
ResRep: Lossless CNN Pruning via Decoupling Remembering and Forgetting

Xiaohan Ding 1,2 Tianxiang Hao 1,2 Jianchao Tan 3 Ji Liu 3

Jungong Han 4 Yuchen Guo 1 Guiguang Ding 1,2 ∗

1 Beijing National Research Center for Information Science and Technology (BNRist)
2 School of Software, Tsinghua University, Beijing, China

3 AI platform department, Seattle AI lab, and FeDA lab, Kwai Inc.
4 Computer Science Department, Aberystwyth University, SY23 3FL, UK

dxh17@mails.tsinghua.edu.cn beyondhtx,tanjianchaoustc,ji.liu.uwisc@gmail.com

jungonghan77,yuchen.w.guo@gmail.com dinggg@tsinghua.edu.cn

Abstract

We propose ResRep, a novel method for lossless channel
pruning (a.k.a. filter pruning), which slims down a CNN by
reducing the width (number of output channels) of convolu-
tional layers. Inspired by the neurobiology research about
the independence of remembering and forgetting, we pro-
pose to re-parameterize a CNN into the remembering parts
and forgetting parts, where the former learn to maintain
the performance and the latter learn to prune. Via train-
ing with regular SGD on the former but a novel update rule
with penalty gradients on the latter, we realize structured
sparsity. Then we equivalently merge the remembering and
forgetting parts into the original architecture with narrower
layers. In this sense, ResRep can be viewed as a success-
ful application of Structural Re-parameterization. Such
a methodology distinguishes ResRep from the traditional
learning-based pruning paradigm that applies a penalty on
parameters to produce sparsity, which may suppress the pa-
rameters essential for the remembering. ResRep slims down
a standard ResNet-50 with 76.15% accuracy on ImageNet
to a narrower one with only 45% FLOPs and no accu-
racy drop, which is the first to achieve lossless pruning with
such a high compression ratio. The code and models are at
https://github.com/DingXiaoH/ResRep.

1. Introduction

The mainstream techniques to compress and accelerate
convolutional neural network (CNN) include sparsification

∗This work was supported by the National Natural Science Foundation
of China (No. 61925107, U1936202, 61971260), the National Key R&D
Program of China (No. 2020AAA0105500). Xiaohan Ding is funded by
the Baidu Scholarship Program 2019. Correspondence to: Yuchen Guo,
Guiguang Ding.

[10, 18, 20], channel pruning [26, 27, 35], quantization
[4, 5, 45, 68], knowledge distillation [28, 32, 41, 61], etc.
Channel pruning [27] (a.k.a. filter pruning [34] or network
slimming [42]) reduces the width (i.e., number of output
channels) of convolutional layers to effectively reduce the
number of floating-point operations (FLOPs) and memory
footprint, which is complementary to the other model com-
pression methods as it produces a thinner model of the orig-
inal architecture with no custom structures or operations.

However, as CNN’s representational capacity depends
on the width of conv layers, it is difficult to reduce the
width without performance drops. On practical CNN archi-
tectures like ResNet-50 [22] and large-scale datasets like
ImageNet [6], lossless pruning with high compression ra-
tio has long been considered challenging. For reasonable
trade-off between compression ratio and performance, a
typical paradigm (Fig. 1.A) [2, 3, 9, 36, 39, 62, 63] trains
the model with magnitude-related penalty loss (e.g., group
Lasso [57, 60]) on the conv kernels to produce structured
sparsity, which means all the parameters of some channels
become small in magnitude. Ideally, if the parameters of
pruned channels are small enough, the pruned model may
deliver the same performance as before (i.e., after training
but before pruning), which we refer to as perfect pruning.

Since both the training and pruning may degrade the
performance, we evaluate a training-based pruning method
from two aspects. 1) Resistance. The training phase tends
to decrease the accuracy (referred to as training-caused
damage) as it introduces some desired properties such as
structured sparsity into the model, which may be harmful
because the objective of optimization is changed and the
parameters are deviated from the optima. We say a model
has high resistance if the performance maintains high dur-
ing training. 2) Prunability. When we prune the model into
a smaller one after training, the properties obtained (e.g.,

4510

many channels being close to zero) will reduce the pruning-
caused damage. If the model endures a high pruning ratio
with low performance drop, we say it has high prunability.

We desire both high resistance and prunability, but the
traditional penalty-based paradigm naturally suffers from
a resistance-prunability trade-off. For example, a strong
group Lasso achieves high sparsity with great training-
caused damage, while a weak penalty maintains the per-
formance but results in low sparsity, hence great pruning-
caused damage. Sect. 3.3 presents detailed analysis.

In this paper, we propose ResRep to address the above
problem, which is inspired by the neurobiology research
on remembering and forgetting. 1) Remembering requires
the brain to potentiate some synapses but depotentiate the
others, which resembles the training of CNN that makes
some parameters large and some small. 2) Synapse elim-
ination via shrinkage or loss of spines is one of the classi-
cal forgetting mechanisms [56] as a key process to improve
efficiency in both energy and space for biological neural
network, which resembles pruning. Neurobiology research
reveals that remembering and forgetting are independently
controlled by Rutabaga adenylyl cyclase-mediated memory
formation mechanism and Rac-regulated spine shrinkage
mechanism, respectively [16, 21, 59], indicating it is more
reasonable to learn and prune by two decoupled modules.

Inspired by such independence, we propose to decouple
the “remembering” and “forgetting”, which are coupled in
the traditional paradigm as the conv parameters are involved
in both the “remembering” (objective function) and “for-
getting” (penalty loss) in order for them to achieve a trade-
off. That is, the traditional methods force every channel to
“forget”, and remove the channels that “forgot the most”.
In contrast, we first re-parameterize the original model into
“remembering parts” and “forgetting parts”, then apply “re-
membering learning” (i.e., regular SGD with the original
objective) on the former to maintain the “memory” (origi-
nal performance), and “forgetting learning” on the latter to
“eliminate synapses” (zero out channels).

