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Abstract

Modern deep neural networks are often vulnerable to
adversarial examples. Most exist attack methods focus on
crafting adversarial examples in the digital domain, while
only limited works study physical adversarial attack. How-
ever, it is more challenging to generate effective adversarial
examples in the physical world due to many uncontrollable
physical dynamics. Most current physical attack methods
aim to generate robust physical adversarial examples by
simulating all possible physical dynamics. When attack-
ing new images or new DNN models, they require expensive
manually efforts for simulating physical dynamics and con-
siderable time for iteratively optimizing for each image. To
tackle these issues, we propose a class-agnostic and model-
agnostic physical adversarial attack model (Meta-Attack),
which is able to not only generate robust physical adversar-
ial examples by simulating color and shape distortions, but
also generalize to attacking novel images and novel DNN
models by accessing a few digital and physical images. To
the best of our knowledge, this is the first work to formulate
the physical attack as a few-shot learning problem. Here,
the training task is redefined as the composition of a support
set, a query set, and a target DNN model. Under the few-
shot setting, we design a novel class-agnostic and model-
agnostic meta-learning algorithm to enhance the general-
ization ability of our method. Extensive experimental re-
sults on two benchmark datasets with four challenging ex-
perimental settings verify the superior robustness and gen-
eralization of our method by comparing to state-of-the-art
physical attack methods.

1. Introduction

Deep neural networks (DNNs) have been widely used in
various fields and shown exceptionally good performance.
However, adversarial examples (adding small-magnitude
perturbations to the original input image) have been a se-
vere threat against DNN models, and have been extensively

t indicates corresponding authors.  This work corresponds to
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studied in recent years [12, 3, 26, 8, 33, 5, 13]. Most ex-
isting attack works focus on the scenario of digital attack,
which is based on an assumption that the adversarial im-
ages are directly fed into the attacked model. Only limited
works [21, 2, 22, 47, 30] focus on adversarial attack in the
physical world, where the above assumption is unrealistic.
The physical attack is more in line with the real word and
may cause security problems in practical scenarios, e.g., au-
tonomous driving or face recognition. For example, a care-
fully crafted physical adversarial image can mislead the au-
tonomous driving system to behave in abnormal and poten-
tially dangerous ways.

However, a series of recent works [2, 21] prove that
physical attack is more difficult than digital attack because
of many uncontrollable physical dynamics (e.g., varying
distances and view-angles, and characteristics of printing
device). Specifically, as shown in Figure 1(a), physical at-
tack involves with multiple stages: (/) Given an attacked
image and a specific target DNN model, attackers craft an
adversarial example in the digital space. (2) Attackers print
the digital adversarial example out into an object (e.g., 2D
photo or 3D object). (3) The printed adversarial object is
captured by a camera or scanner. Then the captured im-
age (i.e., the physical adversarial image) is fed to the DNN
model. The sequential operation of printing and capturing is
called as the digital-to-physical (D2P) transformation [21].
Note that the D2P transformation usually causes signifi-
cant color and shape distortions, due to the characteristics
of printing device and the relative location between printed
objects and capturing devices. These distortions make phys-
ical adversarial images inconsistent with digital adversarial
images. Therefore, adversarial images may become inef-
fective in the physical world due to the D2P transformation.

To handle this problem, recent works [46, 2, 21] pro-
pose to generate physical adversarial examples that are ro-
bust to the distortions caused by the D2P transformation.
As shown in Figure 1(b), the basic idea is to simulate the
possible distortions during generating adversarial examples.
For example, given an attacked image and a target DNN
model, attackers firstly attempt to collect large-scale physi-
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Figure 1. (a) The pipeline of physical attack. (b) The overview of existing physical attacks [1 ], which need to model physical dynamics
manually by repeatedly performing D2P transformation. (c) The motivation of class-agnostic and model-agnostic physical attack.

cal images for simulating all possible distortions caused by
physical dynamics. Then based on these collected images,
attackers craft a robust physical adversarial image by itera-
tively optimizing for attacking the given DNN model. How-
ever, the input attacked images are diverse in the real world.
When given N attacked images, existing methods [11, 2
have to spend expensive manual efforts to repeat the above
attack operation for each image, which consumes consider-
able time and storage. Furthermore, most previous methods
craft adversarial examples based on a premise that a specific
target DNN model is given. However, there are numerous
images and various DNN models in the physical world. The
existing methods cannot handle with this complex situation,
due to the expensive manually efforts for simulating physi-
cal dynamics and substantial time for optimizing.

