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Abstract

When capturing panoramas, people tend to align their
cameras with the vertical axis, i.e., the direction of gravity.
Moreover, modern devices, e.g. smartphones and tablets,
are equipped with an IMU (Inertial Measurement Unit) that
can measure the gravity vector accurately. Using this prior,
the y-axes of the cameras can be aligned or assumed to be
already aligned, reducing the relative orientation to 1-DOF
(degree of freedom). Exploiting this assumption, we pro-
pose new minimal solutions to panoramic stitching of im-
ages taken by cameras with coinciding optical centers, i.e.
undergoing pure rotation. We consider six practical cam-
era configurations, from fully calibrated ones up to a cam-
era with unknown fixed or varying focal length and with or
without radial distortion. The solvers are tested both on
synthetic scenes, on more than 500k real image pairs from
the Sun360 dataset, and from scenes captured by us using
two smartphones equipped with IMUs. The new solvers
have similar or better accuracy than the state-of-the-art
ones and outperform them in terms of processing time.

1. Introduction
Panoramic image stitching is a fundamental problem in
computer vision. It is useful not only for creating visually
pleasing image mosaics, but also for combining inputs from
multiple cameras before further processing in downstream
tasks. The generated images cover a large field-of-view and
are useful in various applications, e.g. image-based localiza-
tion [3], SLAM [25, 18], autonomous driving [33], sports
broadcasting [7], video surveillance [35], and augmented
and virtual reality [17, 27].

When solving this problem, we are given a sequence
of images taken from a single point in space with a cam-
era rotating around some 3D axis. The objective is to map
the images into a common reference frame and to create a
larger image composed of the captured ones, thus, covering
a much wider field-of-view than each individual image. In

g

Figure 1: Panorama stitching with known gravity vector g.

other words, the goal is to estimate the unknown relative ro-
tation and intrinsic parameters of cameras with coinciding
optical centers, i.e., cameras undergoing a pure rotational
motion. This problem is often considered to be solved in
the computer vision community, with a number of existing
solutions [15, 5, 10, 19, 6, 22]. However, in this paper, we
will show that the existing solutions do not exploit all avail-
able information that can be easily obtained from recent de-
vices. This information can be used to simplify the problem
formulation and to speed up the solution.

A typical panorama stitching pipeline consists of the fol-
lowing three major steps.
1. Pair-wise matching: In the first step, image features are

obtained and tentative correspondences are matched be-
tween all image pairs.

2. Robust pair-wise estimation: From correspondences
found in the first step, the intrinsic and extrinsic parame-
ters of pairs of cameras are estimated robustly. Also, the
correspondences consistent with the parameters are se-
lected. The robust estimation is usually based on solving
the stitching problem from a minimal number of input
correspondences, i.e., solving the problem using a mini-
mal solver, in a RANSAC framework [5].

3. Bundle adjustment (BA): The pair-wise estimates of in-
trinsic and extrinsic parameters are refined jointly over
all images using a non-linear optimization.

In this paper, we address the second step of this pipeline,
i.e., the robust pair-wise estimation from a minimal number
of correspondences. Several minimal solvers exists that can
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(a) Full panoramic image (b) Image pair (c) Stitching

Figure 2: Example scenes and stitching results from the SUN360 (top) and our Smartphone (bottom) datasets.

be used in this step of the panoramic stitching pipeline. One
of the basic well-known solvers for stitching assumes fully
calibrated pinhole cameras and estimates the unknown ro-
tation from two point correspondences [16]. However, the
camera intrinsic parameters may not be known in practice,
which is often the case in the real-world. Solutions to dif-
ferent camera configurations can be split into two main cat-
egories: the unknown focal length for narrow field-of-view
cameras, and the unknown focal length and radial distor-
tion case for wide-angle cameras. For the unknown focal
length case, one of the most commonly used solvers is the
normalized 4 point linear solution for homography estima-
tion [15]. In [5], the authors demonstrated that 2 and 3 cor-
respondences are sufficient for obtaining the homography
induced by a rotation with 1 and 2 unknown focal lengths.