ResRep comprises two key components: Convolutional
Re-parameterization (Rep, the methodology of decoupling
and the corresponding equivalent conversion) and Gradient
Resetting (Res, the updage rule for “forgetting”). Specifi-
cally, we insert a compactor, which is a 1×1 conv, after the
original conv layer we desire to prune. During training, we
add penalty gradients to only the compactors, select some
compactor channels and zero out their gradients derived
from the objective function. Such a training process makes
some channels of compactors very close to zero, which are
removed with no pruning-caused damage. Then we equiv-
alently convert the compactor together with the preceding
conv into a single conv with fewer channels through some
linear transformations (Eq. 8, 9). Note that this method
readily generalizes to the common case where the original

conv is followed by batch normalization (BN) [31]. In this
case, we append the compactor after BN, and convert the
conv-BN-compactor sequence after training by first equiv-
alently fusing the conv-BN into a conv with bias (Eq. 4).
Eventually, the resultant model has the same architecture as
the original (i.e., no compactors) but narrower layers (Fig.
1.B). As the equivalent conversion from the training-time
model into the pruned model relies on the equivalent con-
version of the parameters, ResRep can be viewed as an ap-
plication of Structural Re-parameterization [11, 15, 14, 13].
The other Structural Re-parameterization works improve
the VGG-like architectures [15], basic conv layers [11, 13]
or an MLP-style building block [14] with different well-
designed structures but all via an ordinary training process.
In contrast, ResRep not only constructs extra structures (i.e.,
compactors) that can be equivalently converted back (Rep)
but also uses a custom training strategy (Res). As will be
shown in Sect. 4.3, Rep and Res are both essential: Rep
constructs some structures for Res to apply on without los-
ing the original information; Res zeros out some channels
so that Rep can make the resultant conv layer narrower. No-
tably, ResRep can also prune a fully-connected layer be-
cause it is equivalent to a 1× 1 conv [46].

Algorithm 1 Pipeline of ResRep channel pruning.
1: Input: well-trained modelW
2: Construct the re-parameterized model Ŵ with com-

pactors. Initialize the compactors as identity matrices
and the other parts with the original parameters ofW

3: for i = 0 to max training iterations do
4: Forward a batch through Ŵ , compute the loss using

the original objective function, derive the gradients
5: Apply Gradient Resetting on the gradients of com-

pactors only (Eq. 14)
6: Update Ŵ with the reset gradients of compactors and

the original gradients of the other parameters
7: end for
8: Delete the rows of compactors which are close to zero

(e.g., with norm ≤ 10−5) in Ŵ . Equivalently convert
the parameters of Ŵ into W ′ (Eq. 4, 8, 3). Now W ′
has the same architecture asW but narrower layers

9: Output: pruned modelW ′

ResRep features: 1) High resistance. To maintain the
performance, ResRep does not change the loss function,
update rule or any training hyper-parameters of the orig-
inal model (i.e., the conv-BN parts). 2) High prunabil-
ity. The compactors are driven by the penalty gradients to
make many channels small enough to realize perfect prun-
ing, even with a mild penalty strength. 3) Given the re-
quired global reduction ratio of FLOPs, ResRep automati-
cally finds the appropriate eventual width of each layer with
no prior knowledge, making it a powerful tool for CNN

4511

3×3

predictions

conv params (4 channels, 9 params/channel)

conv gradients

SGD update

multiple iterations

...

loss

+ penalty loss

imperfect

prune conv params

(2 channels,

9 params/channel)

SGD update

multiple iterations

perfect

prune

channel

selection
mask

Gradient

Resetting

training process

pruned layer

(A) Traditional penalty-based paradigm.

(B) ResRep.

batch norm

3×3

3×3

predictions

...

training process

batch norm

conv params

compactor compactor

params

loss

conv gradients

compactor gradients

pruned layer

3×3

equivalent

conversion

+ penalty gradients

Figure 1: Traditional penalty-based pruning vs. ResRep. We prune a 3 × 3 layer with one input channel and four output
channels for illustration. For the ease of visualization, we ravel the kernel K ∈ R4×1×3×3 into a matrix W ∈ R4×9. A) To
prune some channels ofK (i.e., rows ofW), we add a penalty loss on the kernel to the original loss, so that the gradients will
make some rows smaller in magnitude, but not small enough to realize perfect pruning. B) ResRep constructs a compactor
with kernel matrix Q ∈ R4×4. Driven by the penalty gradients, the compactor selects some of its channels and generates a
binary mask, which resets some of the original gradients of Q to zero. After multiple iterations, those compactor channels
with reset gradients become infinitely close to zero, which enables perfect pruning. Finally, the conv-BN-compactor sequence
is equivalently converted into a regular conv layer with two channels. Blank rectangles indicate zero values.

structure optimization. 4) End-to-end training and easy im-
plementation (Alg. 1). We summarize our contributions as:
• Inspired by the neurobiology research, we proposed to

decouple “remembering” and “forgetting” for pruning.
• We proposed two techniques, Rep and Res, to achieve

high resistance and prunability. They can be used sepa-
rately and the combination delivers the best performance.

• We achieved state-of-the-art results on common bench-
mark models, including real lossless pruning on ResNet-
50 on ImageNet with a pruning ratio of 54.5%.

2. Related Work

Pruning may refer to removing any parameters or struc-
tures from a network. Unstructured pruning [10, 18, 19, 20]
can reduce the number of non-zero parameters but cannot
realize speedup on common computing frameworks. Struc-
tured pruning removes some whole structures (e.g., neurons
of fully-connected layers, 2D kernels, and channels), which
is more friendly to hardware [40, 63]. Channel pruning is

especially practical as it reduces not only the model size, the
actual computations, but also the memory footprint. Prun-
ing is related to the lottery ticket hypothesis [17]. For ex-
ample, one may use ResRep to find the “winning” channels
before training. Except for generic model pruning, pruning
in specific contexts (e.g., the limited-data scenario [50]) has
also attracted much attention.

