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Abstract

Existing calibration algorithms address the problem of
covariate shift via unsupervised domain adaptation. How-
ever, these methods suffer from the following limitations: 1)
they require unlabeled data from the target domain, which
may not be available at the stage of calibration in real-
world applications and 2) their performance depends heav-
ily on the disparity between the distributions of the source
and target domains. To address these two limitations, we
present novel calibration solutions via domain generaliza-
tion. Our core idea is to leverage multiple calibration do-
mains to reduce the effective distribution disparity between
the target and calibration domains for improved calibration
transfer without needing any data from the target domain.
We provide theoretical justification and empirical experi-
mental results to demonstrate the effectiveness of our pro-
posed algorithms. Compared against state-of-the-art cal-
ibration methods designed for domain adaptation, we ob-
serve a decrease of 8.86 percentage points in expected cali-
bration error or, equivalently, an increase of 35 percentage
points in improvement ratio for multi-class classification on
the Office-Home dataset.

1. Introduction
Deep neural networks (DNNs) have demonstrated high

accuracy for tasks such as classification and detection given
adequate data and supervision [34, 29]. However, for real-
world applications, the ability to indicate how much users
should trust model predictions can be even more crucial
than just having an accurate but unpredictable model [2,
12, 28]. While discriminative networks provide confidence
scores that can be used as a heuristic measure of the prob-
ability of correct classification, such scores are not guar-
anteed to match the true probabilities of correct classifica-
tion [9]. A recent development, referred to as model cali-
bration, addresses this problem directly [24, 9].

A classifier is calibrated with respect to a distribution
(or a dataset sampled from that distribution) if its predicted
probability of being correct matches its true probability. If
the distribution changes, calibration is usually lost, and this
has been demonstrated empirically [20]. Recent work has

Figure 1: Calibration for domain adaptation with a single
source domain may suffer from a large variance of the den-
sity ratio (i.e., PT /PS) caused by disjoint PS and PT and,
therefore, a large calibration error as shown in (a). Our
proposed calibration algorithms for domain generalization
leverage multiple calibration domains to reduce the dispar-
ity between PC and PT for a decreased variance of the den-
sity ratio PT /PC and, in turn, improved calibration perfor-
mance, as shown in (b) and (c).

begun to investigate the problem of calibration in the con-
text of transfer learning, specifically in an unsupervised do-
main adaptation scenario under the assumption of covariate
shift [22, 32, 20]. However, these methods need at least
unlabeled data from the target domain, which may not be
available at the stages of training and calibration in real-
world applications. Furthermore, as these methods are de-
signed to handle a single source domain, there may be an
undesired disparity between selected source and target do-
mains either due to the limited availability of sources or un-
certainties (e.g., extreme weather/unexplored terrain) in the
target. Fig. 1(a) notionally depicts such a scenario. This
disparity results in a large variance of the density ratio de-
fined as PT /PS , which significantly degrades the accuracy
of calibration [20, 4].
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To tackle the aforementioned limitations of calibration
transfer via domain adaptation, we focus instead on cali-
bration for domain generalization. Our key idea is to use
multiple source domains and cluster their labeled data into
groups. We then fit post-hoc calibration parameters to each
group. The class probability of a test example is calibrated
using the calibration parameters of the group that is nearest
(in Euclidean distance) to the test example. By using many
calibration domains, we increase the likelihood of overlap
in the distributions, which in theory will improve the ef-
fectiveness of cross-domain calibration [20, 4]. By learn-
ing calibration parameters separately for each group, we in-
crease the likelihood that each test query will be adjusted by
the best calibration correction.

We study two calibration methods within each cluster.
Both are based on temperature scaling [9]. The first com-
putes a fixed scaling temperature for each group (Fig. 1(c)).
The second fits a regression model to these fixed tempera-
tures to enable extrapolating the temperature to points out-
side the clusters. We compare these two methods against
a baseline that computes one temperature for scaling based
on the union of all the calibration data (Fig. 1(b)). We refer
to our methods as cluster-level and the baseline as set-level.
Notably, while Fig. 1 depicts a notional scenario where the
source and target domains have no overlap and the calibra-
tion domains bridge the gap, our methods will also work
well in cases where the source is closer to the target, as long
as at least one of the calibration domains is also close to the
target.

Our major contributions include the following:
1) We propose novel solutions to calibrate a classifica-

tion model for domain generalization. Our proposed algo-
rithms are trained to produce accurate confidence predic-
tions without needing any data from the target domain.