In practice, almost all cameras exhibit some amount of
lens distortion. Moreover, wide-angle lenses with signifi-
cant radial distortion are now commonly used in smart de-
vices. These wide-angle cameras introduce large distortions
that cannot be ignored. Previous work [10, 19] showed that
modeling lens distortion inside the minimal solver is critical
for obtaining high-quality homography estimates. Without
modeling distortion in the pair-wise step, not only the initial
pose and calibration estimates are less accurate but the set of
inliers used for the non-linear optimization does not cover
the whole image and misses highly distorted points from
around the borders. Without such points, the non-linear
optimization in the BA stage may not be able to correctly
estimate the lens distortion and to produce good stitching
results. To address this problem, Fitzgibbon [10] used the

single parameter division model to simultaneously estimate
the homography and radial distortion using 5 point corre-
spondences. With this division model, a minimal 3 point
solver was proposed for panoramic stitching with equal and
unknown radial distortion [19, 6]. In [22], two solvers were
proposed for estimating the homography between two cam-
eras with different radial distortions.

All the mentioned minimal solvers estimate the full 3-
DOF rotation. Especially for cameras with radial distortion,
this makes the resulting system of polynomial equations
complicated. Panoramas are usually captured with cam-
eras or mobile phones aligned with the direction of grav-
ity. Moreover, recent devices usually are equipped with
an IMU sensor that can measure the gravity direction ac-
curately. Using the gravity prior, the y-axes of the cameras
can be aligned, reducing their relative orientation to 1-DOF.
This prior not only simplifies the geometry and polynomial
systems that have to be solved but, also, reduces that num-
ber of correspondences needed for the estimation. This is
extremely important since the run-time of RANSAC-like
robust estimation depends exponentially on the sample size.
The gravity prior was used to simplify minimal relative
pose [11, 12, 28, 32, 24, 30, 8, 9], absolute pose [21, 31, 2],
and general radial distortion homography solvers [29]. Sur-
prisingly, it was not considered in panoramic stitching.

We present the first minimal solutions to panoramic
stitching of images taken by two cameras with coinciding
optical centers, i.e., undergoing pure rotation, exploiting a
gravity prior. We consider six practical configurations:

(i) H1(G) - Calibrated case: The images are captured
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by a camera with known focal length (e.g., from
EXIF-tag) and known or negligible radial distortion.

(ii) H1f(G) - Equal focal length: The images are cap-
tured by a camera with fixed unknown focal length
and known or negligible radial distortion.

(iii) H1λ(G) - Equal radial distortion: The images are
captured by a camera with known focal length (e.g.,
from EXIF-tag) and fixed unknown radial distortion.

(iv) H2λf(G) - Equal focal length and radial distor-
tion: The images are captured by a camera with fixed
unknown focal length and radial distortion.

(v) H2f1,2(G) - Varying focal lengths: The images are
captured by cameras with different focal lengths, e.g.,
a zoom camera, with negligible or known distortion.

(vi) H3λ1,2f1,2(G) - Varying focal lengths and radial
distortion: The most general case, where the images
are captured by cameras with different focal lengths
and distortions, e.g., using a wide-angle camera that
was zooming during the image capture.

Experiments both on synthetic data and more than 500k
real image pairs demonstrate that our new solvers are supe-
rior to the state-of-the-art methods in terms of processing
time while leading to comparable or better accuracy.

Note, that the application of our solvers is not only lim-
ited to panoramic stitching. Such solvers can also be used
in other applications, e.g., for calibrating rotating surveil-
lance [1] or PTZ cameras in sport matches [7], where the
cameras undergo purely rotational motion, and to generate
images with larger field of view for subsequent tasks, e.g.
localization, and as inputs to CNNs.

2. Problem Statement
Given a set of 3D points {Xi} observed by two cameras un-
dergoing a pure rotational motion, let pd

1i = [ud
1i, v

d
1i, 1]

�

and pd
2i = [ud

2i, v
d
2i, 1]

� be the corresponding measured
distorted image projections of Xi in these two cameras in
their homogeneous form. Undistorted image points pu

1i =
u(pd

1i, λ1) and pu
2i = u(pd

2i, λ2), undistorted with some
undistortion function u(·,λ), are related by

d2iK
−1
2 pu

2i = d1iRK−1
1 pu

1i, (1)

where d1i, d2i are the projective depths, K1,K2 are the in-
trinsic camera matrices, and R ∈ SO(3) is the unknown
relative rotation between the cameras.