Most of the channel pruning methods can be categorized
into two families. Pruning-then-finetuning methods iden-
tify and prune the unimportant channels from a well-trained
model by some measurements [1, 30, 34, 47, 51, 52, 53, 67],
which may cause significant accuracy drop, and finetune it
afterwards. Some methods repeat pruning-finetuning iter-
ations to measure the importance and prune progressively
[8, 37]. A major drawback is that the pruned models can be
easily trapped into bad local minima, and sometimes can-
not even reach a similar level of accuracy with a counter-
part of the same structure trained from scratch [44]. This
discovery highlights the significance of perfect pruning,
which eliminates the need for finetuning. In this family,

4512

PCAS [66] is the most related to ResRep, which identi-
fies the unimportant channels by training attention modules
appended after conv layers. Unlike ResRep, PCAS per-
forms imperfect pruning and requires finetuning after re-
moving the unimportant channels. Moreover, PCAS dis-
cards the attention modules after training, which results in
more structural damage, while ResRep uses a mathemat-
ically equivalent transformation to obtain the final model
structure without any performance drop. Learning-based
pruning methods utilize a custom learning process to re-
duce the pruning-caused damage. Apart from the above-
mentioned penalty-based paradigm to zero out some of the
channels [2, 3, 9, 36, 39, 62, 63], some other methods prune
via making some filters identical [12], meta-learning [43],
adversarial learning [38], etc.

3. ResRep for Lossless Channel Pruning
3.1. Formulation and Background

We first introduce the formulation of conv and channel
pruning. Let D and C be the output and input channels, K
be the kernel size, K ∈ RD×C×K×K be the kernel param-
eter tensor, b ∈ RD be the optional bias, I ∈ RN×C×H×W

and O ∈ RN×D×H′×W ′
be the input and output, ~ be

the convolution operator, and B be the broadcast function
which replicates b into N ×D ×H ′ ×W ′, we have

O = I ~K +B(b) . (1)

For a conv layer with no bias term but a following batch
normalization (BN) [31] layer with mean µ, standard devi-
ation σ, scaling factor γ and bias β ∈ RD, we have

O:,j,:,: = ((I ~K):,j,:,:−µj)
γj
σj

+βj ,∀1 ≤ j ≤ D . (2)

Let i be the index of conv layer. To prune conv i, we ob-
tain the index set of pruned channels P(i) ⊂ {1, 2, . . . , D}
according to some rules, then its complementary set S(i) =
{1, 2, . . . , D}\P(i) for the index set of channels which sur-
vive. The pruning operation preserves the S(i) output chan-
nels of conv i and the corresponding input channels of the
succeeding layer (conv i + 1), and discard the others. The
corresponding entries in the bias or following BN, if any,
should be discarded as well. The obtained kernels are

K(i)′ = K
(i)

S(i),:,:,:
, K(i+1)′ = K

(i+1)

:,S(i),:,:
. (3)

3.2. Convolutional Re-parameterization

For every conv layer together with the following BN (if
any) we desire to prune, which are referred to as the tar-
get layers, we append a compactor (1× 1 conv) with kernel
Q ∈ RD×D. Given a well-trained modelW , we construct
a re-parameterized model Ŵ by initializing the conv-BN

as the original weights of W and Q as an identity matrix,
so that the re-parameterized model produces the identical
outputs as the original. Note that if the target layer has
no following BN, the “BN” in our notation can be safely
viewed as a bias. After training with Gradient Resetting,
which will be described in detail in Sect. 3.3, we prune
the resulting close-to-zero channels of compactors and con-
vert the model into W ′, which has the same architecture
as W but narrower layers. Concretely, for a specific com-
pactor with kernel Q, we prune the channels with norm
smaller than a threshold ε. Formally, we obtain the to-be-
pruned set by P = {j | ||Qj,:||2 < ε}, or the surviving set
S = {j | ||Qj,:||2 ≥ ε}. Similar to Eq. 3, we prune Q by
Q′ = QS,:. In our experiments, we use ε = 10−5, which is
found to be small enough to realize perfect pruning.1 After
pruning, the compactor has fewer rows than columns, i.e.,
Q′ ∈ RD′×D, D′ = |S|. To convert Ŵ into W ′, we seek
to convert every conv-BN-compactor sequence into a conv
layer withK ′ ∈ RD′×C×K×K and bias b′ ∈ RD′

.
Firstly, we equivalently fuse a conv-BN into a conv for

inference, which produces the identical outputs as the orig-
inal. With K,µ,σ,γ,β of a conv-BN, we construct a new
conv with kernel K̄ and bias b̄ as follows. For 1 ≤ j ≤ D,

K̄j,:,:,: =
γj
σj
Kj,:,:,: , b̄j = −µjγj

σj
+ βj . (4)

Given Eq. 1, 2 and the homogeneity of conv, we can verify

((I~K):,j,:,:−µj)
γj
σj

+βj = (I~K̄+B(b̄)):,j,:,: . (5)

Then we seek for the formula to constructK ′ and b′ so that

(I ~ K̄ +B(b̄)) ~Q′ = I ~K ′ +B(b′) . (6)

With the additivity of convolution, we arrive at

I ~ K̄ ~Q′ +B(b̄) ~Q′ = I ~K ′ +B(b′) . (7)

We note that very channel of B(b̄) is a constant matrix,
thus every channel of B(b̄) ~Q′ is also a constant matrix.
As the 1 × 1 conv with Q′ on I ~ K̄ only performs cross-
channel recombination, we can mergeQ′ into K̄ by recom-
bining the entries in K̄. Let T be the transpose function
(e.g., T (K̄) is C ×D ×K ×K), we present the formulas
to constructK ′ and b′, which can be easily verified.

K ′ = T (T (K̄) ~Q′) , (8)

b′j = b̄ ·Q′j,: , ∀1 ≤ j ≤ D′ . (9)

In practice, we convert and save the weights of the
trained re-parameterized model, construct a model with the
original architecture but narrower layers without BN, and
use the saved weights for testing and deployment.

1Gradient Resetting will make some channels infinitely close to zero,
as shown in Fig. 4, so setting ε = 10−5 or ε = 10−9 makes no difference.

