
Local Temperature Scaling for Probability Calibration

Zhipeng Ding Xu Han Peirong Liu Marc Niethammer
University of North Carolina at Chapel Hill, Chapel Hill, USA

{zp-ding, xhs400, peirong, mn}@cs.unc.edu

Abstract

For semantic segmentation, label probabilities are often
uncalibrated as they are typically only the by-product of a
segmentation task. Intersection over Union (IoU) and Dice
score are often used as criteria for segmentation success,
while metrics related to label probabilities are not often ex-
plored. However, probability calibration approaches have
been studied, which match probability outputs with exper-
imentally observed errors. These approaches mainly fo-
cus on classification tasks, but not on semantic segmenta-
tion. Thus, we propose a learning-based calibration method
that focuses on multi-label semantic segmentation. Specif-
ically, we adopt a convolutional neural network to predict
local temperature values for probability calibration. One
advantage of our approach is that it does not change pre-
diction accuracy, hence allowing for calibration as a post-
processing step. Experiments on the COCO, CamVid, and
LPBA40 datasets demonstrate improved calibration perfor-
mance for a range of different metrics. We also demonstrate
the good performance of our method for multi-atlas brain
segmentation from magnetic resonance images.

1. Introduction
With the development of deep convolutional neural net-

works (CNNs), the accuracy of semantic segmentation has
improved dramatically [9, 43]. However, ideally seman-
tic segmentation networks should not only be accurate, but
should also indicate when they are likely incorrect. For
example, an autonomous driving system might use deep
convolutional neural networks to analyze a real-time scene
from a camera [5], the associated semantic segmentation of
street scenes should provide accurate detections of pedes-
trians and other vehicles, and the system should recognize
when such predictions are unreliable. Another example is
the segmentation of brain tumors with a CNN [22]. If the
segmentation network can not confidently segment critical
regions of the brain, then a medical expert should decide or
be alerted to such doubtful regions. Thus, it is important for
semantic segmentation networks to generate both accurate

label predictions and accurate confidence measures.
However, due to overfitting, CNNs for semantic seg-

mentation tend to be overconfident about predicted la-
bels [17, 20, 29, 41]. Approaches for joint prediction and
calibration exist [36, 44, 48, 52]. However, they require
changing the learning task and typically strive for calibra-
tion, but do not guarantee it. An alternative approach is
to calibrate the resulting probabilities of a model via post-
processing so that they better reflect the true probabilities
of being correct. This is the kind of approach we consider
here as it easily applies to pre-trained networks and can even
benfit joint prediction/calibration approaches. Probability
calibration, first studied for classification [58], generally ad-
dresses this problem via a hold-out validation dataset.

Existing calibration approaches still have several limi-
tations: (1) Most of the probability calibration approaches
are designed for classification, thus are not guaranteed to
work well for semantic segmentation (where it is also more
challenging to annotate on a pixel/voxel level); (2) While
there is limited work discussing probability calibration for
semantic segmentation, this work either only applies to spe-
cific types of models (e.g., Bayesian neural networks [29])
or only implicitly improves calibration performance (e.g.,
via model ensembling [47] or multi-task learning [31]); (3)
Most methods are designed to work for binary classifica-
tions and approach multi-class problems by a decomposi-
tion into k one-vs-rest binary calibrations (where k denotes
the number of classes). However, such a decomposition
does not guarantee overall calibration (only for the individ-
ual subproblems before normalization) and the classifica-
tion accuracy of the trained model may change after cali-
bration as the probability order of labels may change.

Our goal is to develop a post-processing calibration
method for multi-label semantic segmentation, which re-
tains label probability order and, therefore, a model’s seg-
mentation accuracy. Our work is inspired by temperature
scaling (TS) [20] for classification probability calibration.
As TS determines only one global scaling constant, it can-
not capture spatial miscalibration changes in images. We
therefore (1) extend TS to multi-label semantic segmenta-
tion and (2) make it adaptive to local image changes.
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Our contributions are: (1) Spatially localized proba-
bility calibration: We propose a learning-based local TS
method that predicts a separate temperature scale for each
pixel/voxel. (2) Completely separated accuracy-preserving
post-processing: Our approach is completely separated
from the segmentation task, leaving the prediction accuracy
unchanged. (3) Theoretical justification: We provide a the-
oretical analysis for the effectiveness of our approach. (4)
Comprehensive analysis: We provide definitions and eval-
uation metrics for probability calibration for semantic seg-
mentation and validate our approach both qualitatively and
quantitatively. (5) Practical application: We successfully
apply our calibrated probabilities for multi-atlas segmenta-
tion label fusion in the field of medical image analysis.

2. Related Work
A variety of calibration approaches have been proposed,

but none addresses our target setting.
Bin-based Approaches. Non-parametric histogram bin-

ning [67] uses the average number of positive-class sam-
ples in each bin as the calibrated probability. Isotonic re-
gression [68] extends this approach by jointly optimizing
bin boundaries and bin predictions; it is one of the most
popular non-parametric calibration methods. ENIR [55]
further extends isotonic regression by relaxing the mono-
tonicity assumption of isotonic regression. These bin-based
methods do not consider correlations among neighboring
pixels/voxels in semantic segmentation, while our proposed
method captures correlations via convolutional filters.

Temperature Scaling Approaches. Platt scaling [58]
uses logistic regression for probability calibration. Ma-
trix scaling [20], vector scaling [20], and temperature scal-
ing [25, 20] all generalize Platt scaling to multi-class cal-
ibration, among which temperature scaling is both effec-
tive and the simplest. ATS [51] extends temperature scaling
by using the conditional distribution on each class to ad-
dress the calibration challenge on small validation datasets,
for noisy labels, and highly accurate networks. BTS [30]
extends temperature scaling to a bin-wise setting and also
uses data augmentation inside each bin to improve the cali-
bration performance. However, unlike our approach (which
extends temperature scaling) none of these approaches con-
siders spatial variations for probability calibration.