We use the one-parameter division model [10] to param-
eterize the radial undistortion function u. This model is es-
pecially suited for minimal solvers since it is able to express
a wide range of distortions with a single parameter and usu-
ally results in simpler equations compared to other distor-
tion models. This model has been used for the simultaneous

estimation of two-view geometry and lens distortion [10],
for the estimation of radial distortion homography [22], and,
also, for panorama stitching with radial distortion [6, 19].

In the one-parameter division model [10], the undistor-
tion function u, that undistorts an image point with homo-
geneous coordinates pd = [ud, vd, 1] using undistortion pa-
rameter λ, has the following form

pu = u(pd, λ) = [ud, vd, 1 + λ(u2
d + v2d)]

�. (2)

In this paper, we assume that the gravity direction is
known. This is a reasonable assumption since panoramas
usually are captured by cameras or mobile phones aligned
with the direction of gravity. Moreover, smart devices are
equipped with IMU sensors that can measure the gravity
vector accurately. Using the gravity direction, we can com-
pute the roll and pitch angles and use them to align the y-
axes of the cameras. Let us denote the known rotation ma-
trices used for the alignment of the two cameras as R1 and
R2. In this case, (1) can be written as

d2iR2K
−1
2 pu

2i = d1iRyR1K
−1
1 pu

1i, (3)

where Ry is the unknown rotation from the yaw angle (the
unknown rotation around the y-axis).

For most modern CCD or CMOS cameras, it is reason-
able to assume that the camera has square-shaped pixels
and that the principal point coincides with the image cen-
ter [14]. In this case, the calibration matrices have the form
K1 = diag(f1, f1, 1) and K2 = diag(f2, f2, 1). The rela-
tion (3) between the undistorted image points pu

2i and pu
1i

can be expressed using a 3× 3 homography matrix H as

pu
2i ∼ Hpu

1i, (4)

where H = K2R
�
2 RyR1K

−1
1 , and ∼ indicates the equal-

ity up to a scale factor. The scale, which is equal to d1i

d2i
can

be eliminated by multiplying (4) with the skew symmetric
matrix [pu

2i]×, resulting in

[pu
2i]×Hpu

1i = 0. (5)

Moreover, equation (5) can be multiplied by f1
f2

resulting in

[pu
2i]×Gpu

1i = 0, (6)

where
G = K̃2R

�
2 RyR1K̃

−1
1 , (7)

with K̃2 = 1
f2
K2 = diag(1, 1, w2), w2 = 1

f2
and K̃−1

1 =

f1K
−1
1 = diag(1, 1, f1). Since K̃2 contains unknowns

only in its last row and column, one equation from (6) does
not contain w2 = 1

f2
and λ2.

The rotation matrix Ry can be parameterized using the
Cayley parameterization, which results in a degree-2 poly-
nomial matrix with only one parameter as follows:

Ry =
1

1 + s2



1− s2 0 2s

0 1 + s2 0
−2s 0 1− s2


 . (8)
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In this case, s corresponds to tan θ
2 , and θ is the yaw an-

gle. Hence, cos θ = 1−s2

1+s2 and sin θ = 2s
1+s2 . Since (5) is

homogeneous, the scale factor 1
1+s2 in (8) can be ignored.

Note that (8) introduces a degeneracy for a 180◦ rotation.
However, it was shown in [32, 9, 23] that this degeneracy
is not a problem in practice. An alternative formulation is
to use the cosines and sines parameterization, which needs
two parameters and produces an extra trigonometric identity
constraint and, thus, a slower solver with more solutions.
Therefore, we only focus on the Cayley parameterization in
this paper. Our goal is to estimate the rotation, focal lengths
and, potentially, radial distortion parameters of two cameras
using the minimal number of point correspondences.

3. Minimal Solutions
In this section, we present new minimal solutions
to four practical camera configurations, i.e., solvers
H1(G), H1f (G), H1λ(G), H2λf (G). New minimal solvers
H2f1,2(G) and H3λ1,2f1,2(G) for varying focal lengths and
radial distortions are described in the Supp. material (SM).