2) We provide theoretical error bounds for our proposed
calibration methods and demonstrate the advantage of our
methods in maximizing the overlap between the supports of
the target and calibration distributions, a critical factor that
determines the generalization performance of calibration.

3) We justify the proposed algorithms with experimen-
tal results on real-world data. A decrease of 8.86 percent-
age points in expected calibration error or, equivalently, an
increase of 35 percentage points in improvement ratio is
achieved on the Office-Home dataset [30] compared against
state-of-the-art (SOTA) calibration methods designed for
domain adaptation.

2. Related Work
Calibration. Existing calibration methods provide post-
hoc correction for classification models so that their con-
fidence scores better match the true probabilities of correct
classification [35, 36, 19, 24, 9]. Among those, Platt Scal-
ing [24] provides a parametric solution for binary classifi-
cation. It learns a logistic regression model with two scalar

parameters that maps the initial predicted probabilities to
calibrated probabilities. It is trained on a holdout valida-
tion set with respect to the negative log-likelihood (NLL)
loss. Matrix scaling and Vector scaling [9] are two exten-
sions of Platt scaling to multi-class classification problems,
where a linear transformation is applied to the logit vectors
before the softmax operation. Given a classification model,
the additional linear layer is finetuned on the validation set
with respect to NLL. In this case, classification accuracy is
affected by calibration. Temperature scaling is another spe-
cial case of Platt scaling. Here, a scalar temperature param-
eter is applied to scale the logit vectors without changing
class predictions. The temperature is optimized on the vali-
dation set with respect to NLL and can be interpreted as the
solution of a constrained entropy maximization. Alexan-
dari et al. [1] investigated variants of vector and temperature
scaling including no-bias vector scaling and bias-corrected
temperature scaling in the context of domain adaptation un-
der label shift. Our proposed algorithms are all based on
temperature scaling [9].

Domain generalization vs. domain adaptation. Trans-
fer learning is generally challenging for deep learning, as
models trained on one domain (source) can suffer perfor-
mance drops when evaluated on test data from a differ-
ent domain (target). One type of transfer learning is do-
main adaptation [31, 5], which seeks to improve target do-
main performance by leveraging data from both source and
target domains. Specifically, unsupervised domain adap-
tation (UDA) [33] addresses the problem when only un-
labeled data is available from the target domain. Multi-
ple UDA methods have been developed based on strategies
such as learning domain invariant features [18, 13, 27, 21]
and learning mappings between domains [11, 26].

An alternative to domain adaptation is domain gener-
alization, which aims at robust transfer without any data,
either labeled or unlabeled, from the target domain at the
training stage, by leveraging information from multiple re-
lated source domains. Ghifary et al. [8] propose a multi-
task autoencoder (MTAE) that jointly reconstructs analo-
gous views of a source image over multiple domains to ac-
quire robust features for generalization in the context of ob-
ject recognition. Li et al. [15] minimize maximum mean
discrepancy (MMD) to align distributions from different do-
mains. Several recent studies adopt model-agnostic meta-
learning (MAML) originally proposed for few-shot learn-
ing [7]. For instance, Li et al. [14] propose meta-learning
for domain generalization (MLDG) using model-agnostic
optimization across domains instead of across tasks. Balaji
et al. [3] apply meta-learning to learn a generalizable reg-
ularizer for the classification layers instead of the full net-
work. Dou et al. [6] introduce complementary losses to en-
courage class alignment across domains and improve com-
pactness of class-specific clusters.
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All of this work is devoted to learning models to improve
generalization with respect to classification accuracy. In
comparison, our proposed methods focus on calibrating a
classifier using multiple related domains to improve confi-
dence scores so that they are better calibrated in the unseen
target domain (i.e., fidelity of confidence scores).
Calibration for domain adaptation. Several recent pa-
pers investigate the problem of calibration in the context
of transfer learning, specifically in an unsupervised do-
main adaptation scenario under the assumption of covariate
shift [22, 32, 20]. These studies adopt similar frameworks
based on estimating importance weights that describe the
density ratio between the source and target distributions.
The weights are estimated by learning a discriminator dis-
tinguishing source samples from target samples. The cal-
ibration loss in the target domain can then be formulated
as a weighted version of the original loss in the source do-
main. Calibration loss is quantified using Brier Score [22],
NLL [20], and expected calibration error (ECE) [31].

While these recent efforts are the most relevant to our
work, we address an arguably more challenging problem.
Instead of calibrating classifiers using unlabeled target data,
we calibrate classifiers without any data, either labeled or
unlabeled, from the target domain.