To deal with the above issues, an intuitive idea is to for-
mulate the physical attack as a problem of few-shot learn-
ing, with the aim of saving expensive manual efforts. The
few-shot learning assumes that only a few images are avail-
able for each class. Our goal is to generate robust physical
adversarial examples by accessing only few physical im-
ages. To learn a generalized attack method on these few
shot physical images, we take advantage of meta-learning
algorithms [14, 34] that need only a few updating steps on
few shot images to achieve good performance on unseen
images or even unseen DNN models (see Figure 1(c)).

To this end, we propose a class-agnostic and model-
agnostic physical adversarial attack method, denoted as
Meta-Attack, which is able to not only generate robust
physical adversarial examples, but also generalize to at-
tacking novel images and novel DNN models. To achieve
this goal, we design a generative attack model and a class-
agnostic and model-agnostic meta-learning (CMML) algo-
rithm. (1) The generative attack model aims at generating
robust physical adversarial examples by simulating color
and shape distortions resulted from the D2P transforma-
tion. Concretely, we utilize a cycle-consistent adversarial

network (CycleGAN) to simulate the patterns of color dis-
tortions caused by the printers. Besides, we embed the ex-
pectation over spatial transformations (EOT) into the adver-
sarial loss to capture shape distortions. Then, the Cycle-
GAN and EOT losses are combined together to form the
generative attack model. (2) The class-agnostic and model-
agnostic meta-learing algorithm (CMML) is designed to
enhance the generalization ability of the proposed genera-
tive attack model across different attacked images and DNN
models by using few collected physical images. To be spe-
cific, distinguished from the few-shot learning setting in
the popular meta-learning algorithm Model-Agnostic Meta-
Learning (MAML) [14], we design an attack task composed
of a support set, a query set and a target attacked model.
During the meta-training, the generative attack model is it-
eratively updated to acquire a good model initialization, by
minimizing the validation loss on the query set of multiple
attack tasks. Then during the meta-testing stage, the meta
generative attack model (Meta-Attack) can rapidly adapt to
novel attack tasks by fine-tuning the parameters for few
steps on a support set. As a result, the CMML algorithm
contributes to a class-agnostic and model-agnostic genera-
tive attack model with good performance on new images or
new DNN models, by use of only a handful of digital and
physical images for simulating physical dynamics.

In summary, our main contributions are three-fold: (1)
We propose a class-agnostic and model-agnostic physical
adversarial attack method (Meta-Attack), which is able to
not only produce robust physical adversarial examples by
simulating color and shape distortions, but also adapt to
attacking new images from unseen classes and new DNN
models by accessing a few digital and physical images. (2)
We formulate the physical attack as a few-shot learning
problem, where the training task is redefined as the compo-
sition of a support set, a query set, and a target DNN model.
Then, we design a class-agnostic and model-agnostic meta-
learning algorithm to enhance the generalization ability of
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the generative attack model under the few-shot setting. (3)
Extensive experimental results on two datasets with four
challenging experimental settings verify the superior ro-
bustness and generalization of our method by comparing to
state-of-the-art physical attack methods.

2. Related Work

In this section, we briefly review related works on the
digital and physical adversarial attack.

Digital Attack. Since the pioneering work [41] re-
vealed that deep neural networks are vulnerable to adver-
sarial examples, various attack methods have been pro-

posed [33, 7, 1, 4, 19, 27, 32, 35], which can be divided
into three categories: gradient-based [16, 24], optimization-
based [3, ], and GAN-based methods [18, s ].

Gradient-based methods perform gradient update to gener-
ate adversarial examples, such as FGSM [16] and BIM [25].
Optimization-based methods generate adversarial examples
by solving an optimization problem, such as C&W [3].
Different from these methods, GAN-based methods [45]
can directly transform input images into adversarial exam-
ples using feed-forward networks. There are already many
works [9, 17, 20, 37, 50] studying adversarial examples in
the digital space, while only limited works [2, 22, 46] study
adversarial examples in the physical world.

Physical Attack. In [25], it’s the first work that shows
the adversarial examples generated by the digital attack
method are also possible to attack the model in the physical
scenario. Recently, many researchers start to study generat-
ing adversarial examples in the physical world [28, 43, 44,