3.1. Calibrated Case - H1(G)

A simple case arises when the two cameras have known fo-
cal length and known or zero radial distortion, i.e., λ1 =
λ2 = 0. As such, the new H1(G) solver can be used for
images that are captured by a calibrated camera or a camera
with known focal length (e.g., from EXIF-tag) and negligi-
ble distortion, i.e., narrow field-of-view. In practice, H1(G)
can also be used for images captured by wide-angle smart-
phone cameras, which are often undistorted automatically.

This is a 1-DOF problem with respect to s in Ry (8).
Since (6) contains a skew symmetric matrix of rank 2, each
point correspondence gives two linearly independent con-
straints (6). Therefore, one point correspondence leads to
an over-constrained problem. One way of solving this prob-
lem is to use a single equation from (6). Such a solver has
to find the roots of one quadratic equation in one unknown.
However, it can be sensitive to noise. Therefore, we formu-
late this problem in a least square sense as

min
s

(e21(s) + e22(s) + e23(s)), (9)

where ei(s), i = 1, 2, 3 are three quadratic polynomials
in s from matrix equation (6). The H1(G) solver finds
the solution to (9) by computing all stationary points of
e(s) = e21(s)+e22(s)+e23(s) and selecting the solution that
minimizes (9). This leads to solving one univariate polyno-
mial of degree three, i.e., de(s)

ds = 0.

3.2. Common Focal Length Solver - H1f(G)

In the next configuration, we consider two cameras with
common unknown focal length, i.e., f1 = f2 = f , and
known or zero radial distortion, i.e., λ1 = λ2 = 0. This

is a practical scenario that appears in many situations when
we have images taken by an uncalibrated camera with fixed
unknown focal length and with negligible distortion.

This is a 2-DOF problem with respect to {s, f} that can
be solved from one point correspondence. Given one point
correspondence, constraint (6) leads to three equations from
which only two are linearly independent (because of the ma-
trix [pu

2i]×). These equations have the following form
a1 · [s2fw, s2f, s2w, s2, sfw, sf, sw, s, fw, f, w, 1]� = 0, (10)

a2 · [s2fw, s2f, s2w, s2, sfw, sf, sw, s, fw, f, w, 1]� = 0, (11)

a3 · [s2f, s2, sf, s, f, 1]� = 0, (12)

where a1,a2,a3 are coefficient vectors that can be com-
puted from the point correspondence and the gravity di-
rection and w = 1/f . Note, that equations (10) and (11)
can be multiplied with f = 1/w to obtain polyno-
mial equations in two unknowns {s, f} and 9 monomials
{s2f2, s2f, s2, sf2, sf, s, f2, f, 1}. Using (12), f can be
expressed as a rational function in s. Substituting this ex-
pression into (10) or (11) and multiplying it with the denom-
inator gives us an univariate polynomial in s of degree 6.
This polynomial has, however, always the factor 1+ s2 that
can be eliminated. In this way, we obtain a quartic equation
in s, which can be solved in closed-form. Finally, there are
up to 4 possible solutions for Ry and f .

3.3. Common Radial Distortion Solver - H1λ(G)

Another practical case occurs when the two cameras have
known focal lengths and an equal but unknown radial distor-
tion, i.e., λ1 = λ2 = λ. This happens when the images are
captured by a fixed wide-angle camera whose focal length
can be extracted from the EXIF-tag.

This is a 2-DOF problem with respect to {s, λ}. Simi-
lar to Sec. 3.2, one point correspondence in (6) gives three
equations (two linearly independent ones) of the form

a1 · [s2λ2, s2λ, s2, sλ2, sλ, s, λ2, λ, 1]� = 0, (13)

a2 · [s2λ2, s2λ, s2, sλ2, sλ, s, λ2, λ, 1]� = 0, (14)

a3 · [s2λ, s2, sλ, s, λ, 1]� = 0, (15)

where a1,a2,a3 are coefficient vectors that can be com-
puted from the point correspondence and the gravity direc-
tion. Using (15), λ can be expressed as a rational func-
tion in s. Substituting this expression into (13) or (14) and
multiplying it with the denominator gives us an univariate
polynomial in s of degree 6. This polynomial has again the
factor 1 + s2 that can be eliminated, resulting in a quartic
equation in s. Finally, there are up to 4 possible solutions.