Bayesian Approaches. BBQ [54] extends binning via
Bayesian averaging of the probabilities produced by all pos-
sible binning schemes. Bayes-Iso [1] extends isotonic re-
gression by using Bayesian isotonic calibration to allow for
more flexibility in the monotonic fitting and smoothness.
Jena et al. [29] proposed to use a utility function focusing on
the intermediate-layers of a Bayesian deep neural network
to calibrate probabilities for image segmentation. Maronas
et al. [46] proposed decoupled Bayesian neural networks
to calibrate classification probabilities. Bin-based Bayesian

methods do not consider pixel/voxel correlations. Bayesian
neural networks can capture spatial correlations, but require
a Bayesian formulation in the first place. Furthermore,
while Bayesian uncertainty quantification [32] helps proba-
bility calibration, it may also not achieve it (Appx. A). In-
stead, our approach considers pixel/voxel correlations and
can be used as a post-processing approach for any semantic
segmentation method which generates probability outputs.

Other Approaches. Mehrtash et al. [47] found that
model ensembling improves confidence calibration for
medical image segmentation. A similar conclusion was also
found in [38, 69], where an ensemble is used to produce
good predictive uncertainty estimates. Karimi et al. [31]
showed that multi-task learning can yield better-calibrated
predictions than dedicated models trained separately. Note
that ensembling or multi-task learning does not directly ad-
dress probability calibration, instead they provide insights
on how to obtain a better calibrated segmentation model.
Leathart et al. [39] improved the calibration of classifica-
tion tasks by building a decision tree over input tabular
data, where the leaf nodes correspond to different calibra-
tion models. Further, beta calibration [35] extends logistic
calibration to overcome the situation where per-class score
distributions are heavily skewed. Dirichlet calibration [34]
uses the Dirichlet distribution to generalize beta calibration
to multi-class problems. Rahimi et al. [59] proposed to use
neural network based intra order-preserving functions for
calibration. These methods are also not directly designed
for probability calibration of semantic segmentation, but fo-
cus on classification. Learning algorithms [36, 44, 48, 52]
that jointly consider prediction and calibration also exist.
Although they can help mitigate miscalibrations, they typi-
cally cannot entirely remove it. In fact, they can also benefit
from our post-processing approach (§4.2).

3. Methodology
3.1. Problem Statement

Our goal is the calibration of the predicted probabilities
of deep semantic segmentation CNNs. Assume there is a
pre-trained neural network F , with an image I as the input,
which outputs a vector of logits at each location x. Each
logit corresponds to a label, and the logit value reflects the
label confidence. The predicted label is the one with the
largest logit value; the corresponding confidence (probabil-
ity of correctness) for each pixel/voxel is usually obtained
via softmax of the logits. Specifically, the predicted confi-
dence map and the corresponding segmentation map are

P̂ (x) = max
l2L

�SM (z(x))(l) = max
l2L

exp(z(x)(l))P
j2L exp(z(x)(j))

,

Ŝ(x) = argmax
l2L

z(x)(l), (3.1)
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where �SM is the softmax function, x denotes position, L is
the set of all labels, l is the label index and z(x)(l) = zl(x)
is the logit that corresponds to label l at location x.

The goal of probability calibration is to ensure that the
confidence map P̂ represents a true probability. For exam-
ple, given a 10 ⇥ 10 image, with label confidence of 0.7
for each pixel, we would expect that 70 pixels should be
correctly segmented. This can be formalized as follows:
Definition 1. A semantic segmentation is perfectly cali-
brated in region ⌦ if

P(Ŝ(x) = S(x)|P̂ (x) = p) = p, 8p 2 [0, 1], x 2 ⌦ (3.2)

where S(x) and Ŝ(x) are the true and predicted segmenta-
tions at location x, respectively, P̂ (x) is the confidence of
the prediction Ŝ(x), and P is the probability measure.

In short, if the observed probability is the true prob-
ability, then the semantic segmentation model is well-
calibrated. As it is difficult to work directly with this defini-
tion to assess miscalibration, we extend several visual and
quantitative metrics [11, 53, 54, 56, 57], which have previ-
ously been proposed in the context of classification.

3.2. Calibration Setup
Assume the data split for a semantic segmentation net-

work F is Dtrain / Dval / Dtest, i.e. F is trained on the
Dtrain dataset, validated on the Dval dataset to choose the
best model, and finally tested on the Dtest dataset. Note
that Dtrain, Dval, and Dtest are disjoint datasets. Miscal-
ibration can be observed when evaluating F on Dtest for
probability-related measures. Our goal is to calibrate the
probability output of F on Dtest. To this end, we train a
calibration model C on the hold-out validation dataset Dval

via cross entropy loss, to obtain a better calibrated probabil-
ity output of F on Dtest.

3.3. TS for Probability Calibration
Temperature scaling [20] has been proposed as a sim-

ple extension of Platt scaling [58] for post-hoc probability
calibration for multi-class classifications. Specifically, tem-
perature scaling estimates a single scalar parameter T 2
R+, i.e., the temperature, to calibrate probabilities: q̂ =
maxl2L �SM (z/T )(l), where q̂ is the calibrated probability.

