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Abstract

The recently proposed Detection Transformer (DETR)
model successfully applies Transformer to objects detec-
tion and achieves comparable performance with two-stage
object detection frameworks, such as Faster-RCNN. How-
ever, DETR suffers from its slow convergence. Training
DETR [4] from scratch needs 500 epochs to achieve a high
accuracy. To accelerate its convergence, we propose a sim-
ple yet effective scheme for improving the DETR framework,
namely Spatially Modulated Co-Attention (SMCA) mech-
anism. The core idea of SMCA is to conduct location-
aware co-attention in DETR by constraining co-attention
responses to be high near initially estimated bounding box
locations. Our proposed SMCA increases DETR’s conver-
gence speed by replacing the original co-attention mech-
anism in the decoder while keeping other operations in
DETR unchanged. Furthermore, by integrating multi-head
and scale-selection attention designs into SMCA, our fully-
fledged SMCA can achieve better performance compared
to DETR with a dilated convolution-based backbone (45.6
mAP at 108 epochs vs. 43.3 mAP at 500 epochs). We
perform extensive ablation studies on COCO dataset to
validate SMCA. Code is released at https://github.
com/gaopengcuhk/SMCA-DETR.

1. Introduction
The recently proposed DETR [4] has significantly sim-

plified object detection pipeline by removing hand-crafted
anchor [33] and non-maximum suppression (NMS) [2].
However, the convergence speed of DETR is slow com-
pared with two-stage [13, 12, 33] or one-stage [25, 31, 23]
detectors (500 vs. 40 epochs). Slow convergence of DETR
makes it difficult for researchers to further extend the algo-
rithm and thus hinders its widespread usage.

In DETR, there are a series of object query vectors re-
sponsible for detecting objects at different spatial locations.
Each object query interacts with the spatial visual features
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Figure 1. Comparison of DETR-DC5 trained for 500 epochs, and
our proposed SMCA trained for 50 epochs and 108 epochs. The
convergence speed of the proposed SMCA is faster than DETR.

encoded by a Convolution Neural Network (CNN) [16],
adaptively collects information from spatial locations with
a co-attention mechanism, and then estimates the bound-
ing box locations and object categories. However, in the
decoder of DETR, the co-attended visual regions for each
object query might be unrelated to the bounding box to be
predicted by the query. Thus the decoder of DETR needs
long training epochs to search for the properly co-attended
regions to accurately identify the corresponding objects.

Motivated by this observation, we propose a novel
module named Spatially Modulated Co-attention (SMCA),
which is a plug-and-play module to replace the existing
co-attention mechanism in DETR and achieves faster con-
vergence and improved performance with simple modifi-
cations. The proposed SMCA dynamically predicts ini-
tial center and scale of the box corresponding to each ob-
ject query to generate a 2D spatial Gaussian-like weight
map. The weight map is element-wisely multiplied with the
co-attention feature maps of object query and image fea-
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tures to more effectively aggregate query-related informa-
tion from the visual feature map. In this way, the spatial
weight map effectively modulates the search range of each
object query’s co-attention to be properly around the ini-
tially estimated object center and scale. By leveraging the
predicted Gaussian-distributed spatial prior, our SMCA can
significantly speed up the training of DETR.

Although naively incorporating the spatially-modulated
co-attention mechanism into DETR speeds up the conver-
gence, the performance is worse compared with DETR
(41.0 mAP at 50 epochs, 42.7 at 108 epochs vs. 43.3 mAP
at 500 epochs). Motivated by the effectiveness of multi-
head attention-based Transformer [38] and multi-scale fea-
ture [22] in previous research work, our SMCA is further
augmented with the multi-scale visual feature encoding in
the encoder and the multi-head attention in the decoder. For
multi-scale visual feature encoding in the encoder, instead
of naively rescaling and upsampling the multi-scale features
from the CNN backbone to form a joint multi-scale feature
map, Intra-scale and multi-scale self-attention mechanisms
are introduced to directly and efficiently propagate infor-
mation between the visual features of multiple scales. For
the proposed multi-scale self-attention, visual features at all
spatial locations of all scales interact with each other via
self-attention. However, as the number of all spatial loca-
tions at all scales is quite large and leads to large compu-
tational cost, we introduce the intra-scale self-attention to
alleviate the heavy computation. The properly combined
intra-scale and multi-scale self-attention achieve efficient
and discriminative multi-scale feature encoding. In the de-
coder, each object query can adaptively select features of
proper scales via the proposed scale-selection attention. For
the multiple co-attention heads in the decoder, all heads es-
timate head-specific object centers and scales to generate a
series of different spatial weight maps for spatially modu-
lating the co-attention features. Each of the multiple heads
aggregates visual information from slightly different loca-
tions and thus improves the detection performance.