3.4. Common Focal Length, Distortion - H2λf(G)

Finally, we address the problem where the images are taken
by a camera with fixed unknown focal length and radial dis-
tortion, i.e. f1 = f2 = f and λ1 = λ2 = λ in (6). In
this case, there are three unknowns {s, f, λ}, and we need
at least 1.5 point correspondences. In practice, we still need
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H4 H4f (G) H2 H2f H5λ H3λf H1(G) H1f (G) H1λ(G) H2λf (G)

Reference [15] [8] [16] [5] [10] [19][6]
Radial distortion � � � �
No. of points 4 4 2 2 5 3 1 1 1 2
No. of solutions 1 24 1 3 18 18 1(1) 4(2) 4(2) 6(2)
Gravity prior � � � � �
Pure R � � � � � � �
DOF 8 7 3 4 9 5 1 2 2 3

Table 1: The properties of the proposed gravity-based (gray) and state-of-the-art solvers. The number of solutions in brackets
refers to a special case when the y-axis of the camera is considered to be physically aligned with the gravity direction.

to sample 2 points, but we only need 3 out of the 4 linearly
independent equations. The 4th equation can be used to
eliminate geometrically infeasible solutions.

Two out of the three equations from (6) are of degree 6
and one is of degree 4, i.e., the equation of degree four cor-
responds to the last row of matrix [pu

2i]× that does not con-
tain λ and multiplies only the first two rows of K̃2, which do
not contain f . Therefore, to solve the problem we use equa-
tions of degree 6 and 4 from the first correspondence and
the equation of degree 4 from the second correspondence.
We obtain the following three equations

a1 · [s2f2λ2, s2f2λ, s2f2, s2fλ, s2f, s2, sf2λ2,

sf2λ, sf2, sfλ, sf, s, f2λ2, f2λ, f2, fλ, f, 1] = 0, (16)

a2 · [s2fλ, s2f, s2, sfλ, sf, s, fλ, f, 1] = 0, (17)

a3 · [s2fλ, s2f, s2, sfλ, sf, s, fλ, f, 1] = 0. (18)

Parameter λ always appears together with f , so we let τ =
fλ. In this case, the three equations above are written as

a1 · [s2τ2, s2fτ, s2f2, s2τ, s2f, s2, sτ2,

sfτ, sf2, sτ, sf, s, τ, fτ, f2, τ, f, 1] = 0, (19)

a2 · [s2τ, s2f, s2, sτ, sf, s, τ, f, 1] = 0, (20)

a3 · [s2τ, s2f, s2, sτ, sf, s, τ, f, 1] = 0. (21)

This system in unknowns {s, f, τ} can be solved using
the Gröbner basis method. Using the automatic generator
[23], we obtained a solver that performs G-J elimination of
a template matrix of size 30× 38, and eigendecomposition
of an 8 × 8 action matrix, i.e., the system has 8 solutions.
There are always two infeasible imaginary solutions of the
form s2 = −1 and only up to 6 possible real ones.

An alternative and more efficient way of solving such
a system is to eliminate f, τ from the original equations.
Using (20) and (21), τ and f can be expressed as rational
functions in s. Then substituting the formulations of τ and
f into (19), we obtain a univariate polynomial in s of degree
8. This polynomial has again the factor 1 + s2 that can be
eliminated, resulting in sextic equation in s, which can be
efficiently solved using Sturm sequences [13].

3.5. Special case

If the y-axis of the camera is considered to be physically
aligned with the gravity direction, i.e., R1,R2 are identity

matrices, there are many zero coefficients in the systems in
our solvers. In such a scenario, all four solvers are very
simple and result in one quadratic equation. The properties
of all the stitching solvers are shown in Table 1.