We can directly extend temperature scaling to seman-
tic segmentation by estimating one global parameter T 2
R+ for all pixels/voxels of all images: Q̂i(x, T ) =
maxl2L �SM (zi(x)/T )(l), where Q̂i is the calibrated prob-
ability map for the i-th image. As in [20], we obtain this
optimal value for T by minimizing the following negative
log-likelihood (NLL) w.r.t. a hold-out validation dataset:

T ⇤ = argmin
T

 
�

nX

i=1

X

x2⌦

log
⇣
�SM

�
zi(x)/T

�(Si(x))
⌘!

s.t. T > 0, (3.3)

Figure 1: Left: Predicted probabilities (confidence) by a U-Net in
§4.3. Middle: Average accuracy of each bin for 10 bins of reliabil-
ity diagram with an equal bin width indicating different probabil-
ity ranges that need to be optimized for different locations. Right:
Temperature value map obtained via optimization, revealing dif-
ferent optimal localized TS values at different locations.

where ⌦ denotes the image space and n the number of train-
ing images. However, temperature scaling in this way as-
sumes that each image has the same distribution (i.e., the
same temperature, T , for all images), which is unrealistic.
We therefore propose to relax this assumption as follows:

Definition 2. Image-based temperature scaling (IBTS):

Q̂i(x, Ti) = max
l2L

�SM (zi(x)/Ti)
(l), (3.4)

where Ti 2 R+ is image-dependent.

While this at first seems like a minor change to the stan-
dard temperature scaling approach, it is important to note
that moving to an image-based temperature value, Ti re-
quires us to learn a regressor which predicts this tempera-
ture value for each image, I . Therefore, we use a CNN [19]
to learn a mapping from (zi, Ii) to Ti. Suppose the network
is F , then the optimization is

✓⇤ = argmin
✓

�
nX

i=1

X

x2⌦

log
⇣
�SM

� zi(x)
F (✓, zi, Ii)

�(Si(x))
⌘

s.t. F (✓, zi, Ii) > 0, (3.5)

where ✓ are the parameters of the network F . The cal-
ibrated probability can be obtained by substituting T ⇤

i =
F (✓⇤, zi, Ii) in Eq. (3.4).

3.4. Local TS for Probability Calibration
Probabilities predicted by a deep CNN vary by loca-

tion. Fig. 1 illustrates that object interiors can usually be
accurately predicted while predictions on boundary or near-
boundary locations are more ambiguous. Thus the optimal
temperature value may vary across locations. However, us-
ing a global parameter, T , or an image-based parameter, Ti,
cannot account for such spatial variations. That this is a
practical concern is illustrated in the uncalibrated reliabil-
ity diagrams of Fig. 2 which shows that the confidence-vs-
accuracy relation may indeed vary across an image. Hence,
spatial variations should be considered for semantic seg-
mentation. Therefore, we propose the following local tem-
perature scaling (LTS) approach.
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Figure 2: An example of global and local reliability diagrams for different methods for a U-Net segmentation experiment (§4.3). I is
the image, P̂ is the predicted uncalibrated probability, and Ŝ is the predicted segmentation. Figures are displayed in couples, where the
left figure is the probability distribution of pixels/voxels while the right figure is the reliability diagram (See Appx. F for definitions). The
top row shows the global reliability diagrams for different methods for the entire image. The three rows underneath correspond to local
reliability diagrams for the different methods for different local patches. Note that TS and IBTS can calibrate probabilities well across the
entire image. Visually, they are only slightly worse than LTS. However, when it comes to local patches, LTS can still successfully calibrate
probabilities while TS and IBTS can not. In general, LTS improves local probability calibrations. More results are in Appx. D.

Definition 3. Local temperature scaling (LTS):

Q̂i(x, Ti(x)) = max
l2L

�SM (zi(x)/Ti(x))
(l), (3.6)

where Ti(x) 2 R+ is image and location dependent.

For Ti(x) = 1, no calibration occurs as the logits zi(x)
do not change. For Ti(x) > 1, confidence will be re-
duced, which helps counteract overconfident predictions.
As Ti(x) ! 1, the calibrated probabilities will approach
1/|L|, which represents maximum uncertainty. For Ti(x) <
1, prediction confidence will be increased. This will be
helpful to counteract underconfident predictions. Lastly, as
Ti(x) ! 0, the calibrated probabilities will become bi-
nary (2 {0, 1}), which represents minimum uncertainty.
As Ti(x) is positive, such a local scaling does not change
the ordering of the probabilities over the different classes.
Hence, the segmentation accuracy remains unchanged.

Another network H , with parameter ↵, can be used to
learn this local mapping from (zi, Ii) to Ti(x). The op-
timization follows Eq. (3.5), with F (✓, zi, Ii) replaced by
H (↵, zi, Ii, x), where x indicates the spatial locations. Fi-
nally, we obtain Ti(x)⇤ = H (↵⇤, zi, Ii, x).

Fig. 3 illustrates our high-level design for probability cal-
ibration. The input is a logit map z, usually obtained by a
segmentation network (Seg). Together with the image I , it
is then passed to an optimization unit or a prediction unit to
generate the temperature map. These temperature values are
used to calibrate the logit map. The calibrated probabilities

Figure 3: Architecture for probability calibration via (local) tem-
perature scaling. The output logit map of a pre-trained semantic
segmentation network (Seg) is locally scaled to produces the cali-
brated probabilities. OP denotes optimization or prediction via a
deep convolutional network to obtain the (local) temperature val-
ues. Details of this OP unit can be found in Appx. B.

are, in turn, obtained via a softmax on the calibrated log-
its. Class labels do not change under this process and can
still be obtained by determining the class with the largest
predicted probability. Appx. B details the implementation.
Training details are described in Appx. C.