4513

3.3. Gradient Resetting

We describe how to produce structured sparsity in com-
pactors while maintaining the accuracy, beginning by dis-
cussing the traditional usage of penalty on a specific kernel
K to make the magnitude of some channels smaller, i.e.,
||KP,:,:,:|| → 0. Let Θ be the universal set of parameters,
X,Y be the data examples and labels, Lperf(X,Y,Θ) be the
performance-related objective function (e.g., cross-entropy
for classification). The traditional paradigm adds a penalty
term P (K) by a pre-defined strength factor λ,

Ltotal(X,Y,Θ) = Lperf(X,Y,Θ) + λP (K) , (10)

where the common forms of P include L1 [34], L2 [9], and
group Lasso [39, 63]. Specifically, group Lasso is effective
in producing channel-wise structured sparsity. In the fol-
lowing discussions, we denote a specific channel in K by
F (j) = Kj,:,:,:. Then the group Lasso loss is formulated as

PLasso(K) =

D∑
j=1

||F (j)||E , (11)

where ||F (j)||E is the Euclidean norm

||F ||E =

√√√√ C∑
c=1

K∑
p=1

K∑
q=1

F 2
c,p,q . (12)

With G(F) as the gradient, we take the derivative,

G(F) =
∂Ltotal(X,Y,Θ)

∂F
=
∂Lperf(X,Y,Θ)

∂F
+ λ

F

||F ||E
.

(13)
The training dynamics of a specific channel F are quite

straightforward. Beginning from a well-trained model, F
resides near the local optima, thus the first term of Eq. 13
is close to 0 but the second is not, so F is pushed closer
to 0. If F is important to the performance, the objective
function will intend to maintain its magnitude, i.e., the first
gradient term will compete against the second, thus F will
end up smaller than it used to be, depending on λ. Other-
wise, taking the extreme case for example, if F does not
influence Lperf at all, the first term will be 0, so F will
keep growing towards 0 by the second term. In other words,
the performance-related loss and the penalty loss compete
so that the resulting value of F will reflect its importance,
which we refer to as competence-based importance evalua-
tion for convenience. However, we face a dilemma. Prob-
lem A: The penalty deviates the parameters of every chan-
nel from the optima of the objective function. Notably, a
mild deviation may not bring negative effects, e.g., L2 reg-
ularization can also be viewed as a mild deviation. How-
ever, with a strong penalty, though some channels are ze-
roed out for pruning, the remaining channels are also made
too small to maintain the representational capacity, which is
an undesired side-effect. Problem B: With mild penalty for

the high resistance, we cannot achieve high prunability, be-
cause most of the channels merely become closer to 0 than
they used to be, but not close enough for perfect pruning.

We propose to achieve high prunability with a mild
penalty by resetting the gradients derived from the objec-
tive function. We introduce a binary mask m ∈ {0, 1},
which indicates whether we wish to zero out F . For the
ease of implementation, we add no terms to the objective
function (i.e., Ltotal = Lperf), simply derive the gradients as
usual, and then manually apply the mask, add the penalty
gradients and use the resultant gradients for SGD update:

G(F)←
∂Lperf(X,Y,Θ)

∂F
m+ λ

F

||F ||E
. (14)

We will describe how to decide which channels to zero
out (i.e., set mask values for multiple channels) in the next
section. In this way, we have solved the above two prob-
lems. A) Though we add Lasso gradients to the objective-
related gradients of every channel, which is equivalent to
deviating the optima by adding Lasso loss to the original
loss, the deviation is mild (λ = 10−4 in our experiments)
hence harmless to the performance. B) With m = 0, the
first term no longer exists to compete against the second,
thus even a mild λ can make F steadily move towards 0.

3.4. The Remembering Parts Remember Always,
the Forgetting Parts Forget Progressively

If directly used on conv kernels, Res brings a prob-
lem: some objective-related gradients encode the supervi-
sion information for maintaining the performance but are
discarded. Intuitively, the parameters are forced to “forget”
some useful information (gradients). Fortunately, Rep is ex-
actly the solution, which allows us to prune the compactors
only, not the original conv layers. ResRep only forces the
compactors to “forget”, and all the other layers still focus
on “remembering”, so we will not lose the information en-
coded in the gradients of the original kernels.

To combine Res with Rep, we need to decide which
channels of Q to be zeroed out. When training the re-
parameterized model, we add the Lasso gradients to the
compactors only. After a few epochs, ||Qj,:|| will reflect
the importance of channel j (competence-based importance
evaluation discussed in the Sect. 3.3), so we start to per-
form channel selection based on the value of Q. Let n be
the number of compactors, m(i) (a D(i)-dimensional bi-
nary vector) be the mask for the i-th compactor, we define
t(i) ∈ RD(i)

as the metric vector,

t
(i)
j = ||Q(i)

j,: ||2 , ∀1 ≤ j ≤ D(i) . (15)

For each time of channel selection, we calculate the met-
ric values for every channel in every compactor and orga-
nize them as a mapping M = {(i, j) → t

(i)
j | ∀1 ≤ i ≤

n, 1 ≤ j ≤ D(i)}. Then we sort the values of M in as-
cending order, start to pick one at a time from the smallest,

4514

and set the corresponding mask m(i)
j to 0. We stop pick-

ing when the reduced FLOPs 2 reaches our target, or we
have already picked θ (named the channel selection limit)
channels. The mask values of unpicked channels are set to
1. The motivation is straightforward: following the discus-
sions of competence-based importance evaluation, just like
the traditional usage of penalty loss to compete against the
original loss and select the channels with smaller norms, we
use the penalty gradients to compete with the original gradi-
ents. Even better, all the metric values are 1 at the beginning
(because every compactor kernel is initialized as an iden-
tity matrix), making it fair to compare them among different
layers. We initialize θ as a small number, increase θ every
several iterations and re-select channels to “forget” progres-
sively, avoiding zeroing out too many channels at once. As
Fig. 4 shows, those mask-0 channels will become very close
to 0, thus the structured sparsity emerges in compactors.

4. Experiments
4.1. Datasets, Models and Settings

We use ResNet-50 and MobileNet [29] on ImageNet-
1K. For the reproducibility, we follow the data augmen-
tation of PyTorch official example [54] including random
cropping and flipping. For ResNet-50, we use the official
torchvision base model (76.15% top-1 accuracy) [55] for
the fair comparison with most competitors. For MobileNet,
we train from scratch with an initial learning rate of 0.1,
batch size of 512 and cosine learning rate annealing for
70 epochs. The top-1 accuracy is 70.78%, slightly higher
than that reported in the original paper. We use ResNet-
56/110 on CIFAR-10 [33] with the standard data augmen-
tation [22]: padding to 40 × 40, random cropping and flip-
ping. We train the base models with batch size of 64 and
the common learning rate schedule which is initialized as
0.1, multiplied by 0.1 at epoch 120 and 180, and terminated
after 240 epochs. We count the FLOPs as multiply-adds,
which is 4.09G for ResNet-50 [55], 569M for MobileNet,
and 126M/253M for ResNet-56/110.