4. Experiments

In this section, we study the performance of the proposed
H1(G), H1f (G), H1λ (G), and H2λf (G) solvers on both
synthetic and real images. For comparison, the following
state-art-solvers are considered: (1) general 4pt homogra-
phy solver H4 [15]; (2) homography with unknown f and
known gravity H4f (G) [8]; (3) calibrated stitching solver
H2 [16]; (4) stitching solver with unknown f , H2f [5];
(5) homography with unknown distortion λ, H5λ [10]; (6)
stitching with unknown f and λ, H3λf [19, 6]. Since [6]
solves the same problem as [19], but the method in [6] is
more stable than [19], we included [6] in our experiments.
All solvers, together with their properties and the color cod-
ing used in the experiments, are summarized in Table 1.

Experiments with our solvers H2f1,2(G) and
H3λ1,2f1,2(G) for varying focal lengths and radial distor-
tions and state-of-the-art solvers H3f1,2 [5], H5λ1,2 [22]
and H6λ1,2 [22] are in the SM. All solvers get randomly
selected minimal samples of their respective sizes as input.

4.1. Synthetic Evaluation

We choose the following setup to generate synthetic data.
200 points are randomly distributed in the box [−3, 3] ×
[−3, 3]× [4, 6] in the first camera’s local coordinate system.
A random but feasible rotation is applied to the points. The
focal length fg is set to 1000 pixels. We generate 1000 pairs
of images with different rotations. The focal length error is
|fe − fg| /fg , where fe is the estimated focal length. The

rotation error is εR = arccos
((

tr
(
ReRg

�
)
− 1

)
/2
)

,
where Re is the estimated and Rg is the ground truth 3-
DoF rotation matrix. This is a fair comparison since it ac-
counts for the error in the gravity direction as well, that is
incorporated in Re when the proposed solvers are used.

Fig. 3a reports the focal length (left column) and rota-
tion errors (right) of the solvers assuming zero distortion.
The top row shows the performance under increasing im-
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(b) Radial distortion.

Figure 3: (a) Boxplot of the relative focal length error and rotation error for the zero distortion case. Left column: Relative
focal length error. Right column: Rotation error. (b) Boxplot of the relative focal length error and absolute distortion
error for the distortion solvers. Left column: Relative focal length error. Right column: Absolute distortion error. From
top to bottom: increased image measurement noise, increased roll noise with constant 2 pixel standard deviation image
measurement noise, increased pitch noise with constant 2 pixel standard deviation image measurement noise.

age noise with different standard deviations. The proposed
H1(G) (red) and H1f (green) solvers perform significantly
better than the other ones under varying image noise.

Since, in real applications, the alignment of the camera
or the gravity vector measured by the IMU is not perfect,
we also added noise to the roll and pitch angles. The mid-
dle and bottom rows show the performance with increas-
ing roll and pitch noise under constant image noise of 2
pixel standard deviation. Our solvers are comparable to the
state-of-the-art methods even with roll and pitch noise up to
0.5◦. The upper bound of the noise is chosen to follow the
noise from the lower grade MEMS IMUs [24]. Nowadays,
accelerometers used in modern smartphones and camera-
IMU systems have noise levels around 0.06◦ and expensive
“good” ones have lower than 0.02◦ [12].

We also study the performance of the radial distortion
solvers. The distortion parameter was set to λg = −0.4,
corresponding to medium distortion. The error was defined
as λg − λe, where λe is the estimated distortion. Fig. 3b re-
ports the relative focal length (left) and absolute radial dis-
tortion error (right). Our new solvers H1λ(G) (blue) and
H1λf (G) (magenta) outperform the state-of-the art ones
H3λf and H5λ that are very sensitive to noise. For H5λ,

we extracted the focal length using the method from [5].

4.2. Real-world Experiments

To test the proposed techniques on real-world data, we
chose the SUN360 [34] panorama dataset. The purpose of
the SUN360 database is to provide academic researchers a
comprehensive collection of annotated panoramas covering
360 × 180-degree full view for a large variety of environ-
mental scenes, places and the objects within. To build the
core of the dataset, high-resolution panorama images were
downloaded and grouped into different place categories.