3. Background
Calibration. Let x, y denote the data and label drawn from
a joint distribution P (x, y). Let ϕ(·) be a learned multi(K)-
class classification model that projects each sample xi to a
logit vector zi with K dimensions. The class prediction ŷi
and confidence prediction p̂i can be expressed as

p̂i = max
k

σ(zi)
(k) ŷi = argmax

k
σ(zi)

(k), (1)

where σ denotes the the softmax function:

σ(z(k)) =
exp(z(k))∑K
j=1 exp(z

(j))
. (2)

Miscalibration refers to the problem where confidence pre-
dictions p̂i do not match the true probabilities of correct
classification. The goal of calibration is to adjust the confi-
dence so that P(ŷ = y|p̂ = p) = p, ∀p ∈ [0, 1] [9].
Temperature scaling [9]. A scalar t > 0 is applied to ad-
just the confidence prediction:

p̂i = max
k

σ(zi/t)
(k). (3)

The value of t is optimized over a small validation set with
respect to the same NLL loss used in classification training:

t∗ = argmin
t

Ex,y∼P (x,y)L(ϕ(x), y, t), (4)

where L denotes the NLL loss. Note that temperature scal-
ing does not affect the overall classification accuracy, as the
same t is applied to all classes.

Expected calibration error (ECE) [19]. To measure cali-
bration accuracy, we employ the ECE metric. Given a set of
class predictions and corresponding confidence predictions,
ECE is computed by grouping test samples into M bins of
equal width based on confidence values. Let Bm denote the
set of indices where Bm = {i|p̂i ∈ (m−1

M , m
M ]}. The clas-

sification accuracy and average confidence for each bin are
computed as

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (5)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i. (6)

A well-calibrated model should reduce the mismatch be-
tween classification accuracy and confidence prediction.
Therefore, ECE is computed as the weighted sum of the
mismatch over bins:

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)|, (7)

where N is the total number of the samples. In the case of
M = 1, ECE reduces to the absolute error between the av-
erage confidence prediction and the classification accuracy
over the entire test set.
Calibration for domain adaptation. Let PS(x, y) and
PT (x, y) denote the source and target distributions, respec-
tively. Covariate shift between distributions refers to the as-
sumption that PT (x) ̸= PS(x) while PT (y|x) = PS(y|x).
Following a formulation similar to those in domain adapta-
tion approaches (Theorem 4.1 in [20]), the desired calibra-
tion loss can be expressed as

Ex,y∼PT (x,y)L(ϕ(x), y, t)

=

∫
x

∫
y

L(ϕ(x), y, t)PT (x, y) dx dy

=

∫
x

∫
y

L(ϕ(x), y, t)
PT (x)PT (y|x)
PS(x)PS(y|x)

PS(x, y) dx dy

= Ex,y∼PS(x,y)wS(x)L(ϕ(x), y, t) (8)

for {x|PT (x) > 0} ⊆ {x|PS(x) > 0}, where the impor-
tance weight wS(x) =

PT (x)
PS(x)

is the density ratio.

4. Method
In contrast to confidence calibration under the single-source
single-target unsupervised domain adaptation scenario, we
consider domain generalization with multiple source do-
mains that are related but different from the holdout tar-
get domain. In this case, we use S (source) to denote the
group of domains used for training the classifier, C (cali-
bration) to denote the group of domains used for calibrating
the given classifier, and T (target) to denote the group of
holdout test domains that are completely unseen at both the
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classifier training and calibration stages. Accordingly, the
desired calibration loss is given by
Ex,y∼PT (x,y)L(ϕ(x), y, t)

=

∫
x

∫
y

L(ϕ(x), y, t)PT (x, y) dx dy

=

∫
x

∫
y

L(ϕ(x), y, t)
PT (x)PT (y|x)
PC(x)PC(y|x)

PC(x, y) dx dy

= Ex,y∼PC(x,y)wC(x)L(ϕ(x), y, t), (9)

for {x|PT (x) > 0} ⊆ {x|PC(x > 0}, where wC(x) =
PT (x)
PC(x)

denotes the density ratio between the target and cali-
bration domains.