Our SMCA is motivated by the following research.
DRAW [14] proposed a differential read-and-write opera-
tor with dynamically predicted Gaussian sampling points.

We summarize our contributions below: 1) We propose
a novel Spatial Modulated Co-Attention (SMCA), which
can accelerate the convergence of DETR by conducting
location-constrained object regression. SMCA is a plug-
and-play module in the original DETR. The basic version
of SMCA without multi-scale features and multi-head at-
tention can already achieve 41.0 mAP at 50 epochs and
42.7 mAP at 108 epochs. It takes 265 V100 GPU hours
to train the basic version of SMCA for 50 epochs. 2) Our
full SMCA further integrates multi-scale features and multi-
head spatial modulation, which can further significantly im-
prove and surpass DETR with much fewer training itera-

tions. SMCA can achieve 43.7 mAP at 50 epochs and 45.6
mAP at 108 epochs, while DETR-DC5 achieves 43.3 mAP
at 500 epochs. It takes 600 V100 GPU hours to train the
full SMCA for 50 epochs. 3) We perform extensive abla-
tion studies on COCO 2017 dataset to validate the proposed
SMCA module and the network design.

2. Related Work
Object Detection. Motivated by the success of deep learn-
ing on image classification [20, 16], deep learning has
been successfully applied to object detection [13]. Deep
learning-based object detection frameworks can be cate-
gorized into two-stage, one-stage, and end-to-end ones.
For two-stage object detectors including RCNN [13], Fast
RCNN [12] and Faster RCNN [33], the region proposal
layer generates a few regions from dense sliding windows
first, and the ROI align [15] layer then extracts fine-grained
features and perform classification over the pooled features.
For one-stage detectors such as YOLO [31] and SSD [25],
they conduct object classification and location estimation
directly over dense sling windows. Both two-stage and one-
stage methods need complicated post-processing to gener-
ate the final bounding box predictions.

Recently, another branch of object detection meth-
ods [35, 34, 32, 4] beyond one-stage and two-stage ones has
gained popularity. They directly supervise bounding box
predictions end-to-end with Hungarian bipartite matching.
However, DETR [4] suffered from slow convergence com-
pared with two-stage and one-stage object detectors. De-
formable DETR [41] accelerates the convergence speed of
DETR via learnable sparse sampling coupled with multi-
scale deformable encoder. TSP [36] combined RCNN-
or FCOS-based methods with DETR. Deformable DETR,
TSP-RCNN and TSP-FCOS only explored local informa-
tion while our SMCA explores global information with a
self-attention mechanism. UP-DETR [5] propose a novel
self-supervised loss to enhance the convergence speed.
Transformer. CNN [21] and LSTM [17] can be used for
modeling sequential data. CNN processes input sequences
with a weight-shared sliding window manner. LSTM pro-
cesses inputs with a recurrence mechanism controlled by
several dynamically predicted gating functions. Trans-
former [38] introduces a new architecture beyond CNN and
LSTM by performing information exchange between all
pairs of input using key-query value attention. Transformer
has achieved success on machine translation, after which
Transformer has been adopted in different fields, including
model pre-training [6, 29, 30, 3], visual recognition [28, 7],
and multi-modality fusion [40, 8, 27, 10, 11]. Transformer
has quadratic complexity for information exchange between
all pairs of inputs, which is difficult to scale up for longer in-
put sequences. Many methods have been proposed to tackle
this problem. Reformer [19] proposed a reversible FFN
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and clustering self-attention. Linformer [39] and FastTrans-
former [18] proposed to remove the softmax in the trans-
former and perform matrix multiplication between query
and value first to obtain a linear-complexity transformer.
LongFormer [1] perform self-attention within a local win-
dow instead of the whole input sequence. Container [9] is
a recently proposed backbone network which unify convo-
lution and self-attention mechanism though contextual ag-
gregation. Transformer has been utilized in DETR to en-
hance the features by performing feature exchange between
different positions and object query. In SMCA, intra-scale
multi-scale self-attention is utilized for multi-scale informa-
tion exchange.

3. Spatially Modulated Co-Attention

3.1. Overview

In this section, we will first revisit the basic design of
DETR [4] and then introduce the basic version of SMCA.
After introducing SMCA, we will introduce how to inte-
grate multi-head and scale-selection attention mechanisms
into SMCA. SMCA is illustrated in Figure 2.

3.2. A Revisit of DETR

End-to-end object DEtection with TRansformer
(DETR) [4] formulates detection as a set prediction
problem. Convolution Neural Network (CNN) [16]
extracts visual feature maps f ∈ RC×H×W from an
image I ∈ R3×H0×W0 , where H,W and H0,W0 are the
height/width of the image and the feature, respectively.

