evaluating the Visformer

4.1. Comparison to the state-of-the-arts

We first compare Visformer against DeiT, the direct
baseline. Results are summarized in Table 6. Using com-
parable computational costs, the Visformer models outper-
form the corresponding DeiT models significantly. Specifi-
cally, the advantages of Visformer-S and Visformer-Ti over
DeiT-S and DeiT-Ti under the elite setting are 2.12% and
6.41%, while under the base setting, the numbers grow to
14.08% and 10.47%, respectively. In other words, the ad-
vantage becomes more significant under the base setting,
which is more frequently used for visual recognition.

We then compare Visformer to other Transformer-based
approaches in Table 7. At the tiny level, Visformer-Ti
significantly outperforms other vision Transformer models.
For larger models, Visformer-S performs much better than
the models with similar FLOPs. Other models usually need
to utilize much more FLOPs to achieve comparable perfor-
mance. As for the state-of-the-art EfficientNet convnets,
our models are below the EfficientNets with similar FLOPs.
However, EfficientNets is computing inefficient on GPUs.
The results in Table 8 show that our model is significantly
faster than EfficientNet-b3 which performance is slightly
worse than our model. Our model is as efficient as DeiT-
S and ResNet-50 but with a rather better performance.

595



Network
base perf.

(%)
elite perf.

(%)
FLOPs

(G)
Visformer-Ti 74.34 78.62 1.3
DeiT-Ti 63.87 72.21 1.3
Visformer-S 77.20 82.19 4.9
DeiT-S 63.12 80.07 4.6

Table 6. The comparison of base and elite performance as well as
the FLOPs between Visformer and DeiT, the direct baseline.

Methods Top-1(%)
FLOPs

(G)
Params

(M)
ResNet-18 [15] 69.8 1.8 11.7
DeiT-Ti [34] 72.2 1.3 5.7
DeiT-Ti (KD) [34] 74.6 1.3 5.7
PVT-Ti [36] 75.1 1.9 13.2
Visformer-Ti (ours) 78.6 1.3 10.3
ResNet-50 [15] 76.2 4.1 25.6
ResNet-50∗ [15] 78.7 4.1 25.6
RegNetY-4GF [26] 79.4 4.0 20.6
RegNetY-8GF [26] 79.9 8.0 39.2
RegNetY-4GF∗ [26] 80.0 4.0 20.6
DeiT-S [34] 79.8 4.6 21.8
DeiT-S∗ [34] 80.1 4.6 21.8
DeiT-B [34] 81.8 17.4 86.3
PVT-S [36] 79.8 3.8 24.5
PVT-Medium [36] 81.2 6.7 44.2
T2T-ViTt-14 [40] 80.7 5.2 21.5
T2T-ViTt-19 [40] 81.4 8.4 39.0
BoTNet-S1-59 [30] 81.7 7.3 33.5
Visformer-S (ours) 82.2 4.9 40.2

Table 7. Comparison among our method and other Transformer-
based vision models. ‘*’ indicates that we re-run the model using
the elite setting. ‘KD’ stands for knowledge distillation [16].

Methods
Top-1
(%)

FLOPs
(G)

Batch Time
(ms)

ResNet-50∗ 78.7 4.1 34.2
DeiT-S∗ 80.1 4.6 36.9
RegNetY-4GF∗ 80.0 4.0 40.2
EfficientNet-B3 [33] 81.6 1.8 48.3
Visformer-S (ours) 82.2 4.9 36.7

Table 8. Comparison of inference efficiency among Visformer-S
and other models. A batch size of 32 is used for testing. Besides
EfficientNet-B3, other models are trained using the elite setting.

4.2. Training with limited data

Last but not least, we evaluate the performance of Vis-
former in the scenario with limited training data, which we
consider is an important ability of being vision-friendly,

Network
100%
classes

10%
classes

1%
classes

10%
images

1%
images

Visformer-S 82.19 90.06 91.60 58.74 16.56
DeiT-S 80.07 80.06 73.40 40.41 6.94
ResNet-50 78.73 89.90 93.20 58.37 13.59
Visformer-Ti 78.62 89.48 90.60 55.14 11.79
Deit-Ti 72.33 78.72 74.40 38.44 6.53
ResNet-50-55% 72.84 87.10 91.40 51.48 10.68

Table 9. Comparison among Visformer, DeiT, and ResNet, in
terms of classification accuracy (%) using limited training data.
The elite setting with 300 epochs is used for all models.

while prior Transformer-based models mostly required
abundant training data [14].

Four subsets of ImageNet are used, with 10% and 1%
randomly chosen classes (all data), and with 10% and 1%
randomly chosen images (all classes), respectively. To chal-
lenge the models, we still use the elite setting with 300
epochs (not extended). As shown in Table 9, it is observed
that the DeiT-S model reports dramatic accuracy drops in all
the four tests (note that the accuracy of using only 10% and
1% classes should be much higher if epochs are extended).
In comparison, Visformer remains robust in these scenarios,
showing its potential of being used for visual recognition
with limited data.