, 38, 31]. The main difficulties of generating adversar-
ial examples in the physical world are the distortions from
both the printing process and the spatial transformation. For
the first issue, Sharif et al. [38] observe that the distortion
between the digital image and physical image is partially
caused by the fact that the color space of the printer is only
a subset of the whole RGB space, as a result, the pixel val-
ues out of the color space are clipped when printing. Based
on this observation, the non-printability score (NPS) is in-
troduced in [38] for improving the printability of adversarial
examples. To address the second issue, the method called
expectation over transformation (EOT) is proposed in [2] to
improve the robustness to the spatial transformation. It re-
defines the adversarial loss in the digital attack to an expec-
tation over spatial transformations with respect to the origi-
nal adversarial loss. And the EOT loss is further extended in
some recent works [ 1, 46, 36, 44,48, 10, 22]. For example,
the RP2 [11] improves EOT by adding physical images to
the transformation sets, together with the NPS score. Differ-
ent from these works, another recent work called D2P [21]
firstly trains a generative adversarial network (GAN) [15]
to transform the original digital image into one image that
is similar to its physical image. Then, the EOT method is

adopted on the generated image to produce an adversarial
image. Although both RP2 and D2P consider the distor-
tions from both the printing and the spatial transformation,
these two distortions are captured in separate stages. As a
result, the generated adversarial examples may not be ro-
bust to both distortions. Moreover, most existing physical
attack approaches [11, 31, 23, 21] are only tested on limited
cases or only designed for attacking a specific DNN model
or a specific image. Different from the above methods, we
consider both the color and shape distortions in one unified
model, such that the robustness to both distortions could be
simultaneously simulated. Besides, we first formulate the
physical attack as a problem of few-shot learning. And we
design a class-agnostic and model-agnostic meta-learning
algorithm to solve this problem, which can also improve
the generalization ability of physical attack by accessing a
few digital and physical images.

3. Our Approach

In this section, we present the overall scheme of Class-
agnostic and Model-agnostic Physical Adversarial Attack
(Meta-Attack) method, as shown in Figure 2.

3.1. Notations and Preliminaries

We denote the benign image as © € X, whose physical
image is denoted as ), € X'. The attacked model is denoted
as f : X — Y, with ) being the output space. Our goal is
to learn a generative network Gg : € — @ 44,, Which could
produce an adversarial image .4, = Gg(x) to fool the
model f in the targeted mode'. We formulate the problem
of targeted attack as f(x.qy) = y: # f(x), where y; is the
given target label. We denote the physical image of x4,
as «”, . so a robust physical adversarial example can be
formulated as f(x?, ) = y: # f(x).

However, as shown in Figure 1(a), there are always dis-
tortions between the digital image and its corresponding
physical image. To generate robust physical adversarial im-
ages, we need to analyze the reasons behind such distor-
tions in details. We factorize the D2P transformation into
two transformations. (1) 1:1 Digital-to-Physical transfor-
mation (1:1-D2P transformation) means that the digital im-
age is printed and scanned with 1:1 scale. It does not change
the shape of the original digital image, but the pixel val-
ues may be changed due to the characters of the printer and
scanner/camera. (2) Spatial transformations occur during
capturing the adversarial image due to the varying relative
locations and view-angles between the printed photo and
the capturing device. They may change the shape, scale,
and location of the captured adversarial image.

1 ike other physical attacks [2, 21], in this work we focus on the tar-
geted attack. Because changing the original prediction at random in physi-
cal attack is easy, which may be due to the D2P transformation, rather than
the adversarial perturbation.
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Figure 2. The detailed scheme of class-agnostic and model-agnostic physical adversarial attack method. During the meta-training, training
tasks are fed into the generative attack model to learn a meta generative attack model (i.e., G™**, D™**), In the meta-test phase, the
meta generative attack model is fine-tuned on the support set of an unseen attack task 7, and then evaluated on a query set.

3.2. Meta-Attack

Architecture Overview. The detailed scheme of our
method is shown in Figure 2, which is composed of a robust
generative attack model and a Class-agnostic and Model-
agnostic Meta-Learning algorithm (CMML). The genera-
tive attack model is to generate robust physical adversar-
ial images by simultaneously simulating both color and
spatial distortions. While the class-agnostic and model-
agnostic meta-learning algorithm can improve the gener-
alization ability of the generative attack model by use of
only a handful physical images for simulating physical dy-
namics. The generative attack model trained by CMML can
achieve the goal of class-agnostic and model-agnostic phys-
ical adversarial attack.

Generative Attack Model. As shown in Figure 2, the gen-
erative attack model G(-) takes the benign image @ as input
and generates an adversarial example yq, (i.e., G()) to
fool the target DNN model f. Our goal is to enhance the
robustness of the adversarial example x4, Which can re-
main effectiveness in the physical world. As discussed in
Section 3.1, a successful and robust physical adversarial ex-
ample x4, should satisfy three requirements including (1)
Successful digital attack, (2) Robustness to 1:1-D2P trans-
formation, and (3) Robustness to spatial transformations.