3.5. Theoretical Justification
Why does miscalibration happen? One usually uses

the loss corresponding to the negative log-likelihood (NLL)
of the multinomial distribution [3, 15] (i.e., the multi-class
cross-entropy loss) to train semantic segmentation networks
because minimizing it will minimize the Kullback-Leibler
(KL) divergence between the ground-truth probability dis-
tribution and the predicted probability distribution. The
minimum loss is achieved if and only if the predicted proba-
bility distribution recovers the ground-truth probability dis-
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tribution [3, 15]. For semantic segmentation, the NLL loss
is minimized when P̂ (x) = 1 and Ŝ(x) = S(x), for all
x. The segmentation error is minimized when z(x)(S(x)) >
z(x)(l) for all l 2 L and l 6= S(x). This indicates that even
if the segmentation error is minimized to zero, the NLL loss
may still be positive and the optimization will consequently
try to continue reducing it to zero by pushing P̂ (x) to one
for Ŝ(x) = S(x). This explains how overconfidence oc-
curs in the context of semantic segmentation. Note that this
overconfidence also results in low-entropy distributions.

How to eliminate miscalibration? As indicated in [52]
encouraging the predicted distribution to have higher en-
tropy can help avoid overconfident predictions for deep
CNNs, and can thereby improve calibration. Thus, to cali-
brate an overconfident semantic segmentation network, we
need to simultaneously minimize the NLL loss w.r.t. the
to-be-learned calibration parameters while assuring that the
corresponding entropy of the calibrated probabilities stays
sufficiently large to probabilistically describe empirically
observable segmentation errors. Note that we minimize the
NLL loss for the same reason as for segmentation (above):
because the goal is to recover the true probability distribu-
tion. The difference is that for segmentation we optimize
w.r.t. the segmentation network parameters while for cali-
bration we optimize w.r.t. the calibration model parameters.

Why do we use (local) TS to calibrate probabilities?
Overconfident networks usually exhibit the phenomenon
that the entropy of the output probabilities is much lower
than the cross entropy on the testing dataset as shown in
[20, 52]. Thus, we define overconfidence as entropy being
lower than the cross entropy of probabilities (Appx. E; and
similarly for underconfidence). Specifically, we show the
following theorem in Appx. E.
Theorem 4. When the to-be-calibrated segmentation net-
work is overconfident, minimizing NLL w.r.t. TS, IBTS, and
LTS results in solutions that are also the solutions of maxi-
mizing entropy of the calibrated probability w.r.t. TS, IBTS
and LTS under the condition of overconfidence.

For example, for TS, the above theorem can be mathe-
matically expressed as follows,

argmin
T

�
nX

i=1

X

x2⌦

log
⇣
�SM

�
zi(x)/T

�(Si(x))
⌘

m

argmax
T

�
nX

i=1

X

x2⌦

LX

l=1

�SM

�zi(x)
T

�(l)
log
⇣
�SM

�zi(x)
T

�(l)⌘

s.t.
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�zi(x)
T

�(l) �
nX

i=1

X

x2⌦

zi(x)(Si(x))

where T > 0. Hence, our three different variants for
probability calibration via temperature scaling (TS, IBTS,
LTS) will counteract the tendency of entropy minimization

caused by the NLL loss discussed above. Training the seg-
mentation network via the NLL loss followed by post-hoc
probability calibration via temperature scaling is an effec-
tive approach to obtain high segmentation accuracy while
avoiding overconfidence of the resulting label probabilities.
§4.1-§4.4 show experiments to support this claim.

4. Experiments
We show the performance and behavior of our proposed

TS approaches for semantic segmentation on the COCO
dataset (§4.1), CamVid dataset (§4.2) and LPBA40 dataset
(a dataset of magnetic resonance (MR) images of the human
brain) (§4.3). We further show how our probability calibra-
tion may influence downstream tasks, by exploring it in the
context of multi-atlas segmentation on LPBA40 (§4.4).

Evaluation Metrics. To assess the performance of prob-
ability calibration, we use five metrics, which were origi-
nally designed for classification, for semantic segmentation.
Specifically, they are the reliability diagram [11, 53, 56], ex-
pected calibration error [54] (ECE), maximum calibration
error [54] (MCE), static calibration error [57] (SCE), and
adaptive calibration error [57] (ACE). To make the above
metrics applicable to semantic segmentation, we consider
the predicted probabilities for each pixel/voxel as separate
samples. We use 10 equally-sized (probability or sample
size) bins to compute all these metrics. In §4.4, we addition-
ally use average surface distance (ASD), surface Dice (SD),
the 95-th percentile of the maximum symmetric distance
(95MD), and average volume Dice (VD) to measure seg-
mentation performance. Detailed definitions are in Appx. F.

Baseline Methods. To illustrate the effectiveness of our
proposed LTS approach (see Eq. (3.6)), we compare it to
standard TS and IBTS (see Eq. (3.4)), where we directly
assess if local adjustments can be properly predicted and
if they are beneficial. While other probability calibration
methods exist, as discussed in §2, most are for classifica-
tion and not for semantic segmentation. This is an important
difference. For example, in semantic segmentation, nearby
pixels/voxels are correlated with each other, whereas such
relations do not apply to classification. Thus, simply con-
sidering each pixel/voxel as a classification data point is not
appropriate. For completeness, however, we still choose
several classic methods (§4.1) to compare against, i.e. iso-
tonic regression (IsoReg) [68], vector scaling (VS) [20], en-
semble temperature scaling (ETS) [69], and Dirichlet cal-
ibration with off-diagonal regularization (DirODIR) [34].
Furthermore, to illustrate that our method is also beneficial
for joint training (§4.2), we show the performance before
and after using LTS for models trained with maximum mean
calibration loss (MMCE) [36] and focal loss (FL) [52]. All
methods are fine-tuned with the best parameters via grid
search. Details are in Appx. C.