4.2. Pruning Results on ImageNet and CIFAR-10

We apply ResRep on ResNet-50 and MobileNet with the
same hyper-parameters: λ = 10−4, batch size=256, initial
learning rate=0.01 and cosine annealing for 180 epochs. We
set the channel selection limit θ = 4 and θ ← θ + 4 every
200 batches and the first channel selection begins after 5
epochs. That is, after a 5-epoch “warm-up”, we pick up 4
channels with the lowest t values among all the layers and
then pick 4 more channels every 200 batches, until we reach
the FLOPs reduction target. For the ease of comparison,
we experiment with ResNet-50 for three times with FLOPs

2We count the theoretical FLOPs of the model without current mask-0
channels as current FLOPs. Reduced FLOPs = original - current FLOPs.

0 25 50 75 100 125 150 175
epochs

1.0

1.5

2.0

2.5

tra
in

 lo
ss

pruned-finetuned
ResRep

0 25 50 75 100 125 150 175
epochs

64
66
68
70
72
74
76

va
l a

cc

pruned-finetuned
ResRep

Figure 2: Training loss (left) and validation accuracy (right)
of pruned-finetuned and ResRep on ResNet-50.

reduction target of 54.5% (1% higher than FPGM [26]),
56.1% (SASL [58]) and 62.1% (HRank [35]), respectively,
and MobileNet with 73.9% to compare with MetaPruning
[43]. Following most competitors, we prune the first (1×1)
and second (3 × 3) conv layers in every residual block of
ResNet-50, and every non-depthwise conv of MobileNet.
Inspired by a prior work [10] which zeros out some gra-
dients and utilizes momentum and weight decay for CNN
sparsification, we raise the SGD momentum coefficient on
compactors from 0.9 (the default setting in most cases) to
0.99. Intuitively, the mask-0 channels continuously grow in
the same direction (i.e., towards zero), and such a tendency
accumulates in the momentum, thus the zeroing-out process
can be accelerated by a larger momentum coefficient. For
ResNet-56/110, the target layers include the first layers of
residual block, and we use the same hyper-parameters as
ImageNet except batch size of 64 and 480 training epochs.

Table. 1, 2 show the superiority of ResRep. Our results
are average of 3 runs on ImageNet and 5 runs on CIFAR. On
ResNet-50, ResRep achieves 0.00% top-1 accuracy drop,
which is the first to realize lossless pruning with such high
pruning ratio (54.54%), to the best of our knowledge. In
terms of top-1 accuracy drop, ResRep outperforms SASL
by 0.82%, HRank by 3.32% and all the other recent com-
petitors by a large margin. On MobileNet, ResRep outper-
forms MetaPruning by 1.77%. On ResNet-56/110, ResRep
also outperforms, even though the comparison on accuracy
drop is biased towards other methods, as our base models
have higher accuracy (i.e., it is more challenging to prune a
higher-accuracy model without accuracy degradation).

The final width of each target layer (Fig. 3) shows that
ResRep discovers the appropriate final structure without
any prior knowledge, given the desired global pruning ra-
tio. Notably, ResRep chooses to preserve more channels at
higher-level layers of ResNet-50 and MobileNet, but prunes
aggressively on the last blocks of ResNet-56. An explana-
tion is that rich higher-level features are essential for main-
taining the fitting capacity on difficult task like ImageNet,
while ResNet-56 suffers from over-fitting on CIFAR-10.

We construct a series of baselines and variants of ResRep
for comparison (Table. 3). 1) The base model is further fine-
tuned with the same learning rate schedule for 180 epochs,
and the accuracy is merely lifted by 0.04%, suggesting the
performance of ResRep is not simply due to the effect of
training settings. 2) We construct a uniformly shrunk base-

4515

Table 1: Pruning results of ResNet-50 and MobileNet on ImageNet.

Model Result
Base
Top-1

Base
Top-5

Pruned
Top-1

Pruned
Top-5

Top-1 ↓ Top-5 ↓ FLOPs ↓%

ResNet-50

SFP [24] 76.15 92.87 74.61 92.06 1.54 0.81 41.8
GAL-0.5 [38] 76.15 92.87 71.95 90.94 4.20 1.93 43.03
NISP [67] - - - - 0.89 - 44.01
Taylor-FO-BN [51] 76.18 - 74.50 - 1.68 - 44.98
Channel Pr [27] - 92.2 - 90.8 - 1.4 50
HP [64] 76.01 92.93 74.87 92.43 1.14 0.50 50
MetaPruning [43] 76.6 - 75.4 - 1.2 - 51.10
Autopr [49] 76.15 92.87 74.76 92.15 1.39 0.72 51.21
GDP [37] 75.13 92.30 71.89 90.71 3.24 1.59 51.30
FPGM [26] 76.15 92.87 74.83 92.32 1.32 0.55 53.5
ResRep 76.15 92.87 76.15±0.01 92.89±0.04 0.00 -0.02 54.54
C-SGD (extension) [12] 76.15 92.87 75.29 92.39 0.86 0.48 55.44
DCP [69] 76.01 92.93 74.95 92.32 1.06 0.61 55.76
C-SGD [7] 75.33 92.56 74.54 92.09 0.79 0.47 55.76
ThiNet [48] 75.30 92.20 72.03 90.99 3.27 1.21 55.83
SASL [58] 76.15 92.87 75.15 92.47 1.00 0.40 56.10
ResRep 76.15 92.87 75.97±0.02 92.75±0.01 0.18 0.12 56.11
TRP [65] 75.90 92.70 72.69 91.41 3.21 1.29 56.52
LFPC [23] 76.15 92.87 74.46 92.32 1.69 0.55 60.8
HRank [35] 76.15 92.87 71.98 91.01 4.17 1.86 62.10
ResRep 76.15 92.87 75.30±0.01 92.47±0.01 0.85 0.40 62.10

MobileNet
MetaPruning [43] 70.6 - 66.1 - 4.5 - 73.81
ResRep 70.78 89.78 68.02±0.02 87.66±0.02 2.76 2.12 73.91

1 4 8 14 16
block index

1
64

128

256

512

nu
m

 o
f c

ha
nn

el
s original

final 1 × 1
final 3 × 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
block index

1
128
256

512

1024

nu
m

 o
f c

ha
nn

el
s original

final

1 10 19 27
block index

1
8

16

32

64
nu

m
 o

f c
ha

nn
el

s original
final

Figure 3: Width of target layers in pruned models. Left: ResNet-50 with the first 1× 1 and 3× 3 layer in each block shown
separately. Middle: MobileNet. Right: ResNet-56. Vertical dashed lines indicate the stage transition in ResNets.