The visual features augmented with position embedding
fpe would be fed into the encoder. Self-attention would be
applied to fpe to generate the key, query, and value fea-
tures K,Q, V to exchange information between features at
all spatial positions. To increase the feature diversity, such
features would be split into multiple groups along the chan-
nel dimension for the multi-head self-attention. The multi-
head normalized dot-product attention is conducted as

Ei = Softmax(KT
i Qi/

√
d)Vi, (1)

E = Concat(E1, . . . , EH),

where Ki, Qi, Vi denote the ith feature group of the key,
query, and value features. There are H groups for each type
of features, and the output encoder features E is then further
transformed and input into the decoder of the Transformer.

Given the visual feature E encoded from the encoder,
DETR performs co-attention between object queries Oq ∈
RN×C and the visual features E ∈ RL×C , where N de-
notes the number of pre-specified object queries and L is

the number of the spatial visual features.

Q = FC(Oq), K, V = FC(E)

Ci = Softmax(KT
i Qi/

√
d)Vi, (2)

C = Concat(C1, . . . , CH),

where FC denotes a single-layer linear transformation, and
Ci denotes the co-attended feature for the object query Oq

from the ith co-attention head. The decoder’s output fea-
tures of each object query is then further transformed by
a Multi-Layer Perceptron (MLP) to output class score and
box location for each object.

3.3. Spatially Modulated Co-Attention

The co-attention in DETR is unaware of the predicted
bounding boxes and thus requires many iterations to learn
how to generate the proper attention map for each object
query. The core idea of our SMCA is to combine the learn-
able co-attention maps with handcrafted query spatial pri-
ors, which constrain the attended features to be around the
object queries’ initial estimations and thus to be more re-
lated to the final predictions. The SMCA module is illus-
trated in the Figure 2 in orange.
Dynamic spatial weight maps. Each object query first dy-
namically predicts the center and scale of its responsible
object, which are then used to generate a 2D Gaussian-like
spatial weight map. The center of the Gaussian-like distri-
bution are parameterized in the normalized coordinates of
[0, 1]× [0, 1]. The initial prediction of the normalized center
cnormh , cnormw and scale sh, sw of the Gaussian-like distribu-
tion for object query Oq is formulated as

cnormh , cnormw = sigmoid(MLP(Oq)), (3)
sh, sw = FC(Oq),

where the object query Oq is projected to obtain normalized
prediction center in the two dimensions cnormh , cnormw with
a 2-layer MLP followed by a sigmoid activation function.
The predicted center is then unnormalized to obtain the
center coordinates ch, cw in the original image. Oq would
also dynamically estimate the object scales sh, sw along the
two dimensions to create the 2D Gaussian-like weight map,
which is then used to re-weight the co-attention map to em-
phasize features around the predicted object location.

Objects in natural images show diverse scales and
height/width ratios. The design of predicting width- and
height-independent sh, sw can better tackle the complex ob-
ject aspect ratios in real-world. For large or small objects,
SMCA dynamically generates sh, sw of different values, so
that the modulated co-attention map by the spatial weight
map G can aggregate sufficient information from all parts of
large objects or suppress background clutters for the small
objects. After predicting the object center cw, ch and scale
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Figure 2. The overall pipeline of Spatially Modulated Co-Attention (SMCA) with intra-scale self-attention, multi-scale self-attention,
spatial modulation, and scale-selection attention modules. Each object query performs spatially modulated co-attention and then predicts
the target bounding boxes and their object categories. N stands for the number of object queries. L stands for the layers of decoder.

sw, sh, SMCA generates the Gaussian-like weight map as

G(i, j) = exp

(
− (i− cw)

2

βs2w
− (j − ch)

2

βs2h

)
, (4)

where (i, j) ∈ [0,W ] × [0, H] is the spatial indices of the
weight map G, and β is a hyper-parameter to modulate the
bandwidth of the Gaussian-like distribution. The weight
map G generally assigns high importance to locations near
the center and low importance to positions far from the cen-
ter. β can be manually tuned with a handcrafted scheme to
ensure G covering enough spatial range at the beginning so
that the network can receive more informative gradients.
Spatially-modulated co-attention. Given the dynamically
generated spatial prior G, we modulate the co-attention
maps Ci between object query Oq and self-attention en-
coded feature E with the spatial prior G. For each co-
attention map Ci generated with the dot-product attention
(Eq. (2)), we modulate the co-attention maps Ci with the
spatial weight map G, where G is shared for all co-attention
heads in the basic version of our SMCA,