To obtain radially distorted image pairs from each 360◦

panoramic scene, we cut out images simulating a 80◦ FOV
camera with a step size of 10◦. Thus, the rotation around the
vertical axis between two consecutive images is always 10◦.
Finally, image pairs were formed by pairing all images with
a common field-of-view in each scene. In total, 579, 800
image pairs were generated. Moreover, to test the methods
also in cases when there is no distortion, we undistorted the
images using the ground truth distortion parameters. In each
image, 8000 SIFT keypoints are detected in order to have a
reasonably dense point cloud and a stable result [20]. We
combined a mutual nearest neighbor check with the stan-
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dard distance ratio test [26] to establish tentative correspon-
dences [20]. To get ground truth correspondences which
can be used to calculate the re-projection error, we com-
posed the ground truth homography and selected its inliers
given the used inlier-outlier threshold. Methods not esti-
mating the focal length were provided the ground truth.

To test the solvers on real-world data, we chose GC-
RANSAC [4]. In GC-RANSAC, two different solvers are
used: (a) one for estimating the homography from a mini-
mal sample and (b) one for fitting to a larger-than-minimal
sample when doing final homography polishing on all in-
liers or in the local optimization step. For (a), the objec-
tive is to solve the problem using as few correspondences
as possible since the processing time depends exponentially
on the number of correspondences required for the estima-
tion. The proposed solvers are included in this step. For
(b), when testing the methods on the distorted images, we
applied the H6λ1,2 solver [22] to estimate the homography
and distortion parameters from a larger-than-minimal sam-
ple. Therefore, even minimal solvers not estimating the ra-
dial distortion obtain reasonably accurate solutions. In case
when the undistorted images are used, we applied the nor-
malized H4 [15] homography estimator. The inlier thresh-
old was set to 3 pixels. Note that the situation where the y-
axes of the cameras are physically aligned with the gravity
direction, i.e., R1 = R2 = I with pure rotation, is a degen-
erate configuration for the H4f (G) [8] solver. In such cases
this solver does not give meaningful results. Since our real
data was close to this degenerate situation (approximately
aligned) we exclude H4f (G) in the real experiments.

Table 2 reports the average processing times (in ms), re-
projection error (in pixels) and focal length error (in %) both
on the distorted and undistorted images. The correspond-
ing cumulative distribution functions (CDF) on the distorted
images are shown in Fig. 4. Being accurate is interpreted as
a curve close to the top-left corner. CDFs for undistorted
images are in the supplementary material.
Undistorted images. After the images have been undis-
torted, all methods lead to fairly similar re-projection er-
rors. In the calibrated case, the proposed H1(G) solver is
the fastest while leading to similarly accurate results as the
other solvers. Among the methods that estimate the focal
length, the proposed H1f (G) solver leads to the most accu-
rate focal lengths while being the fastest.
Distorted images. When having images with unknown
radial distortion and known focal length, the proposed
H1λ(G) solvers obtains the most accurate stitching results
in terms of re-projection error while, simultaneously, being
the fastest. In the unknown focal length case, the proposed
H1f (G) solver has the lowest run-time and it is the second
most accurate algorithm. In this case, the H3λf method is
the most accurate while, however, it is also the slowest.
Smartphone images. To further show the benefits of the

Undistorted SUN360 images Distorted SUN360 images
εr (px) εf (%) t (ms) εr (px) εf (%) t (ms)

H1(G) 0.7 – 9.1 3.0 – 19.3
H1λ(G) 0.7 – 11.6 2.6 – 12.2
H2 0.7 – 10.9 3.5 – 25.1
H4 0.7 – 13.0 2.9 – 26.5
H5λ 0.7 – 104.1 3.7 – 186.1
H1f(G) 0.7 0.1 7.8 2.4 2.9 16.5
H2f 0.7 0.1 12.4 3.1 2.6 25.9
H2λf(G) 0.7 0.3 15.0 3.8 1.7 22.3
H3λf 0.6 0.4 46.6 1.1 1.0 59.1

Table 2: The avg. run-time (t; ms), median re-projection (εr;
px) and focal length (εf ; %) errors on 579, 800 image pairs
from the SUN360 dataset. Top part: known focal length
solvers. Bottom part: unknown focal length solvers. Best
and second best results are shown, respectively, in red and
blue. The corresponding CDFs are in Fig 4.