(1) Successful Digital Attack. To satisfy the first require-
ment, we should solve the following optimization problem,

ngn Eadv (f(G(m))ayt)’ (1)

where L4, is the cross entropy loss for the targeted attack,
which corresponds to the attack loss in Figure 2.

(2) Robustness to 1:1-D2P Transformation. To ensure the
robustness of @4, (i.e., G(x)) to color distortions caused
by the 1:1-D2P transformation, following [21], we encour-
age T o4, to be close to the corresponding physical image
xp. From this perspective, G(-) can be seen as the domain
transfer from the digital domain X to the physical domain

Xp, which can be formulated as:

mén mgx Lycax(z, xp; G, D), @

where D indicates the discriminator, z € X, z, € X, .
We denote the GAN loss as Lx.gan generally, as any GAN
model can be adopted, which is specified in Section 4.1.

(3) Robustness to Spatial Transformations. Inspired by
the expectation over transformations (EOT) method [2], we
introduce several spatial transformations to model varying
distances and view-angles during generating adversarial im-
ages. Then we aim to improve the robustness of adversarial
examples based on a series of synthetically transformed im-
ages. Thus, we have the following optimization problem:

ngn Eter [Lado (f(H(G())),1t)], 3
where T" denotes a chosen transformation distribution of the
transformation function ¢. In practice, the distribution T’
can model shape distortions such as random rotation, trans-
lation, resize, or affine.

Full Objective Function. In order to achieve a robust phys-
ical adversarial attack, we combine Eq. (1), Eq. (2) and
Eq. (3) to derive the final objective function:

L = Lxcan(z,xp; G, D) “)

+ A Eeer [Laao (f(HG())), y2)]
+ ¢ ||G(x) — zp|lp,

where A > 0 denotes the trade-off parameter to balance the
robustness to 1:1-D2P transformation and the attack perfor-
mance under the spatial transformation, which will be spec-
ified in experiments. And the last term of Eq. (4) is to
guarantee that the adversarial examples are imperceptible
by human eyes. Therefore, we aim to solve the following
optimization problem:

G*,D :argmclnmgxﬁ. 5)

2In the following pages, except for special statements, physical images
represent the images printed and scanned with 1:1 scale.
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Class-agnostic and Model-agnostic Meta-Learning. To
train the proposed generative attack model, according to
Eq. (2), we need to collect large-scale training image pairs
(i.e.,  and x,). However, it is unrealistic to craft physical
images for each images, which requires printing and scan-
ning repeatedly. Therefore, we formulate it as a few-shot
learning problem and just craft few-shot image pairs for
each class. To better solve this few-shot learning problem,
we propose a Class-agnostic and Model-agnostic Meta-
Learning (CMML) algorithm. In order to make the CMML
algorithm suitable for the scenario of physical adversarial
attack, we design a new setting of the training task 7 that is
different from the seminal work [14] of meta-learning. We
define the attack task 7 that consists of a support set D, a
query set Dy, and a target attacked model f, where both D,
and D, are composed of digital images x and correspond-
ing physical images «,,. The CMML algorithm can help the
proposed generative attack model to produce robust physi-
cal adversarial examples by using the crafted few-shot im-
age pairs. Besides, thanks to the concept “learning to learn”
of meta learning [ 14, 34], which aims at generalizing to new
tasks and new environments that have never been encoun-
tered during training, our CMML algorithm can improve
the generalization ability of the generative attack model on
attacking unseen images and unseen target DNN models.

As Figure 2 shows, our CMML algorithm consists of
two stages including the meta-training step for a meta gen-
erative attack model and the fine-tuning step for unknown
attack tasks. At the meta-training step, our CMML algo-
rithm takes {7;};*, = {DJ", DJ, f;}iL, as inputs and pro-
duces a meta generative attack model (i.e., G™¢?, Dmetay
by minimizing the validation loss on query sets of multiple
attack tasks. When at the fine-tuning step, given a new at-
tack task 7, = {DI*,Djt, f;}, the meta generative attack
model should be fine-tuned for few steps on few-shot image
pairs (i.e., DIt), which avoids collecting a lot of digital and
physical image pairs for simulating physical dynamics. Af-
ter fine-tuning, a task-specific generative attack model (i.e.,
G, D™)is evaluated on D*, which just consists of several
digital images. As a consequence, the proposed CMML al-
gorithm is able to not only effectively deal with the few-shot
problem, but also improve the generalization ability of the
generative attack model on unseen attack tasks.