Ci = softmax(KT
i Qi/

√
d+ logG)Vi. (5)

Our SMCA performs element-wise addition between the
logarithm of the spatial map G and the dot-product co-
attention KT

i Qi/
√
d followed by softmax normalization

over all spatial locations. By doing so, the decoder co-
attention would weight more around the predicted bounding

box locations, which limits the search space of the spatial
patterns of the co-attention and thus increases the conver-
gence speed. The Gaussian-like weight map is illustrated in
Figure 2, which constrains the co-attention to focus more on
regions near the predicted bounding box location and thus
significantly increases the convergence speed.
SMCA with multi-head modulation. We also investi-
gate to modulate co-attention features differently for dif-
ferent co-attention heads. Each head starts from a head-
shared center [cw, ch], similar to that of the basic version
of SMCA, and then predicts a head-specific center off-
set [∆cw,i,∆ch,i] and head-specific scales sw,i, sh,i. The
Gaussian-like spatial weight map Gi can thus be gener-
ated based on the head-specific center [cw + ∆cw,i, ch +
∆ch,i] and scales sw,i, sh,i. The co-attention feature maps
C1, . . . , CH of H heads can be obtained as

Ci = softmax(KT
i Qi/

√
d+ logGi)Vi. (6)

Different from Eq. (5) that shares logG for all attention
heads, the above Eq. (6) modulates co-attention maps by
head-specific spatial weight maps logGi. The multiple spa-
tial weight maps can emphasize diverse context and im-
prove the detection accuracy.
SMCA with multi-scale visual features. Feature pyra-
mid is popular in object detection frameworks and generally
leads to significant improvements over single-scale feature
encoding. Motivated by the FPN [22] in previous works,
we also integrate multi-scale features into SMCA. The ba-
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sic version of SMCA conducts co-attention between object
queries and single-scale feature maps. As objects naturally
have different scales, we can further improve the framework
by replacing single-scale feature encoding with multi-scale
feature encoding in the encoder of the Transformer.

Given an image, the CNN extracts the multi-scale vi-
sual features with downsampling rates 16, 32, 64 to ob-
tain multi-scale features f16, f32, f64, respectively. The
multi-scale features are directly obtained from the CNN
backbone. For multi-scale self-attention encoding in the en-
coder, features at all locations of different scales are treated
equally. The self-attention mechanism propagates and ag-
gregates information between all feature pixels of different
scales. However, the number of feature pixels of all scales
is quite large and the multi-scale self-attention operation is
therefore computationally costly. To tackle the issue, we
introduce the intra-scale self-attention encoding as an aux-
iliary operator to assist the multi-scale self-attention encod-
ing. Specifically, dot-product attention is used to propagate
and aggregate features only between feature pixels within
each scale. The weights of the Transformer block (with self-
attention and feedforward sub-networks) are shared across
different scales. Our empirical study shows that parameter
sharing across scales enhances the generalization capability
of intra-scale self-attention encoding. For the final design
of the encoder in SMCA, it adopts 2 blocks of intra-scale
encoding, followed by 1 block of multi-scale encoding, and
another 2 blocks of intra-scale encoding. The design has
a very similar detection performance to that of 5 blocks of
multi-scale self-attention encoding with less computation.

Given the encoded multi-scale features E16, E32, E64

with downsampling rates of 16, 32, 64, a naive solution
for the decoder to perform co-attention would be first re-
scaling and concatenating the multi-scale features to form a
single-scale feature map, and then conducting co-attention
between object query and the resulting feature map. How-
ever, we notice that some queries might only require infor-
mation from a specific scale but not always from all the
scales. For example, the information for small objects is
missing in low-resolution feature map E64. Thus the ob-
ject queries responsible for small objects should more ef-
fectively acquire information only from high-resolution fea-
ture maps. On the other hand, traditional methods, such as
FPN, assigns each bounding box explicitly to the feature
map of a specific scale. Different from FPN [22], we pro-
pose to automatically select scales for each box using learn-
able scale-attention attention. Each object query generates
scale-selection attention weights as

α16, α32, α64 = Softmax(FC(Oq)), (7)

where α16, α32, α64 stand for the importance of se-
lecting f16, f32, f64. To conduct co-attention between
the object query Oq and the multi-scale visual features

Method Epochs time(s) GFLOPs mAP APS APM APL

DETR 500 0.038 86 42.0 20.5 45.8 61.1
DETR-DC5 500 0.079 187 43.3 22.5 47.3 61.1

SMCA w/o
multi-scale

50 0.043 86 41.0 21.9 44.3 59.1

SMCA w/o
multi-scale

108 0.043 86 42.7 22.8 46.1 60.0

SMCA 50 0.100 152 43.7 24.2 47.0 60.4
SMCA 108 0.100 152 45.6 25.9 49.3 62.6

Table 1. Comparison with DETR model over training epochs,
mAP, inference time and GFLOPs.