Table 2: Pruning results of ResNet-56/110 on CIFAR-10.

Model Result
Base
Top-1

Pruned
Top-1

Top-1
↓%

FLOPs
↓%

R56

AMC [25] 92.8 91.9 0.9 50
FPGM [26] 93.59 93.26 0.33 52.6
SFP [24] 93.59 93.35 0.24 52.6
LFPC [23] 93.59 93.24 0.35 52.9
ResRep 93.71 93.71±0.02 0.00 52.91
TRP [65] 93.14 91.62 1.52 77.82
ResRep 93.71 92.66±0.07 1.05 77.83

R110

Li et al. [34] 93.53 93.30 0.23 38.60
GAL-0.5 [38] 93.50 92.74 0.76 48.5
HRank [35] 93.50 93.36 0.14 58.2
ResRep 94.64 94.62±0.04 0.02 58.21

line by building a ResNet-50 where all the target layers are
reduced to 1/2 of the original width, thus the FLOPs is re-

Table 3: ResNet-50 baselines and variants of ResRep.

Top-1 acc FLOPs ↓%
1) Base model finetuned 76.19 -
2) Uniformly shrunk baseline 74.39 55.4
3) Pruned-finetuned 74.66 54.5
4) Vector re-parameterization 75.57 54.5
5) Momentum on compactors as 0.9 75.05 45.1

duced by 55.4%. We train it from scratch with the same
training settings as the base model, and the final accuracy
is 74.39%, which is 1.58% lower than our 56.1%-pruned
model. 3) We compare ResRep against a classic pruning-
then-finetuning method by sorting all the channels of base
model by their Euclidean norm, pruning from the small-
est until 54.5% reduction ratio, and finetuning the resul-
tant model with the same 180-epoch setting. Not surpris-

4516

30 40 50 60 70 80
FLOPs reduction%

87
88
89
90
91
92
93
94

to
p-

1
ac

cu
ra

cy

baseline
only Rep
only Res
ResRep

0 100 200 300 400
epochs

20
30
40
50
60
70
80
90

to
p1

 a
cc

ur
ac

y

baseline original
baseline pruned
ResRep original
ResRep pruned

0 100 200 300 400
epochs

15.0
12.5
10.0

7.5
5.0
2.5
0.0
2.5

lo
g 1

0(
qu

ad
ra

tic
 su

m
)

baseline survived
baseline pruned
ResRep survived
ResRep pruned

Figure 4: Left: FLOPs reduction v.s. accuracy of baseline, Res, Rep and ResRep. Middle: the original and pruned accuracy
every 5 epochs. Right: the quadratic sum of survived parameters and those to-be-pruned (note the logarithmic scale).

ingly, the finetuned model is hardly better than the shrunk
baseline trained from scratch. The training loss and vali-
dation accuracy (Fig. 2) shows the pruned model recov-
ers quickly but cannot reach a comparable accuracy as the
54.5%-pruned ResRep model. This observation is consis-
tent with a prior study that a pruned model may be easily
trapped into bad local minima [44]. 4) A straightforward
alternative of re-parameterization to verify the significance
of Convolutional Re-parameterization. It changes the form
of compactor from 1× 1 conv to a D-dimensional trainable
vector (i.e., a channel-wise scaling layer) initialized as 1,
and the Lasso penalty naturally degrades to L1. After train-
ing with the same settings as the 54.5%-pruned model for
180 epochs, the final accuracy is 75.57%, which is 0.58%
lower. Intuitively, re-parameterization with 1×1 conv folds
the original kernel into a lower-dim kernel (i.e., re-combines
the channels), but a vector simply deletes some channels.
5) We verify the necessity of 0.99-momentum by setting
the momentum of compactors as 0.9, and fewer channels
end up close to zero (below ε = 10−5). Though a higher
momentum reduces parameters faster, it is not necessary if
longer training time is acceptable.

4.3. Ablation Studies

We then perform controlled experiments with the same
training configurations as described above on ResNet-56
to evaluate Rep and Res separately. As the baseline, we
adopt the traditional paradigm by directly adding Lasso
loss (Eq. 11) on all the target layers. With λ ∈
{0.3, 0.03, 0.003, 0.001}, we obtain four models with dif-
ferent final accuracy: 69.81%, 87.09%, 92.65%, 93.69%.
To realize perfect pruning on each trained model, we at-
tain the minimal structure by removing the channels one
at a time until the accuracy drops below the original (i.e.,
pruning any one more channel of the minimal structure will
decrease the accuracy). Then we record the FLOPs reduc-
tion of the minimal structures: 81.24%, 71.94%, 57.56%,
28.31%. We test Rep but no Res by applying Lasso loss
on the compactors with varying λ to achieve comparable
FLOPs reduction as baselines. And with Res but no Rep,
we directly apply Gradient Resetting on the original conv
kernels, targeting at the same FLOPs reduction as the four

baseline models. Then we experiment with the full-featured
ResRep. As shown in the left of Fig. 4 (the baseline data
point of (81.24%, 69.81%) is ignored for better readability),
Res and Rep deliver better final accuracy than the baselines,
and perform even better when combined.

We investigate into the training process by saving the
parameters of the λ = 0.03 baseline every 5 epochs. Af-
ter training, we obtain the minimal structure, turn back to
prune each saved model into the minimal structure, and re-
port the accuracy before and after pruning. For ResRep, we
do the same but on the compactors instead of the original
conv layers. Fig. 4 (middle) shows that the baseline accu-
racy drops drastically because of the side-effects brought
by strong Lasso, which implies low resistance. In con-
trast, the original accuracy of ResRep maintains on a high
level. The pruning-caused damage (original accuracy minus
pruned accuracy) is great for both the baseline and ResRep
models at the beginning but reduces as the sparsity emerges.
The pruned accuracy of baseline improves slowly and un-
steadily due to the competence of two losses.