3.3. Training and Inference

Meta-Training. The meta generative attack model (i.e.,
Gmeta pmetay i trained by our proposed CMML algo-
rithm to find a sensitive and transferable initial parameters
such that a few gradient updating steps on few-shot digital
and physical image pairs can lead to good performance on
a new attack task. The entire pipeline is illustrated in Fig-
ure 2 and Algorithm 1. Each training task 7; is composed
of a query set, a support set and a target attacked model:

{D, Dy, fi}. Let L+, (8¢, 0p, fi) denote the loss of task
T;» 8 and @ are the parameters of G and D. Following the
practice in MAML [ 4], an update step of the parameters of
task 7; with respect to the support set can be represented by:

0c.., = 0c — Ve, L., (06,0p, fi,DT),  (6)
0p... = 0p +aVe, L., (0c.0p, [, DT),  (7)

where « is a learning rate. The query set D' is used to
evaluate the effectiveness of the updated parameters, i.e.,
L:,(0c ., ,.0 D7 fi,D}). Hence, the objective function of
meta learning is defined as

[Lmeta Z ‘Cﬂ: (O,G’Ti s O,D,Ti y fqa DZI—L )7 8)

T €p(T)

where p(7) is the distribution of the constructed tasks. As
images in each task are randomly sampled, p(7) follows
a uniform distribution. The update of meta parameters is

defined as: 0c = 0 — BV, Lmea )
0p =0p + Ve, LT, (10

where (3 is the learning rate.

Meta-Testing. During the meta-testing stage, for an unseen
target attack task 7, = {DJ*, D}, f;}, we iteratively fine-
tune the meta generative attack model (i.e., G™¢t¢, D™¢ta)
by Eq. (6) and Eq. (7) for few steps on D}*, where only few-
shot digital and physical image pairs are needed. Then, the
images from D;* (the physical images are not required) can
be directly fed to the fine-tuned model to get corresponding
robust physical adversarial examples.

Algorithm 1 Our proposed Meta-Attack Method

Input: Training task set {r;}}*, = {D'. Dy, fi}I,, tar-
get unseen task 7, = {D]*, D", fi}.

Output: fine-tuned generator G and discriminator D.

1: Initial G parameters 6 and D parameters 6p;

2: /% meta-train x/

3: for iter =1,2,3... do

4: Sample a mini-batch of k tasks;

5: for all £ tasks do

6

7

8

9

Compute 0, ., 0, . by Eq. (6), (7) on D7';
end for ' '
Compute L™¢** according to Eq. (8);
: Update 0, 6p according to Eq. (9) and Eq. (10);
10: end for
11: /% meta-test on an unseen task 7; = {DT*, D7t fi } */
12: Fine-tune O, Op by Eq. (6) and Eq. (7) on D7¢.

4. Experiments

In this section, we conduct experiments with four dif-
ferent settings to evaluate the performance of the proposed
method in both digital domain and physical domain. Please
refer to the Supplementary Material for more results.
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4.1. Detailed Settings

Datasets. We evaluate our approach on ImageNet [6] and
GTSRD [40]. Attacked Model. If not particularly speci-
fied, we choose VGG-16 [39] as the target model by default.
Implementation. Our generative network is implemented
based on Cycle-GAN [49]. The trade-off parameters A, ¢ in
Eq. (4) are set to 20 and 10, respectively. Task-level learn-
ing rate « in Egs. (6), (7) and meta-level learning rate (3 in
Egs. (9), (10) are set to 0.0001 and 0.0002, respectively.
Baseline Methods. We compare our method with several
baseline approaches including BIM [26], EOT [2], D2P
[21], and RP2 [11]. Here, we set ¢ = 40/255, o = 2/255,
steps = 30 for BIM. We follow [21] to configure the set-
tings of EOT and D2P schemes, including scaling, rotation,
translation, noise level € = 40/255 and step size o = 0.5.
Similarly, our configuration for RP2 is the same as the orig-
inal paper [11], while the NPS (non-printability score) term
is modified by us to fit our printing equipment.

Evaluation Metrics. For each generated adversarial image,
we test it in both digital and physical domains (i.e., print-
ing, scanning or photographing). Then, we report the attack
success rate (ASR) and the average confidence of the target
label overall tested images (120 images).

(a) Benign image (b) BIM (¢c) EOT

(d) D2P (e) RP2 (f) Ours

Figure 3.  Adversarial images generated by different methods.
(from “SpeedLimit 50” to “SpeedLimit 30™.)

4.2. Results and Analysis

As discussed in section 3.2, we define the task 7 as
{Ds, Dy, f}. Therefore, to evaluate the effectiveness of our
model, we conduct four different experiments including (1)
attacking a seen model on images of a seen class, (2) attack-
ing a seen model on images of an unseen class, (3) attacking
an unseen model on images of a seen class, and (4) attack-
ing an unseen model on images of an unseen class.