E16, E32, E64, we first obtain the multi-scale key and value
features Ki,16,Ki,32,Ki,64 and Vi,16, Vi,32, Vi,64 for atten-
tion head i, respectively, from E16, E32, E64 with sepa-
rate linear projections. To conduct co-attention for each
head i between Oq and key/value features of each scale
j ∈ {16, 32, 64}, the spatially-modulated co-attention in
Eq. (5) is adaptively weighted and aggregated by the scale-
selection weights α16, α32, α64 as

Ci,j = Softmax(KT
i,jQi/

√
d+ logGi)Vi,j ⊙ αj , (8)

Ci =
∑
all j

Ci,j , for j ∈ {16, 32, 64}, (9)

where Ci,j stands for the co-attention features between the
ith co-attention head between query and visual features of
scale j. Ci,j’s are weightedly aggregated according to the
scaled attention weights αj obtained in Eq. (7). With such a
scale-selection attention mechanism, the scale most related
to each object query is softly selected.

4. Experiments
4.1. Experiment setup

Dataset. We validate our proposed SMCA over COCO
2017 [24] dataset. Specifically, we train on COCO 2017
training dataset and validate on the validation dataset, which
contains 118k and 5k images, respectively. We report mAP
for performance evaluation following previous research [4].
Implementation details. We follow the experiment setup
in the original DETR [4]. We denote the features ex-
tracted by ResNet-50 [16] as SMCA-R50. Different from
DETR, we use 300 object queries instead of 100 and re-
place the original cross-entropy classification loss with fo-
cal loss [23]. The initial probability of focal loss is set as
0.01 to stabilize the training process.

We report the performance trained for 50 epochs and
the learning rate decreases to 1/10 of its original value at
the 40th epoch. The learning rate is set as 10−4 for the
Transformer encoder-encoder and 10−5 for the pre-trained
ResNet backbone and optimized by AdamW optimizer [26].

For multi-scale feature encoding, we use downsampling
ratios of 16, 32, 64 by default. For bipartite matching [35,
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4], the coefficients of classification loss, L1 distance loss,
GIoU loss is set as 2, 5, 2, respectively. After bounding
box assignment via bipartite matching, SMCA is trained by
minimizing the classification loss, bounding box L1 loss,
and GIoU loss with coefficients 2, 5, 2, respectively. For
Transformer layers [38], we use post-norm similar to those
in previous approaches [4]. We use random crop for data
augmentation with the largest width or height set as 1333
for all experiments following [4].

4.2. Comparison with DETR

SMCA shares the same architecture with DETR except
for the proposed new co-attention modulation in the decoder
and an extra linear network for generating the spatial mod-
ulation prior. The increase of computational cost of SMCA
and training time of each epoch are marginal. For SMCA
with single-scale features (denoted as “SMCA w/o multi-
scale”), we keep the dimension of self-attention to be 256
and the intermediate dimension of FFN to be 2048. For
SMCA with multi-scale features, we set the intermediate
dimension of FFN to be 1024 and use 5 layers of intra-scale
and multi-scale self-attention in the encoder to have similar
amount of parameters and fair comparison with DETR. As
shown in Table 1, the performance of “SMCA w/o multi-
scale” reaches 41.0 mAP with single-scale features and 43.7
mAP with multi-scale features at 50 epochs. Given longer
training procedure, mAP of SMCA increases from 41.0 to
42.7 with single-scale features and from 43.7 to 45.6 with
multi-scale features. “SMCA w/o multi-scale” can achieve
better APs and APM compared with DETR. SMCA can
achieve better overall performance on objects of all scales
by considering multi-scale information and the proposed
spatial modulation. The convergence speed of SMCA is 10
times faster than DETR-based methods.

Given the significant increase of convergence speed and
performance, the FLOPs and the increase of inference time
of SMCA are marginal. With single-scale features, the in-
ference time increases from 0.038s → 0.041s and FLOPs
increase by 0.06G. With multi-scale features, the inference
speed increase from 0.079s → 0.100s, while the GFLOPs
actually decrease because our multi-scale SMCA only uses
5 layers of self-attention layers for the encoder. Thin layers
in the Transformer and convolution without dilation in the
last stage of ResNet backbone achieve similar efficiency as
the original dilated DETR model.