In tiny level, ResNet-50-55% is obtained by reducing the
channel numbers (like other tiny models) to 55% (so that the
FLOPs, 1.3G, is similar to Visformer-Ti and Deit-Ti). The
conclusion is similar: Visformer-Ti is still the best overall
model, and the advantage is slightly enlarged because the
risk of over-fitting has been reduced.

5. Conclusions
This paper presents Visformer, a Transformer-based

model that is friendly to visual recognition. We propose
to use two protocols, the base and elite setting, to evaluate
the performance of each model. To study the reason why
Transformer-based models and convolution-based models
behave differently, we decompose the gap between these
models and design an eight-step transition procedure that
bridges the gap between DeiT-S and ResNet-50. By absorb-
ing the advantages and discarding the disadvantages, we ob-
tain the Visformer-S model that outperforms both DeiT-S
and ResNet-50. Visformer also shows a promising ability
when it is transferred to a compact model and when it is
evaluated on small datasets.

Acknowledgements This work was supported by the Na-
tional Key R&D Program of China (2017YFB1301100),
National Natural Science Foundation of China (61772060,
U1536107, 61472024, 61572060, 61976012, 61602024),
and the CERNET Innovation Project (NGII20160316).

596



References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[2] Irwan Bello. Lambdanetworks: Modeling long-range inter-
actions without attention. arXiv preprint arXiv:2102.08602,
2021.

[3] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens,
and Quoc V Le. Attention augmented convolutional net-
works. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 3286–3295, 2019.

[4] Maxim Berman, Hervé Jégou, Andrea Vedaldi, Iasonas
Kokkinos, and Matthijs Douze. Multigrain: a unified im-
age embedding for classes and instances. arXiv preprint
arXiv:1902.05509, 2019.

[5] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local
algorithm for image denoising. In 2005 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recogni-
tion (CVPR’05), volume 2, pages 60–65. IEEE, 2005.

[6] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han
Hu. Gcnet: Non-local networks meet squeeze-excitation net-
works and beyond. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision Workshops, pages
0–0, 2019.

[7] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Confer-
ence on Computer Vision, pages 213–229. Springer, 2020.

[8] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping
Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. arXiv
preprint arXiv:2012.00364, 2020.

[9] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan
Adeli, Yan Wang, Le Lu, Alan L Yuille, and Yuyin Zhou.
Transunet: Transformers make strong encoders for medi-
cal image segmentation. arXiv preprint arXiv:2102.04306,
2021.

[10] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In International Conference on Ma-
chine Learning, pages 1691–1703. PMLR, 2020.

[11] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 702–703, 2020.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[17] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8129–8138, 2020.

[18] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Lo-
cal relation networks for image recognition. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 3464–3473, 2019.

[19] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q Weinberger. Deep networks with stochastic depth. In
European Conference on Computer Vision, pages 646–661.
Springer, 2016.

[20] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[22] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. nature, 521(7553):436–444, 2015.

[23] Yingwei Li, Xiaojie Jin, Jieru Mei, Xiaochen Lian, Linjie
Yang, Cihang Xie, Qihang Yu, Yuyin Zhou, Song Bai, and
Alan L Yuille. Neural architecture search for lightweight
non-local networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10297–10306, 2020.

[24] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work. arXiv preprint arXiv:1312.4400, 2013.

[25] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training. 2018.

[26] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10428–
10436, 2020.

[27] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan
Bello, Anselm Levskaya, and Jonathon Shlens. Stand-
alone self-attention in vision models. arXiv preprint
arXiv:1906.05909, 2019.

[28] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015.

597



[29] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[30] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon
Shlens, Pieter Abbeel, and Ashish Vaswani. Bottle-
neck transformers for visual recognition. arXiv preprint
arXiv:2101.11605, 2021.

[31] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–9, 2015.

[32] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2818–2826, 2016.

[33] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114. PMLR,
2019.

[34] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. arXiv preprint arXiv:2012.12877, 2020.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[36] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions. arXiv preprint
arXiv:2102.12122, 2021.

[37] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018.

[38] Yuxin Wu and Kaiming He. Group normalization. In Pro-
ceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018.

[39] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. arXiv preprint arXiv:1611.05431, 2016.

[40] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-
to-token vit: Training vision transformers from scratch on
imagenet. arXiv preprint arXiv:2101.11986, 2021.

[41] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regular-
ization strategy to train strong classifiers with localizable fea-
tures. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6023–6032, 2019.

[42] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. 2017.

[43] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Explor-
ing self-attention for image recognition. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10076–10085, 2020.

[44] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34,
pages 13001–13008, 2020.

598