Exp.1 Attack a seen model on images of a seen class.

Setting. Given K images of one class, we perform the 1:1-
D2P transformation to get their physical images. Attacking
each individual image is treated as a task. In meta-train
phase, for each task, a randomly selected pair from K train-
ing pairs is treated as the support set. We scale and crop the
digital and physical images. Then, the pair of the cropped
digital and physical patches is treated as the query set. In

meta-test phase, a target image and its physical image from
the same class are treated as the support set for fine-tuning.
After fine-tuning for M steps, we perform attack on the tar-
get image with the fine-tuned model. We specify the param-
eters K = 50, M = 30.

Table 1. Comparison results of Exp.1 on GTSRD.

Domain — ‘ Digital ‘ Physical

Attack] | ASR Conf | ASR  Conf
BIM [20] 1.0 1.0 | 0213 0.188
EOT [2] 1.0 1.0 | 0.846 0.546
D2P [21] 1.0 1.0 | 0909 0.787
RP2[11] 1.0 1.0 | 0.838 0.665
Ours 1.0 1.0 | 0952 0.936

Table 2. Photographing with different view angles on GTSRD.

View Angles 5
I 9}

s T
Attack| ASR Conf| ASR Conf| ASR Conf
EOT [2] 0.415 0.377| 0.633 0.401| 0.403 0.373
D2P [21] 0.537 0.389] 0.700 0.408 0.517 0.386
RP2[11] 0.497 0.298 0.667 0.398 0.502 0.364
Ours 0.667 0.599 0.817 0.647 0.657 0.558

Results. We show the results of this setting on both Ima-
geNet and GTSRD. Figure 3 presents some adversarial ex-
amples. From Table 1, our model outperforms the other
methods by a large margin in terms of ASR in the physical
domain, and achieves a high ASR of 95.2%. We also eval-
uate the robustness of adversarial examples on GTSRD by
changing viewing angles. In Table 2, We observe that our
method has a better performance compared to EOT, D2P
and RP2. At the frontal view, the ASR of our method is
81.7%, while the ASR of EOT, D2P, RP2 is 63.3%, 70.0%,
66.7%, respectively. When the image is turned by -45 de-
grees, the ASR of ours is still 66.7%, which is higher than
others.  The results on ImageNet are shown in Table 3.
Although the ASR of all methods in the digital domain can
reach 100%, our method outperforms other methods in the
physical domain under all spatial transformations, which
means our adversarial examples are more robust.

Exp.2 Attack a seen model on images of an unseen class.
Setting. Given images from C classes, we use one class for
evaluation in meta-test phase and the other C'— 1 classes for
meta-train. Firstly, we perform the 1:1-D2P transformation
to get the physical images of given images. In meta-train
phase, to construct a task, two pairs of digital and physical
image are randomly selected from one of the C' — 1 classes.
One pair is treated as the support set while the other is
treated as the query set. In meta-test phase, several pairs of
the target class are treated as the support set for fine-tuning.
After fine-tuning for M steps, we perform evaluations on
the other images of the target class with the adjusted model.
We configure the parameter C' = 9, which represents the
number of the images classes sampled from ImageNet. (la-
bel list [288,291,281,292,269,294,340,215,388]).

Results. Table 4 and Figure 4 report the generalization and
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Table 3. Results on Exp.1 under different spatial transformations in the physical domain on ImageNet database.

Attack — BIM EOT RP2 D2P Ours
Spatial Transformation | ASR  Conf | ASR Conf | ASR Conf | ASR Conf | ASR  Conf
Digital domain 1.0 0932 | 1.0 0.908 | 0.980 0.806 1.0 0925 1.0 0.994
Resize 1 + Rotation 0° 0.067 0.023 | 0.667 0.594 | 0.680 0.444 | 0.733 0.694 | 0.850 0.834
Resize 1 + Rotation 20° 0.0 0.0 0.617 0574 | 0.676 0425 | 0.717 0.686 | 0.837 0.829
Resize | + Rotation —20° 0.0 0.0 | 0.667 059 | 0.676 0436 | 0.717 0.686 | 0.842 0.833
Resize 1.2 + Rotation 0° 0.0 0.0 | 0.767 0.679 | 0.675 0435 | 0.667 0.619 | 0.817 0.673
Resize 1.2 + Rotation 20° 0.0 0.0 | 0.757 0.668 | 0.667 0.433 | 0.650 0.608 | 0.807 0.665
Resize 1.2 + Rotation —20° 0.0 0.0 | 0753 0.645 | 0.675 0428 | 0.667 0.619 | 0.817 0.673
Resize 0.8 + Rotation 0° 0.0 0.0 | 0.633 0583 | 0.667 0441 | 0.667 0.669 | 0.783  0.765
Resize 0.8 + Rotation 20° 0.0 0.0 | 0617 0575 | 0.643 0431 | 0.650 0.653 | 0.783 0.765
Resize 0.8 + Rotation —20° 0.0 0.0 | 0.633 0587 | 0.643 0.428 | 0.667 0.669 | 0.767 0.757
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Figure 4. The adversarial images from different classes against different spatial transformations in the physical domain under Exp.2.