4.3. Ablation Study

To validate different components of our proposed
SMCA, we perform ablation studies on the importance
of the proposed spatial modulation, multi-head vs. head-
shared modulation, and multi-scale encoding and scale-
selection attention in comparison with the baseline DETR.
The baseline DETR model. We choose DETR with

Method mAP AP50 AP75

Baseline DETR-R50 34.8 56.2 36.9

Head-shared Spatial
Modulation

+Indep. (bs8) 40.2 61.4 42.7
+Indep. (bs16) 40.2 61.3 42.9
+Indep. (bs32) 39.9 61.0 42.4

Multi-head Spatial
Modulation

+Fixed 38.5 60.7 40.2
+Single 40.4 61.8 43.3
+Indep. 41.0 62.2 43.6

Table 2. Ablation study on the importance of spatial modulation,
multi-head mechanism. mAP, AP50, and AP75 are reported on
COCO 2017 validation set.

Method mAP Params (M)

SMCA 41.0 41.0

SMCA
(2Intra-Multi-2Intra)

43.7 39.5

SMCA w/o SSA
(2Intra-Multi-2Intra)

42.6 39.5

3Intra 42.9 37.9
3Multi 43.3 37.9
5Intra 43.3 39.5

Weight Share
Shared FFN 43.0 42.2
Shared SA 42.8 44.7
No Share 42.3 47.3

Table 3. Ablation study on the importance of combining intra-scale
and multi-scale propagation, and the weight sharing for intra-scale
self-attention. “Shared FFN” stands for only sharing weights of
the feedfoward network of intra-scale self-attention. “Shared SA”
stands for sharing the weights of the self-attention network. “No
share” stands for no weight sharing in intra-scale self attention.

ResNet-50 backbone as our baseline model. It is trained
for 50 epochs with the learning rate dropping to 1/10 of the
original value at the 40th epoch. Different from the original
DETR, we increase the object query from 100 to 300 and
replace the original cross entropy loss with the focal loss.
As shown in Table 2, the baseline DETR model can achieve
an mAP of 34.8 at 50 epochs.

Head-shared spatially modulated co-attention. Based on
the baseline DETR, we first test adding a head-shared spa-
tial modulation as specified in Eq. (5) by keeping factors
including the learning rate, training schedule, self-attention
parameters, and coefficients of the loss to be the same as
the baseline. The spatial weight map is generated based
on the predicted height and width shared for all heads con-
tain height- and width-independent scale prediction to bet-
ter tackle the scale variance problem. We denote the method
by “Head-shared Spatial Modulation + Indep.” in Table 2.
The performance increases from 34.8 to 40.2 compared
with baseline DETR. The large performance gain (+5.4)
validates the effectiveness of SMCA, which not only ac-
celerates the convergence speed of DETR but also improve
its performance by a large margin. We further test the per-
formance of head-shared spatial modulation with different
batch sizes of 8, 16, and 32 as shown in Table 2. The results
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Model Epochs GFLOPs Params (M) AP AP50 AP75 APS APM APL

DETR-R50 [4] 500 86 41 42.0 62.4 44.2 20.5 45.8 61.1
DETR-DC5-R50 [4] 500 187 41 43.3 63.1 45.9 22.5 47.3 61.1

Faster RCNN-FPN-R50 [4] 36 180 42 40.2 61.0 43.8 24.2 43.5 52.0
Faster RCNN-FPN-R50++ [4] 108 180 42 42.0 62.1 45.5 26.6 45.4 53.4

Deformable DETR-R50 (Single-scale) [41] 50 78 34 39.7 60.1 42.4 21.2 44.3 56.0
Deformable DETR-R50 (50 epochs) [41] 50 173 40 43.8 62.6 47.7 26.4 47.1 58.0
Deformable DETR-R50 (150 epochs) [41] 150 173 40 45.3 64.3 49.1 27.1 48.4 60.0

UP-DETR-R50 [5] 150 86 41 40.5 60.8 42.6 19.0 44.4 60.0
UP-DETR-R50+ [5] 300 86 41 42.8 63.0 45.3 20.8 47.1 61.7

TSP-FCOS-R50 [36] 36 189 52 43.1 62.3 47.0 26.6 46.8 55.9
TSP-RCNN-R50 [36] 36 188 64 43.8 63.3 48.3 28.6 46.9 55.7

TSP-RCNN+-R50 [36] 96 188 64 45.0 64.5 49.6 29.7 47.7 58.0
SMCA-Container(Single-scale) [9] 50 86 38 44.2 66.1 47.3 23.8 47.9 63.1