Evaluation Regions. Since label boundaries are difficult
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to segment, these are the regions where most of the relevant
miscalibrations are expected to occur (see also Fig. 1). For
a refined analysis, we extract boundaries and their nearby
regions (i.e., regions up to 2 pixels/voxels away from the
boundary). We denote this evaluation region by Boundary
in all experiments. We also evaluate performance within
label regions (excluding the background, but including the
respective Boundary region). We denote this large region
as All. It is expected that the calibration inside the Bound-
ary region will be more challenging (as the prediction is
more ambiguous) than the calibration inside the bigger All
region. Appx. G shows examples of these regions for a 3D
brain MR image. Furthermore, to evaluate the local prob-
ability calibration performance for an image segmentation,
we also randomly select 10 small patches (72⇥72 for 2D,
72⇥72⇥72 for 3D) and compute the same metrics as for
the entire image. We report average performance (denoted
Local-Avg) and the worst case performance (denoted Local-
Max) across 10 patches. Appx. H shows results for differ-
ent patch sizes. Note that results in the All region reflect the
overall calibration performance for an image segmentation;
results in the Boundary region reflect the most challenging
calibration performance for an image segmentation; results
in the Local region generally reflect whether the calibration
method can handle spatial variations.

Downstream MAS setting. Multi-atlas segmentation
(MAS) relies on transferring segmentations from a set of
atlas images to a target image via deformable registration.
The segmentation in the target space is then obtained by a
label fusion method, which establishes a consensus among
the registered atlas labels. We use the label fusion strat-
egy by Wang et al. [64], which takes advantage of the label
probabilities. Hence, better-calibrated probabilities should
lead to better fusion accuracy (i.e., segmentation accuracy).

Statistical Considerations. To indicate the success of
probability calibration, we use a Mann-Whitney U-test [45]
to check for significant differences between the result of
LTS and the results for all other baseline methods (UC, TS,
IBTS, etc.). We use the Benjamini/Hochberg correction [4]
for multiple comparisons with a false discovery rate of 0.05.
Results are highlighted in green when LTS performs sig-
nificantly better than the corresponding method (no color
means no statistically significant differences).

Datasets. We use three datasets for our experi-
ments: The Common Object in Context (COCO) [42]
dataset, the Cambridge-driving Labeled Video Database
(CamVid) [7, 6], and the LONI Probabilistic Brain Atlas
(LPBA40) [62] dataset. Detailed descriptions and the train-
ing/validation/testing splits are in Appx. C.

4.1. FCN semantic segmentation on COCO

General: We use a Fully-Convolutional Network
(FCN) [43] with a ResNet-101 [23] backbone for seman-

tic segmentation on the COCO dataset. Tab. 1 shows our
quantitative evaluation results for calibrating such a seg-
mentation model. In the All region, TS and IBTS do not im-
prove calibration performance, possibly because the natural
images in the COCO dataset are complex and vary signifi-
cantly in type and shape, yet TS uses a global temperature
value for all images. IBTS performs slightly better than TS
on average because it uses an image-dependent temperature
scaling to capture image variations, though it cannot explain
the spatial image variations in the All region. Furthermore,
we observe that LTS is in general significantly better than
classical methods, i.e. IsoReg [68], VS [20], ETS [69] and
DirODIR [34]. This is likely because these classical meth-
ods treat each pixel/voxel independently without consider-
ing their spatial correlations in semantic segmentation.

Boundary: The relatively low segmentation perfor-
mance of the segmentation network suggests that such spa-
tial variations might matter. Specifically, semantic seg-
mentation results in a mean IOU of 63.7%, indicating how
challenging this dataset is. Further, all methods except
VS [20] show significant improvements in the Boundary re-
gion. This indicates that (1) these boundary regions share
common miscalibration patterns, which can be captured by
most methods, and (2) miscalibration effects are indeed, as
expected, more pronounced in these boundary regions.

Local: Different from the All region, the Local region
is based on randomly extracted small patches of an image.
Specifically, Local-Avg reflects the average performance of
local probability calibration while Local-Max reflects the
calibration performance in the most uncalibrated patch re-
gion thus measuring the worst-case calibration result. Re-
sults in ECE, SCE and ACE all suggests that LTS can cali-
brate the entire image region as well as local image regions.
Other approaches result in significantly worse calibrations.

MCE: Further, the MCE results illustrate that proba-
bility calibration for semantic segmentation is indeed very
challenging compared with classification. This is because
classification annotation is typically very accurate while
per-pixel/voxel annotation of semantic segmentation can be
difficult, especially at object boundaries. For example, in
the extreme case, if one pixel/voxel is annotated wrong but
predicted correct (or vice versa), then the accuracy is 0
while the prediction confidence is nearly 100%. This will
result in MCE values close to 100% for bin based evalua-
tion. Usually, these outliers make up only a small portion
of all pixels/voxels in an image. Examples for such outliers
can be observed in Fig. 2 uncalibrated patch 1 and 3 at the
lowest confidence point, where the percentage of samples
is very small, but the accuracy-confidence difference is no-
table. Thus, for all experiments, we expect that MCE can
be very high compared to the classification probability cal-
ibration literature. LTS can improve MCE values, but may
still result in large MCE values.
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Dataset Method
ECE(%)# MCE(%)# SCE(%)# ACE(%)#

All Boundary Local-Avg All Boundary Local-Avg All Boundary Local-Avg All Boundary Local-Avg
[Local-Max] [Local-Max] [Local-Max] [Local-Max]

FCN
COCO
(1000)

UC 12.44(17.87) 24.41(7.23) 14.48(20.89) 27.66(22.23) 38.61(7.22) 34.90(23.89) 20.24(18.75) 24.97(7.07) 20.05(21.67) 20.19(18.73) 24.46(7.26) 19.86(21.68)
[33.14(26.83)] [58.73(19.66)] [39.66(24.30)] [39.16(24.62)]

IsoReg [68] 12.55(14.22) 16.27(6.62) 15.35(16.81) 27.58(21.06) 33.36(10.01) 31.76(20.05) 22.28(15.35) 17.20(6.42) 21.65(17.77) 22.19(15.35) 16.40(6.77) 21.41(17.82)
[29.26(22.36)] [43.24(23.70)] [37.13(19.38)] [36.69(19.69)]