Table 4. Experimental results of Exp.2 on ImageNet dataset.

Domain — Digital ‘ Physical

Source Label | | ASR  Conf ‘ ASR  Conf
288 0.750  0.688 | 0.217 0.146
291 0.900 0.900 | 0.817 0.682
281 0.283 0.281 | 0.217 0.113
292 0.817 0.789 | 0.267 0.209
269 0.983 0.926 | 0.900 0.690
294 0.967 0.972 | 0.900 0.771
340 0.717 0.683 | 0.133 0.117
215 0.933 0.887 | 0.716 0.470
388 0.900 0.877 | 0.600 0.513
ave 0.806 0.778 | 0.530 0.406

robustness of adversarial examples on ImageNet database.
The results on GTSRD will appear in the Supplementary
Material. The class label shown in the first column of Ta-
ble 4 is the unseen class. From Table 4, it is easy to find
that the model can quickly adapt to the unseen class and get
the ASR with high values. In particular, when we treat 269
as the unseen class, our ASR reaches 98.3% in the digital
domain and 90.0% in the physical domain. To verify the
robustness of adversarial examples, we also evaluate adver-
sarial examples from various unseen classes under different
spatial transformations in the physical domain. Figure 4
shows that when our adversarial examples undergo spatial
transformations, the fluctuation of ASR is very small. This
reveals that the spatial transformation has little effect on ad-
versarial examples, which is attributed to EOT [2].

Exp.3 Attack an unseen model on images of a seen class.
Setting. Given R target models, one is used for evalua-
tion in the meta-test phase while the other R — 1 mod-
els are used for meta-training. Given K images from one
class, we perform the 1:1-D2P transformation to get their
physical images, forming K pairs of digital and physical
images. In meta-train phase, to construct a task, we ran-
domly select a pair from the K pairs as the support set
and another pair as the query set while we randomly se-

lect a model from R — 1 models as the target model. In
meta-test phase, we randomly select a few target images
and their physical images from the same class as the sup-
port set to fine-tune the generative model to attack the test-
ing target model. After fine-tuning for M steps, we per-
form attack on the digital images of the same class with the
adjusted model. The hyper-parameters are specified as fol-
lows: R = 3,K = 50, M = 30. These 3 target models
include VGG-16, VGG-19 and ResNet-50.

Table 5. Result of adapting to different attacked DNN models un-
der different spatial transformations on ImageNet dataset.

Attacked Model — VGG-16 [ VGG-19 | ResNet-50

Spatial Transformation | ASR  Conf ‘ ASR  Conf ‘ ASR  Conf
Digital domain 0.850 0.732 | 0.867 0.811 | 0.683 0.615
Resize | + Rotation 0° 0.383 0365 [ 0.583 0312 | 0.308 0.288
Resize | + Rotation 20° 0.367 0353 | 0.567 0309 | 0.292  0.276
Resize 1 + Rotation —20° | 0367 0352 | 0.567 0.310 | 0.308 0.281
Resize 1.2 + Rotation 0° 0483 0330 | 0.683 0353 | 0.317 0.294
Resize 1.2 + Rotation 20° | 0483 0318 | 0.667 0.349 [ 0.292  0.267
Resize 1.2 + Rotation —20° | 0.483 0317 | 0.667 0349 | 0292 0277
Resize 0.8 + Rotation 0° 0.367 0.316 | 0.567 0343 | 0.250 0.233
Resize 0.8 + Rotation 20° | 0.367 0309 | 0.558 0334 | 0241 0227
Resize 0.8 + Rotation —20° | 0350 0304 | 0.558 0.342 | 0.241 0.236

Results. Exp.3 is to examine the generalization ability
upon the attacked models. Table 5 presents the results on
ImageNet database. The Supplementary Material will
provide the results on GTSRD database. When adapting
to VGG-16, in Table 5, the ASR in the digital domain is
85.0%. If we replace the attacked model with VGG-19, the
ASR is also with a high value of 86.7% in the digital do-
main. However the physical attack performance degrades
to some extent, but the performance is still acceptable, es-
pecially on VGG-19. For example, when adapting to VGG-
19, and rotating the image by 20 degrees, scaling it by 0.8,
the ASR is still 55.8%. This indicates that our model has a
good generalizable characteristics and the generated adver-
sarial images are robust against spatial transformations.
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Table 6. Result of adapting to different attacked classes and differ-

ent DNN models on ImageNet dataset.