SMCA-R50 50 152 40 43.7 63.6 47.2 24.2 47.0 60.4
SMCA-R50 108 152 40 45.6 65.5 49.1 25.9 49.3 62.6

DETR-R101 [4] 500 152 60 43.5 63.8 46.4 21.9 48.0 61.8
DETR-DC5-R101 [4] 500 253 60 44.9 64.7 47.7 23.7 49.5 62.3

Faster RCNN-FPN-R101 [4] 36 256 60 42.0 62.1 45.5 26.6 45.4 53.4
Faster RCNN-FPN-R101+ [4] 108 246 60 44.0 63.9 47.8 27.2 48.1 56.0

TSP-FCOS-R101 [36] 36 255 70 44.4 63.8 48.2 27.7 48.6 57.3
TSP-RCNN-R101 [36] 36 254 83 44.8 63.8 49.2 29.0 47.9 57.1

TSP-RCNN+-R101 [36] 96 254 83 46.5 66.0 51.2 29.9 49.7 59.2

SMCA-R101 50 218 58 44.4 65.2 48.0 24.3 48.5 61.0
SMCA-R101 108 218 58 46.3 66.6 50.2 27.2 50.5 63.2

Table 4. Comparison with DETR-like object detectors on COCO 2017 validation set.

show that our SMCA is insensitive to different batch sizes.

Multi-head vs. head-shared spatially modulated co-
attention. For spatial modulation with multiple heads of
separate predictable scales, all heads in Transformer are
modulated by different spatial weight maps Gi follow-
ing Eq. (6). All heads start from the same object center
and predict offsets w.r.t. the common center and head-
specific scales. The design of multi-head spatial modula-
tion for co-attention enables the model to learn diverse at-
tention patterns simultaneously. After switching from head-
shared spatial modulation to multi-head spatial modula-
tion (denoted by “Multi-head Spatial Modulation + Indep.”
in Table 2), the performance increases from 40.2 to 41.0
compared with the head-shared modulated co-attention in
SMCA. The importance of multi-head mechanism has also
been discussed in Transformer [38].

Design of multi-head spatial modulation for co-
attention. We test whether the width and height scales
of the spatial weight maps should be manually set, shared,
or independently predicted. As shown in Table 2, we test
fixed-scale Gaussian-like spatial map (only predicting the
center and fixing the scale of the Gaussian-like distribu-
tion to be the constant 1). The fixed-scale spatial modu-
lation results in a 38.5 mAP (denoted as “+Fixed”), which
has +3.7 gain over the baseline DETR-R50 and validates
the effectiveness of predicting centers for spatial modula-
tion to constrain the co-attention. As objects in natural im-
ages have varying sizes, scales can be predicted to adapt to
objects of different sizes. Thus we allow the scale to be a
single predictable variable as in Eq. (3). If such a single
predictable scale for spatial modulation (denoted by “+Sin-

gle”), SMCA can achieve 40.4 mAP and is +1.9 compared
with the above fixed-scale modulation. By further predict-
ing independent scales for height and width, our SMCA can
achieve 41.0 mAP (denoted by “+Indep.”), which is +0.6
higher compared with the SMCA with a single predictable
scale. The results demonstrate the importance of predict-
ing both height and width scales for the proposed spatial
modulation. We visualize the co-attention patterns in the
supplementary materials, which show that independent spa-
tial modulation can generate more accurate and compact
co-attention patterns compared with fixed-scale and shared-
scale spatial modulation.

Multi-scale feature encoding and scale-selection atten-
tion. The above SMCA only conducts co-attention be-
tween single-scale feature maps and the object query. As
objects in natural images exist in different scales, we con-
duct multi-scale feature encoding in the encoder via adopt-
ing 2 layers of intra-scale self-attention, followed by 1 layer
of multi-scale self-attention, and then another 2 layers of
intra-scale self-attention. We denote the above design by
“SMCA (2Intra-Multi-2Intra)”. As shown in Table 3, we
start from SMCA with a single-scale visual feature map,
which achieves 41.0 mAP. After integrating multi-scale fea-
tures with the 2intra-multi-2intra self-attention design, the
performance can be enhanced from 41.0 to 43.7. As we
introduce 3 convolutions to project features output from
ResNet-50 to 256 dimensions, we make the hidden dimen-
sion of FFN decrease from 2048 to 1024 and the number of
encoder layer decrease from 6 to 5 to make the parameter
comparable to other models. To validate the effectiveness of
scale-selection attention (SSA), we perform ablation stud-
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ies on SMCA without integrating SSA (denoted by “SMCA
w/o SSA”). As shown in Table 3, SMCA w/o SSA decreases
the performance from 43.7 to 42.6.