For each saved model, we also collect the quadratic sum
of parameters which survive at last as well as the quadratic
sum of those finally pruned, according to the final minimal
structure. Fig. 4 (right, note the logarithmic scale) shows
that the parameters of baseline soon become too small to
maintain the performance, which explains the poor resis-
tance. For ResRep, the magnitude of survived parameters
decreases but maintains on a high level due to the mild
penalty, and those to-be-pruned (i.e., mask-0) parameters
drop steadily and soon become very close to zero, which
explains the high resistance and high prunability.

5. Conclusion
The effectiveness of ResRep suggests that decomposing

the traditional learning-based pruning into “performance-
oriented learning” and “pruning-oriented learning” may be
a promising research direction. As a successful applica-
tion of Structural Re-parameterization, ResRep uses the
methodology of constructing extra structures that can be
converted back, which enables to adopt some custom tech-
niques (an update rule on the compactors only, in this case).
Such a methodology may be useful in other research areas.

4517

References
[1] Reza Abbasi-Asl and Bin Yu. Structural compression of con-

volutional neural networks based on greedy filter pruning.
arXiv preprint arXiv:1705.07356, 2017. 3

[2] Jose M Alvarez and Mathieu Salzmann. Learning the num-
ber of neurons in deep networks. In Advances in Neural In-
formation Processing Systems, pages 2270–2278, 2016. 1,
4

[3] Jose M. Alvarez and Mathieu Salzmann. Learning the num-
ber of neurons in deep networks. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman
Garnett, editors, Advances in Neural Information Process-
ing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pages 2262–2270, 2016. 1, 4

[4] Jimmy Ba and Rich Caruana. Do deep nets really need to
be deep? In Advances in neural information processing sys-
tems, pages 2654–2662, 2014. 1

[5] Ron Banner, Yury Nahshan, and Daniel Soudry. Post train-
ing 4-bit quantization of convolutional networks for rapid-
deployment. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Ro-
man Garnett, editors, Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, 8-14 Decem-
ber 2019, Vancouver, BC, Canada, pages 7948–7956, 2019.
1

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255.
IEEE, 2009. 1

[7] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong
Han. Centripetal SGD for pruning very deep convolutional
networks with complicated structure. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 4943–4953.
Computer Vision Foundation / IEEE, 2019. 7

[8] Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han,
and Chenggang Yan. Approximated oracle filter pruning for
destructive cnn width optimization. In International Confer-
ence on Machine Learning, pages 1607–1616, 2019. 3

[9] Xiaohan Ding, Guiguang Ding, Jungong Han, and Sheng
Tang. Auto-balanced filter pruning for efficient convolu-
tional neural networks. In Thirty-Second AAAI Conference
on Artificial Intelligence, pages 6797–6804, 2018. 1, 4, 5

[10] Xiaohan Ding, Guiguang Ding, Xiangxin Zhou, Yuchen
Guo, Jungong Han, and Ji Liu. Global sparse momentum
SGD for pruning very deep neural networks. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC,
Canada, pages 6379–6391, 2019. 1, 3, 6

[11] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong
Han. Acnet: Strengthening the kernel skeletons for power-

ful cnn via asymmetric convolution blocks. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1911–1920, 2019. 2

[12] Xiaohan Ding, Tianxiang Hao, Jungong Han, Yuchen Guo,
and Guiguang Ding. Manipulating identical filter redun-
dancy for efficient pruning on deep and complicated CNN.
CoRR, abs/2107.14444, 2021. 4, 7

[13] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang
Ding. Diverse branch block: Building a convolution as an
inception-like unit. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10886–10895, 2021. 2

[14] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang
Ding. Repmlp: Re-parameterizing convolutions into fully-
connected layers for image recognition. arXiv preprint
arXiv:2105.01883, 2021. 2

[15] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han,
Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style
convnets great again. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13733–13742, 2021. 2

[16] Tao Dong, Jing He, Shiqing Wang, Lianzhang Wang, Yuqi
Cheng, and Yi Zhong. Inability to activate rac1-dependent
forgetting contributes to behavioral inflexibility in mutants
of multiple autism-risk genes. Proceedings of the National
Academy of Sciences of the United States of America, 113
27:7644–9, 2016. 2

[17] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635, 2018. 3

[18] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-
work surgery for efficient dnns. In Advances In Neural In-
formation Processing Systems, pages 1379–1387, 2016. 1,
3

[19] Song Han, Huizi Mao, and William J. Dally. Deep com-
pression: Compressing deep neural network with pruning,
trained quantization and huffman coding. In 4th Interna-
tional Conference on Learning Representations, 2016. 3

[20] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
Advances in Neural Information Processing Systems, pages
1135–1143, 2015. 1, 3

[21] Akiko Hayashi-Takagi, Sho Yagishita, Mayumi Nakamura,
Fukutoshi Shirai, Yi Wu, Amanda L. Loshbaugh, Brian
Kuhlman, Klaus M. Hahn, and Haruo Kasai. Labelling and
optical erasure of synaptic memory traces in the motor cor-
tex. Nature, 525:333 – 338, 2015. 2

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 6

[23] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang
Zhang, and Yi Yang. Learning filter pruning criteria for
deep convolutional neural networks acceleration. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020. 7

[24] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional

4518

neural networks. In Proceedings of the Twenty-Seventh In-
ternational Joint Conference on Artificial Intelligence, pages
2234–2240, 2018. 7

[25] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and ac-
celeration on mobile devices. In European Conference on
Computer Vision, pages 815–832. Springer, 2018. 7

[26] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolutional
neural networks acceleration. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, pages 4340–4349. Com-
puter Vision Foundation / IEEE, 2019. 1, 6, 7

[27] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In International
Conference on Computer Vision (ICCV), volume 2, page 6,
2017. 1, 7

[28] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1

[29] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017. 6

[30] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung
Tang. Network trimming: A data-driven neuron pruning ap-
proach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250, 2016. 3

[31] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International Conference on Machine Learn-
ing, pages 448–456, 2015. 2, 4

[32] Jianbo Jiao, Yunchao Wei, Zequn Jie, Honghui Shi, Rynson
W. H. Lau, and Thomas S. Huang. Geometry-aware distilla-
tion for indoor semantic segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 2869–2878.
Computer Vision Foundation / IEEE, 2019. 1