Source Label — ‘
Attacked Model | ‘ 215 ‘ 21 ‘ 388

Digital ASR | 0.850 | 0.833 | 0.867

VGG-16 Conf | 0.776 | 0.807 | 0.834
Physical ASR | 0.537 | 0.417 | 0.467

Conf | 0.487 | 0.381 | 0.381

Digital ASR | 0.875 | 0.867 | 0.883

VGG-19 Conf | 0.831 | 0.838 | 0.841
Physical ASR | 0.592 | 0.583 | 0.492

Conf | 0.547 | 0.557 | 0.451

Digital ASR | 0.683 | 0.637 | 0.717

ResNet-50 Conf | 0.637 | 0.586 | 0.659
Physical ASR | 0.307 | 0.313 | 0.283

Conf | 0.276 | 0.278 | 0.247

Exp.4 Attack an unseen model on images of an unseen class.

Setting. Given images from C classes and R target mod-
els, we use one class and one model for evaluation in meta-
test phase and the other C' — 1 classes and R — 1 models
for meta-train. Similarly, we perform the 1:1-D2P trans-
formation to get the physical images of given images. In
meta-train phase, to construct a task, two pairs of digital and
physical image are randomly selected from one of the C'— 1
classes. One pair is treated as the support set while the other
is treated as the query set, and a randomly selected model
from R — 1 models as the target model. In meta-test phase,
several pairs of the target class and the target model are used
for fine-tuning. After fine-tuning for M steps, we attack the
target model on the other images of the target class with the
adjusted model. The hyper-parameters are specified as fol-
lows: R =3, M = 30,C = 3. (label list [215, 291, 388]).
Target models include VGG-16, VGG-19 and ResNet-50.

Results. Exp.4 is to evaluate the performance of attacking
an unseen model on images from unseen class. Table 6 re-
ports the results on ImageNet. We can observe that in most
cases, the performance of our method is acceptable. For ex-
ample, when we treat VGG-19 and 291 as the unseen DNN
model and unseen class, respectively, the ASR in the digital
domain is 86.7%, and the physical ASR achieves 58.3%.
When we focus on ResNet-50 and label 215, the digital
ASR reaches 68.3%, and the ASR in the physical domain
is 30.7%. We find that the ASR of VGG is overall higher
than that of ResNet, which indicates that ResNet is more
robust than VGG. Consistently across all cases, our method
performs well on different classes and different DNN mod-
els, which proves the good generalization of our method.

4.3. Ablation Studies

In this section, we explore the influence of the proposed
class-agnostic and model-agnostic meta-learning (CMML)
algorithm. To show the performance difference, we design
a comparative experiment. We use two generative attack
models to generate adversarial images of the same images
for attacking a given DNN model, one of which is randomly
initialized, while the other is pre-trained by CMML. Fig-
ure 5 shows the performance comparison of the these two

generative attack models. From the comparison of the two
images in Figure 5(a), we can easily find that the upper is
clearer, which is generated by the pre-trained model with
the proposed meta-learning strategy. In addition, Figure
5(b) presents that the pre-trained model significantly out-
performs the model without pre-training on ASR and con-
fidence metrics in digital domain. The pre-trained model
can achieve a much higher ASR of 90%, while the model
without pre-training can hardly attack successfully.

0 H 10 15 20 2 30

without meta-learing Fine-tune Steps

(a) Generated image comparision (b) ASR and confidence comparison

Figure 5. Performance comparison of the generative attack model
with or without CMML pre-training in the digital domain.

5. Conclusion

In this work, we present a class-agnostic and model-
agnostic physical adversarial attack method, which is able
to not only generate robust physical adversarial examples,
but also show good generalization. Firstly, we propose a
generative attack model by combining the CycleGAN and
EOT loss together to simulate color and spatial distortions.
Then we formulate the physical attack as a problem of
few-shot learning, and propose a class-agnostic and model-
agnostic meta-learning algorithm, which can enhance the
generalization ability of the generative attack model on at-
tacking novel images or novel DNN models. Comprehen-
sive experimental results on two datasets with four experi-
mental settings demonstrate the superiority of the proposed
attack method with good robustness and generalization.
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