After validating the effectiveness of the proposed multi-
scale feature encoding and scale-selection attention mod-
ule, we further validate the effectiveness of the design
of 2intra-multi-2intra-scale self-attention. By switching
the 2intra-multi-2intra design to simply stacking 5 intra-
scale self-attention layers, the performance drops from 43.7
to 43.3, due to the lack of cross-scale information ex-
change. 5 layers of intra-scale self-attention (denoted by
“5Intra”) encoder achieves better performance than 3Intra
self-attention, which validates the effectiveness of a deeper
intra-scale self-attention encoder. A 3-layer multi-scale (de-
noted by “3Multi”) self-attention encoder achieves better
performance than a 3-layer intra-scale (3Intra) self-attention
encoder. It demonstrates that enabling multi-scale informa-
tion exchange leads to better performance than only con-
ducting intra-scale information exchange alone. However,
the large increase of FLOPs by replacing intra-scale with
multi-scale self-attention encoder makes us choose a combi-
nation of intra-scale and multi-scale self-attention encoders,
namely, the design of 2intra-inter-2intra. In the previously
mentioned multi-scale encoder, we share both Transformer
and FFN weights for features from intra-scale self-attention
layers, which reduces the number of parameters and learns
common patterns of multi-scale features.

4.4. Overall Performance Comparison

In Table 4, we compare our proposed SMCA with other
object detection frameworks on COCO 2017 validation set.
DETR-R50 [4] and DETR-DC5-R50 stand for DETR with
ResNet-50 and DETR with dilated ResNet-50. Compared
with DETR, our SMCA can achieve fast convergence and
better performance. Faster RCNN [33] with FPN [22] is a
two-stage approach for object detection. Our method can
achieve better mAP than Faster RCNN-FPN-R50 at 109
epochs (45.6 vs 42.0 AP). As Faster RCNN uses ROI-Align
and feature pyramid with downsampled {8, 16, 32, 64} fea-
tures, Faster RCNN is superior at detecting small objects
(26.6 vs 25.9 mAP). Thanks to the multi-scale self-attention
mechanism that can propagate information between fea-
tures at all scales and positions, our SMCA is better for
localizing large objects (62.6 vs 53.4 AP).

Deformable DETR [41] replaces the original self-
attention of DETR with local deformable attention for both
the encoder and the decoder. It achieves faster convergence
compared with the original DETR. Exploring local infor-
mation in Deformable DETR results in fast convergence at
the cost of degraded performance for large objects. Com-
pared with DETR, the APL of Deformable DETR drops
from 61.1 to 58.0. Our SMCA explores a new approach for
fast convergence of the DETR by performing spatially mod-

ulated co-attention. As SMCA uses global self-attention
for information exchange between all scales and positions,
our SMCA can achieve better performance for large objects
compared with Deformable DETR. Deformable DETR uses
downsampled 8, 16, 32, 64 multi-scale features and 8 sam-
pling points for deformable attention. Our SMCA only
uses downsampled 16, 32, 64 features and 1 center point
for spatial prior. SCMA achieves comparable mAP with
Deformable DETR at 50 epochs (43.7 vs. 43.8 AP). As
SMCA focuses more on global information and deformable
DETR focuses more on local features, SMCA is better at
APL (60.4 vs 59.0 AP) while inferior at APS (24.2 vs 26.4).

UP-DETR [5] can achieve fast convergence and better
performance compared with the original DETR due to the
exploitation of unsupervised auxiliary tasks. TSP-FCOS
and TSP-RCNN [36] combines DETR’s Hungarian match-
ing with FCOS [37] and RCNN [33] detectors, which re-
sults in faster convergence and better performance than
DETR. As TSP-FCOS and TSP-RCNN inherit the struc-
ture of FCOS and RCNN that uses local-region features
for bounding box detection, they are strong at small objects
but weak at large ones. For short training schedules, TSP-
RCNN and GMCA-R50 achieve comparable mAP (43.8 at
38 epochs vs 43.7 at 50 epochs), which are better than 43.1
at 38 epochs by TSP-FCOS. For long training schedules,
SMCA can achieve better performance than TSP-RCNN
(45.6 at 108 epochs vs 45.0 at 96 epochs).

5. Conclusion

DETR [4] proposed an end-to-end solution for object
detection beyond previous two-stage [33] and one-stage
approaches [31]. By integrating the Spatially Modulated
Co-attention (SMCA) into DETR, the original 500 epochs
training schedule can be reduced to 108 epochs and mAP
increases from 43.4 to 45.6 under comparable inference
cost. SMCA demonstrates the potential power of exploring
global information for achieving high-quality object detec-
tion. In the future, we will explore SMCA in more scenarios
beyond object detection, such as general visual representa-
tion learning. We will also explore flexible fusions of local
and global features for faster object detection.
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