proposed solvers, we tested them on the data recorded from
two devices (iPhone 6s, iPhone 11 pro) with three cam-
eras: the wide-angle cameras of the iPhone 6s and iPhone
11 with focal lengths of 29mm and 26mm, respectively,
and the ultra wide-angle camera of the iPhone 11 with
a focal length of 13mm. The sequences were captured
at 1280x720@30Hz with the IMU readings captured at
100Hz. The images and IMU data were synchronized based
on their timestamps. 4240 image pairs for the two wide-
angle cameras and 3530 image pairs for the ultra wide-angle
camera with synchronized gravity direction were obtained.
The ground truth focal lengths were obtained by offline cal-
ibration of the cameras. Since we do not know the ground
truth homography and, thus, ground truth inliers, we do not
measure the re-projection error on these datasets. The CDFs
of the focal length errors and processing times are shown
in Fig. 5a. On these experiments, the proposed H1f (G)
solver leads to the most accurate focal lengths while being
the fastest method as well. The other one-point solvers are
also very efficient compared to the other tested algorithms.

4.3. Computational Complexity

The complexity and run-time of a single estimation of the
compared solvers are reported in the following table.

Solver G-J Eigen Poly Time (µs)

H4 8× 9 - - 8
H4f (G) 14× 33 33× 33 - 121
H2 - - - 6
H2f - 3× 3 - 6
H5λ 9× 18 18× 18 - 40
H3λf 90× 132 25× 25 - 80
H1(G) - - 3 4
H1f (G) - - 4 5
H1λ(G) - - 4 5
H2λf (G) - - 6 5
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(a) Distorted images

Figure 4: The cumulative distribution functions of the processing times (in seconds), average re-projection errors (in pixels)
and relative focal length errors of GC-RANSAC [4] when combined with different minimal solvers. The values are calculated
from a total of 579, 800 image pairs from the SUN360 dataset. The confidence was set to 0.99 and the inlier threshold to 3 px.
Being accurate is interpreted as a curve close to the top-left corner. The corresponding values are reported in Table 2.
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(a) The captured smartphone dataset.
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(b) Theoretical RANSAC iterations.

Figure 5: (a) The cumulative distribution functions of the processing time (in seconds) and relative focal length errors of
GC-RANSAC [4] when combined with different minimal solvers. The values are calculated from a total of 7, 770 image
pairs from the captured phone dataset. Being accurate is interpreted as a curve close to the top-left corner. (b) The theoretical
number of RANSAC iterations for each solver plotted as the function of the outlier ratio. The confidence was set to 0.99.

We only show the major steps performed by each solver.
The number in the cells, e.g. 9× 18, denotes the matrix size
to which the G-J elimination or eigendecomposition is ap-
plied. The number in the fourth column denotes the degree
of the univariate polynomial that needs to be solved. A table
for the varying f1,2 and λ1,2 solvers is in the SM.

The theoretical number of RANSAC iterations is shown
in Fig 5b plotted as the function of the outlier ratio in the
data. It can be seen that the proposed solvers, due to re-
quiring the fewest correspondences, lead to a small number
of RANSAC iterations even in the most challenging cases.
Note that we added a small random offset on axis x to make
sure the curves do not overlap entirely.

5. Conclusions
In this paper, we propose six new minimal solvers for image
stitching, considering different configurations of cameras
with coinciding optical axes and aligned with the gravity

direction. These configurations include solvers for a fully
calibrated camera, a camera with unknown fixed or varying
focal length and with or without radial distortion. The pro-
posed methods are tested on synthetic scenes and on more
than 500k image pairs generated from the spherical images
of the SUN360 dataset both on radially distorted and undis-
torted images. Since we have not found datasets for im-
age stitching with available gravity vector, we captured a
new dataset with two different smartphones (three differ-
ent cameras) equipped with IMU sensors. The dataset con-
sists of 7770 image pairs in total. We show that the new
solvers have similar or better accuracy than the state-of-
the-art solvers and outperform them in terms of processing
time. The source code and dataset are available at https:
//github.com/yaqding/stitching-gravity
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