[33] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, 2009.
6

[34] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In
5th International Conference on Learning Representations,
2017. 1, 3, 5, 7

[35] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. CoRR,
abs/2002.10179, 2020. 1, 6, 7

[36] Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng,
and Xuelong Li. Towards compact convnets via
structure-sparsity regularized filter pruning. arXiv preprint
arXiv:1901.07827, 2019. 1, 4

[37] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue
Huang, and Baochang Zhang. Accelerating convolutional
networks via global & dynamic filter pruning. In IJCAI,
pages 2425–2432, 2018. 3, 7

[38] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,
Liujuan Cao, Qixiang Ye, Feiyue Huang, and David S. Doer-
mann. Towards optimal structured CNN pruning via genera-
tive adversarial learning. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pages 2790–2799. Computer
Vision Foundation / IEEE, 2019. 4, 7

[39] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen,
and Marianna Pensky. Sparse convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 806–814, 2015. 1, 4, 5

[40] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian
Tang, and Jieping Ye. Autocompress: An automatic dnn
structured pruning framework for ultra-high compression
rates. In AAAI, pages 4876–4883, 2020. 3

[41] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo,
and Jingdong Wang. Structured knowledge distillation for
semantic segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pages 2604–2613. Computer
Vision Foundation / IEEE, 2019. 1

[42] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In 2017
IEEE International Conference on Computer Vision (ICCV),
pages 2755–2763. IEEE, 2017. 1

[43] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta
learning for automatic neural network channel pruning. In
2019 IEEE/CVF International Conference on Computer Vi-
sion, ICCV 2019, Seoul, Korea (South), October 27 - Novem-
ber 2, 2019, pages 3295–3304. IEEE, 2019. 4, 6, 7

[44] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning. In
7th International Conference on Learning Representations,
2019. 3, 8

[45] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-real net: Enhancing the perfor-
mance of 1-bit cnns with improved representational capabil-
ity and advanced training algorithm. In Vittorio Ferrari, Mar-
tial Hebert, Cristian Sminchisescu, and Yair Weiss, editors,
Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part
XV, volume 11219 of Lecture Notes in Computer Science,
pages 747–763. Springer, 2018. 1

[46] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3431–3440, 2015. 2

[47] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A fil-
ter level pruning method for deep neural network compres-
sion. In IEEE International Conference on Computer Vision,
pages 5068–5076, 2017. 3

[48] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie,
Jianxin Wu, and Weiyao Lin. Thinet: Pruning CNN filters
for a thinner net. IEEE Trans. Pattern Anal. Mach. Intell.,
41(10):2525–2538, 2019. 7

4519

[49] Jian-Hao Luo and Jianxin Wu. Autopruner: An end-to-end
trainable filter pruning method for efficient deep model in-
ference. arXiv preprint arXiv:1805.08941, 2018. 7

[50] Jian-Hao Luo and Jianxin Wu. Neural network pruning with
residual-connections and limited-data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1458–1467, 2020. 3

[51] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 11264–11272,
2019. 3, 7

[52] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for
resource efficient inference. In 5th International Conference
on Learning Representations, 2017. 3

[53] Adam Polyak and Lior Wolf. Channel-level acceleration of
deep face representations. IEEE Access, 3:2163–2175, 2015.
3

[54] PyTorch. PyTorch Official Example, 2020. 6
[55] PyTorch. Torchvision Official Models, 2020. 6
[56] Blake A. Richards and Paul W. Frankland. The persistence

and transience of memory. Neuron, 94(6):1071 – 1084, 2017.
2

[57] Volker Roth and Bernd Fischer. The group-lasso for gener-
alized linear models: uniqueness of solutions and efficient
algorithms. In Proceedings of the 25th international confer-
ence on Machine learning, pages 848–855. ACM, 2008. 1

[58] Jun Shi, Jianfeng Xu, Kazuyuki Tasaka, and Zhibo Chen.
SASL: saliency-adaptive sparsity learning for neural network
acceleration. CoRR, abs/2003.05891, 2020. 6, 7

[59] Yichun Shuai, Binyan Lu, Ying Hu, Lianzhang Wang, Kan
Sun, and Yi Zhong. Forgetting is regulated through rac ac-
tivity in drosophila. Cell, 140:579–589, 2010. 2

[60] Noah Simon, Jerome H. Friedman, Trevor J. Hastie, and
Robert Tibshirani. A sparse-group lasso. 2013. 1

[61] Jayakorn Vongkulbhisal, Phongtharin Vinayavekhin, and
Marco Visentini Scarzanella. Unifying heterogeneous clas-
sifiers with distillation. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pages 3175–3184. Computer
Vision Foundation / IEEE, 2019. 1

[62] Huan Wang, Qiming Zhang, Yuehai Wang, Lu Yu, and Haoji
Hu. Structured pruning for efficient convnets via incremental
regularization. In International Joint Conference on Neural
Networks, pages 1–8, 2019. 1, 4

[63] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 2074–2082, 2016. 1, 3, 4, 5

[64] Xiaofan Xu, Mi Sun Park, and Cormac Brick. Hybrid prun-
ing: Thinner sparse networks for fast inference on edge de-
vices. arXiv preprint arXiv:1811.00482, 2018. 7

[65] Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang,
Yingyong Qi, Yiran Chen, Weiyao Lin, and Hongkai Xiong.
TRP: trained rank pruning for efficient deep neural networks.
CoRR, abs/2004.14566, 2020. 7

[66] Kohei Yamamoto and Kurato Maeno. Pcas: Pruning chan-
nels with attention statistics for deep network compression.
arXiv preprint arXiv:1806.05382, 2018. 4

[67] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I
Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and
Larry S Davis. Nisp: Pruning networks using neuron impor-
tance score propagation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
9194–9203, 2018. 3, 7

[68] Yiren Zhao, Xitong Gao, Daniel Bates, Robert D. Mullins,
and Cheng-Zhong Xu. Focused quantization for sparse cnns.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancou-
ver, BC, Canada, pages 5585–5594, 2019. 1

[69] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.
Discrimination-aware channel pruning for deep neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 883–894, 2018. 7

4520