VS [20] 12.70(17.22) 24.60(6.98) 14.57(20.26) 38.40(16.92) 38.96(7.45) 41.20(20.23) 18.05(18.25) 25.00(6.90) 18.13(21.07) 17.98(18.25) 24.55(7.09) 17.92(21.07)
[29.89(17.28)] [50.42(25.40)] [32.31(18.43)] [32.22(18.40)]

ETS [69] 12.54(14.27) 15.68(6.79) 15.42(16.88) 27.36(21.01) 33.27(10.09) 30.92(20.34) 22.37(15.42) 16.72(6.58) 21.80(17.83) 22.29(15.41) 15.82(6.93) 21.57(17.87)
[29.41(22.44)] [42.72(24.68)] [37.33(19.41)] [36.85(19.75)]

DirODIR [34] 11.32(12.61) 14.17(17.73) 15.09(18.99) 26.66(18.43) 34.04(12.88) 32.54(24.79) 19.59(13.16) 15.27(7.75) 18.55(19.44) 19.67(13.15) 15.33(7.47) 18.71(19.34)
[26.85(23.36)] [46.07(18.04)] [34.48(23.17)] [34.46(23.18)]

TS [20] 12.53(14.28) 15.69(6.79) 15.41(16.89) 27.27(20.95) 33.27(10.17) 30.91(20.32) 22.36(15.42) 16.73(6.59) 21.78(17.85) 22.28(15.42) 15.83(6.94) 21.56(17.88)
[29.37(22.47)] [42.71(24.66)] [37.34(19.42)] [36.85(19.76)]

IBTS 11.92(13.83) 16.35(7.13) 14.80(16.63) 26.25(20.26) 33.29(9.96) 31.19(19.97) 21.68(15.31) 17.31(6.90) 21.06(17.81) 21.62(15.29) 16.40(7.33) 20.82(17.84)
[28.89(21.99)] [43.45(23.27)] [36.62(19.32)] [36.09(19.63)]

LTS 10.04(11.54) 13.44(6.23) 12.26(14.74) 26.17(15.67) 35.18(12.31) 31.66(17.66) 16.92(13.89) 14.53(6.18) 16.78(16.38) 16.91(13.93) 15.16(5.92) 16.85(16.45)
[24.31(18.63)] [40.13(20.39)] [30.05(17.45)] [30.21(17.60)]

Tiramisu
CamVid

(233)

UC 7.79(4.94) 22.79(5.76) 9.23(10.63) 22.64(12.72) 30.42(10.65) 30.33(16.63) 9.91(5.02) 24.62(5.69) 13.16(11.72) 9.90(5.01) 24.43(5.75) 13.15(11.73)
[25.35(12.80)] [56.15(14.61)] [30.60(12.48)] [30.60(12.46)]

TS [20] 3.45(3.52) 12.66(5.43) 7.31(7.72) 16.02(11.09) 23.57(12.88) 27.29(16.23) 9.42(3.90) 17.85(4.55) 13.50(10.14) 9.44(3.92) 17.61(4.59) 13.50(10.17)
[17.69(11.91)] [37.25(18.98)] [27.72(11.37)] [27.76(11.33)]

IBTS 3.63(3.65) 12.57(6.07) 7.25(7.67) 16.01(10.21) 23.24(13.00) 27.04(15.94) 9.47(3.89) 17.98(4.88) 13.48(10.12) 9.49(3.91) 17.75(4.92) 13.48(10.16)
[17.60(11.91)] [37.61(19.27)] [27.69(11.38)] [27.76(11.33)]

LTS 3.40(3.59) 11.80(5.20) 6.89(7.64) 12.44(7.48) 22.17(9.53) 27.64(16.67) 8.76(4.05) 17.77(4.26) 12.66(10.04) 8.73(4.03) 17.32(4.32) 12.61(10.07)
[16.61(11.81)] [37.92(20.47)] [26.78(11.22)] [26.76(11.22)]

MMCE [36] 4.45(4.03) – – 18.83(10.82) – – 8.59(5.98) – – 8.50(5.00) – –
[–] [–] [–] [–]

MMCE [36]+LTS 4.15(3.54) – – 17.98(10.69) – – 7.28(3.80) – – 7.17(3.84) – –
[–] [–] [–] [–]

FL [52] 3.47(3.11) 8.68(5.45) 9.01(7.19) 14.77(13.28) 17.62(13.53) 28.37(15.86) 7.46(3.43) 14.08(4.49) 14.09(9.78) 7.43(3.45) 13.63(4.57) 14.06(9.83)
[13.84(11.67)] [33.33(18.08)] [23.60(12.11)] [23.62(12.05)]

FL [52]+LTS 3.13(3.64) 11.06(5.55) 6.96(8.21) 14.51(11.07) 19.61(9.82) 26.91(16.06) 6.78(4.05) 15.28(4.76) 11.85(10.69) 6.73(4.05) 14.76(4.84) 11.83(10.73)
[12.66(12.87)] [32.27(19.08)] [22.04(13.05)] [22.10(12.96)]

U-Net
LPBA40

(40)

UC 5.58(1.16) 14.53(1.67) 5.62(0.95) 10.71(2.10) 19.18(1.71) 11.74(4.55) 7.34(1.04) 15.01(1.63) 8.24(3.08) 7.13(1.02) 14.64(1.62) 8.20(3.06)
[10.23(2.82)] [19.46(4.75)] [12.98(2.88)] [12.93(2.83)]

TS [20] 1.43(0.74) 8.74(1.07) 2.24(1.93) 4.37(3.73) 14.90(1.74) 6.68(4.44) 6.47(0.91) 10.06(1.10) 7.81(2.54) 6.30(0.90) 9.46(1.06) 7.77(2.55)
[5.66(2.49)] [11.03(5.31)] [11.49(2.53)] [11.49(2.48)]

IBTS 1.47(0.77) 8.79(1.14) 2.34(1.98) 4.40(3.65) 14.96(1.75) 6.79(4.36) 6.46(0.91) 10.10(1.17) 7.80(2.55) 6.29(0.90) 9.50(1.13) 7.76(2.56)
[5.81(2.46)] [10.84(4.60)] [11.51(2.54)] [11.51(2.49)]

LTS 0.90(0.51) 7.00(1.23) 1.90(1.38) 3.51(3.42) 12.33(1.96) 5.80(3.68) 6.27(0.93) 8.53(1.04) 7.60(2.49) 6.09(0.92) 7.93(1.08) 7.56(2.49)
[3.70(2.45)] [9.29(4.73)] [10.89(2.61)] [10.87(2.58)]

VoteNet+
LPBA40

(640)

UC 7.26(0.60) 12.78(0.75) 7.25(2.73) 12.65(0.76) 19.99(1.10) 12.67(3.14) 7.29(0.59) 12.79(0.75) 7.35(2.67) 2.30(0.39) 3.52(0.55) 6.25(2.87)
[11.16(1.77)] [16.72(1.63)] [11.22(1.78)] [10.23(1.58)]

TS [20] 5.07(0.59) 9.48(0.77) 5.08(2.48) 8.44(0.84) 18.69(1.27) 8.54(3.39) 5.11(0.58) 9.69(0.80) 5.29(2.39) 2.12(0.37) 3.38(0.52) 4.62(2.44)
[8.77(1.74)] [13.14(2.08)] [8.90(1.78)] [8.21(1.59)]

IBTS 2.77(0.37) 4.06(0.45) 3.14(1.09) 5.57(0.97) 16.90(2.20) 6.57(2.99) 3.28(0.39) 4.27(0.55) 3.96(1.26) 0.69(0.26) 2.30(0.40) 3.15(1.06)
[3.21(1.13)] [5.26(2.81)] [4.27(1.62)] [3.63(1.12)]

LTS 0.71(0.33) 4.18(0.73) 1.64(0.94) 1.46(0.67) 11.55(1.68) 3.54(2.02) 1.24(0.49) 4.87(0.83) 2.52(1.26) 0.30(0.24) 2.14(0.43) 1.90(1.00)
[2.43(1.64)] [4.52(3.26)] [3.45(1.94)] [2.69(1.35)]

Table 1: Calibration results for 4 different segmentation models on 4 different tasks. Results are reported in mean(std) format. The number
of testing samples are listed in parentheses underneath each dataset name. UC denotes the uncalibrated result. # denotes that lower is better.
Best results are bolded and green indicates statistically significant differences w.r.t. LTS (FL+LTS for CamVid). Note that due to GPU
memory limits, results of MMCE and MMCE+LTS are for downsampled images, thus can not be directly compared with other methods.
The goal of including them is to show that LTS can improve MMCE. LTS generally achieves the best performance on almost all metrics in
the All region, Boundary region and Local region. Additional results are in Appx. J.

4.2. Tiramisu semantic segmentation on CamVid
General: We use the Tiramisu segmentation model [28]

on the CamVid dataset. Tab. 1 shows quantitative results
for calibrating this segmentation model. Compared with
the results for the COCO dataset, all four metrics are re-
duced greatly. This is mainly because the images in CamVid
only contain 11 class street scenes and the images are rel-
atively consistent for such scenes. Instead, images from
the COCO dataset show different objects in different im-
ages. See Appx. I for details. Results are consistent with
the COCO dataset. Specifically, (1) LTS can calibrate both
the All region probabilities as well as the local regions in-
side an image; (2) LTS is, in general, significantly better
than TS and IBTS for most comparisons.

Joint Prediction and Calibration: Further, we show
that our approach is beneficial for methods that jointly op-
timize prediction and calibration [36, 52]. MMCE [36] and
FL [52] both consider miscalibration when training seman-
tic segmentation networks. Tab. 1 shows that compared to
the uncalibrated results, both MMCE and FL work signif-

icantly better. Furthermore, with LTS as a post-hoc cal-
ibration, calibration performance further consistently im-
proves (except Boundary regions for FL). These findings
are consistent with the results in [52] where TS is used
as a post-hoc calibration method and the authors show
that MMCE+TS and FL+TS work consistently better than
MMCE and FL. Hence, this favors our LTS as a successful
post-hoc calibration method for segmentation.

4.3. U-Net segmentation on LPBA40
General: We use a customized 3D U-Net [9] for the seg-

mentation of the LPBA40 dataset. Tab. 1 shows quantitative
results for calibrating this segmentation model. All three
methods calibrate the probabilities relatively well in this ex-
periment. This might be because images have been affinely
registered to a common atlas space, which reduces the vari-
ations of images and may make it easier for TS, IBTS and,
LTS to calibrate both in the All region and the Boundary re-
gion. This might also explain the performance differences
between the computer vision datasets and the medical imag-
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Method ASD (mm)# SD (%)" 95MD (mm)# VD (%)" VC(All) (%) VC(Boundary) (%)

All Boundary rate w!c " c!w # rate w!c " c!w #
Best Fusion 0.04(0.01) 99.06(0.23) 0.18(0.08) 98.99(0.19) 97.29(0.45) 20.53(1.13) 94.62(0.93) 0.00(0.00) 35.85(1.06) 94.11(0.90) 0.00(0.00)

Best Calibration 0.27(0.04) 93.51(1.01) 1.69(0.20) 93.71(0.73) 87.70(1.09) 13.96(0.43) 98.88(0.18) 0.00(0.00) 25.93(0.46) 98.68(0.21) 0.00(0.00)
UC 0.99(0.07) 75.89(1.79) 3.82(0.26) 81.19(1.09) 61.01(1.13) - - - - - -
TS 0.99(0.07) 75.85(1.80) 3.83(0.27) 81.21(1.08) 61.01(1.13) 0.45(0.03) 43.20(1.33) 40.16(1.23) 0.73(0.04) 39.34(1.32) 41.37(1.24)

IBTS 1.00(0.07) 75.75(1.82) 3.86(0.27) 81.20(1.08) 60.87(1.13) 1.43(0.12) 41.14(1.56) 43.27(1.35) 2.35(0.17) 36.93(1.45) 45.14(1.30)
LTS 0.98(0.07) 75.96(1.78) 3.82(0.26) 81.27(1.07) 61.15(1.13) 1.88(0.14) 42.42(1.43) 37.53(1.04) 2.96(0.18) 40.51(1.15) 35.59(1.01)

Table 2: MAS label fusion results based on calibrated probabilities. #(") indicates that lower(higher) values are better. mm denotes
millimeter. UC denotes uncalibrated results. VC denotes voxel annotation changes between the uncalibrated approach to the corresponding
method: w!c is from wrong voxel annotation to correct voxel annotation; c!w is from correct voxel annotation to wrong voxel annotation.
Rate is calculated based on the number of changes out of the possible number of changes. (Note that many voxel annotations can not change
because all atlas annotations give the same label, thus a change in probability would not change the voxel annotation.) LTS generally
improves segmentations slightly. After LTS probability calibration, JLF changes more voxels than for TS and IBTS. Further, the difference
between the correct conversion and the incorrect conversion is improved over TS and IBTS. This indicates that JLF can produce better
segmentations with a better probability calibration and suggests that downstream tasks may in general benefit from better calibration.

ing dataset in Tab. 1. See Appx. I for details. Differences
between calibration performance among TS and IBTS are
relatively small. However, LTS still performs best with re-
spect to most metrics.

Spatial Variation: Furthermore, when it comes to the
Local region analysis, LTS consistently works best. Fig. 2
visualizes such difference via reliability diagrams. The red
arrows highlight that TS, IBTS and LTS calibrate proba-
bilties for the whole image well but only LTS consistently
performs well in the Local region. This indicates the supe-
riority of LTS’s spatially-variant probability calibration.

4.4. Downstream MAS label fusion on LPBA40
We use a customized VoteNet+ [13] for multi-atlas seg-

mentation on the LPBA40 dataset. In this approach, a net-
work (VoteNet+) is trained to locally predict if a labeled at-
las that has been registered to the target image space should
be considered trustworthy or not. Label fusion (among the
registered atlas images) can then make use of these proba-
bilities to obtain the multi-atlas segmentation results. It is
these VoteNet+ probabilities that we seek to calibrate.

Calibration Metrics: Tab. 1 shows our quantitative cal-
ibration results. Different from the U-Net experiments in
§4.3, we observe bigger differences between the calibration
approaches. This might be because the VoteNet+ calibra-
tion experiment has sufficient training data (as multi-atlas
segmentation performs image registrations from each at-
las image to each target image) whereas the experiments
in §4.3 are much more data-starved. Besides, as the labeled
atlases are registered to the target image space via a flexible
non-parametric registration approach, data variance is fur-
ther reduced in comparison to the affine registrations used
as preprocessing in §4.3. Tab. 1 shows that all three meth-
ods calibrate probabilities well, and that performance or-
der is consistent with model complexity. I.e., LTS performs
better than IBTS, and IBTS performs better than TS. These
differences are statistically significant.

Label Fusion with Probability: Tab. 1 only demon-
strates that the calibration approaches can improve the cal-
ibration of the VoteNet+ output. To obtain the multi-atlas

segmentation result, we need to use label fusion. As the
joint label fusion (JLF) approach [64] we use for this pur-
pose can make use of the VoteNet+ label probabilities, it is
natural to ask if improved calibration results translate to im-
proved segmentations via JLF. Tab. 2 shows that while dif-
ferences are small, consistent improvements can indeed be
observed. Hence, our proposed LTS not only shows good
calibration performance on traditional metrics (i.e. ECE,
MCE, SCE and ACE), but can also benefit downstream
tasks that are sensitive to accurate probabilities. For com-
parison, we also show two theoretical upper bounds. The
Best Fusion bound, which is obtained by assigning the cor-
rect label to the segmentation result if at least one atlas pro-
vides the right label; and the Best Calibration bound, which
is obtained by assigning a probability of 1 if the prediction
by VoteNet+ is correct and 1/|L| otherwise, followed by
JLF. We observe that there is still a large room to improve
probability calibration as the obtained results are far from
the two upper bounds.

5. Conclusion and Future Work
We introduced LTS, a general temperature scaling

method that allows for spatially-varying probability calibra-
tion for multi-label semantic segmentation. Experiments on
the COCO, CamVid and LPBA40 datasets show that LTS
outperforms probability calibration approaches which can-
not account for spatially-varying miscalibration. LTS not
only works for standard segmentation models but can also
benefit models that aim to jointly optimize prediction and
calibration. Further, using a multi-atlas brain segmentation
experiment we demonstrated that downstream tasks may
benefit from improved probability calibration. Future work
could focus on further calibration improvements. For ex-
ample, LTS could be easily extended to a bin-wise setting as
in [30] or use distributions conditioned on classes as in [51].
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John S Duncan, and Sébastien Ourselin. Global image regis-
tration using a symmetric block-matching approach. Journal
of Medical Imaging, 1(2):024003, 2014. 14

[50] Marc Modat, Gerard R Ridgway, Zeike A Taylor, Manja
Lehmann, Josephine Barnes, David J Hawkes, Nick C Fox,
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