Following [20, 32], we derive the gap between the cali-
bration loss and the oracle loss using the true target distribu-
tion PT (x, y) to show that the variance of the density ratio
wC(x) or equivalently the divergence between PT (x) and
PC(x) is critical for calibration transfer. The same observa-
tions apply to calibration for domain adaptation, where the
variance of wS(x) or the divergence between PT (x) and
PS(x) is critical. For simplicity, we use w(x) to denote
wC(x) or wS(x) when these two are interchangeable. The
gap is given by∣∣EPC(x,y)L(ϕ(x), y, t)− EPT (x,y)L(ϕ(x), y, t)

∣∣
=
∣∣ ∫

x

∫
y

(1− wC(x))L(ϕ(x), y, t)P
C(x, y) dx dy

∣∣
=
∣∣EPC(x,y)

[
(1− wC(x))L(ϕ(x), y, t)

]∣∣ (10)

≤
√

EPC(x)

[
(1− wC(x))2

]
EPC(x,y)

[
L(ϕ(x), y, t)2

]
(11)

≤1

2
(EPC(x)

[
(1− wC(x))

2
]
+ EPC(x,y)

[
L(ϕ(x), y, t)2

]
),

(12)
where the inequality in Eq. 11 follows from the Cauchy-

Schwarz Inequality and the inequality in Eq. 12 follows
from the inequality of arithmetic and geometric means. This
formulation can also be interpreted as the bound of the bias
of the estimated loss given

ŵC(x) = EPC [wC(x)] = 1 (13)

as an estimator of wC(x). We exploit this property to design
calibration algorithms bypassing the direct computation of
wC(x) due to the lack of target data at the classifier training
and calibration stages.

Given a fixed classification model ϕ, the second term in
Eq. 12 is computed based on calibration data. Therefore,
only the first term is affected by the shift between the cali-
bration and target domains. Following Cortes et al., [4], the
first term in Eq. 12 can be expressed as

EPC

[
(wC(x)− 1)2

]
= EPC

[
(wC(x)− EPC [wC(x)])

2
]

= Var(wC(x))

= d2
(
PT (x)||PC(x)

)
− 1, (14)

where dα(P ||Q) =
[∑

x
Pα(x)

Qα−1(x)

] 1
α−1 with α > 0 is the

exponential in base 2 of the Renyi-divergence [25] between
distributions P and Q.

The calibration errors are dominated by the variance of
wC(x) given by Var(wC(x)) = d2

(
PT (x)||PC(x)

)
− 1.

Similarly, for domain adaptation, we have Var(wS(x)) =
d2
(
PT (x)||PS(x)

)
− 1. Intuitively we seek to reduce

the variance of w(x), or equivalently, the divergence be-
tween target and source distributions for domain adapta-
tion or target and calibration distributions for domain gen-
eralization. If there exist large shifts between the source
and target domains, the density ratio is unbounded over
{x|PT (x) ̸= 0, PS(x) = 0} leading to large variance of
the density ratio. Let {x|P (x) > 0} be the support of a
distribution P (x). Reducing the variance of w(x) requires
larger overlap between the supports of PT (x) and PS(x)
for domain adaptation or between PT (x) and PC(x) for
domain generalization.

For domain adaptation with fixed source and target do-
mains [22, 32, 20], there is limited room for calibration
to adjust such overlap. In contrast, for domain generaliza-
tion, we can manipulate the learning of calibration models
over different calibration domains to maximize such over-
lap. Motivated by these theoretical advantages of using
multiple sources, we propose calibration algorithms for do-
main generalization (Fig. 2) including set- (Sec. 4.1) and
cluster-level approaches (Sec. 4.2). Note that while maxi-
mizing the overlap between PT (x) and PS(x) (or PC(x))
can be achieved via feature alignment, commonly used for
domain adaptation, that is out of the scope of this paper.

4.1. Set-level calibration
Set-level calibration is our baseline method. We learn the

temperature t using multiple calibration domains C. Only a
small set of data from C is required, and temperature scal-
ing is applied post-hoc to the classification model ϕ trained
on the source domain S. The temperature is learned via

t∗ = argmin
t

Ex,y∼PC(x,y)L(ϕ(x), y, t), (15)

where PC(x, y) is the joint distribution over all calibration
domains, meaning that each calibration domain is treated
equally. We refer to this algorithm as set-level calibration
(Fig. 2 (a)), since a single temperature is learned with re-
spect to all calibration data and applied to all test data.

By leveraging multiple related domains, PC is more
likely to be better aligned with PT especially for scenarios
where PS and PT are distant as shown in Fig. 1(b). This
leads to a density ratio wC(x) with fewer unbounded values
and, thus, a smaller variance. As a result, better calibration
transfer can be achieved.

4.2. Cluster-level calibration
Learning the temperature at the set level assumes the

same optimal scaling for all samples. Considering cali-
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Figure 2: Block diagram of proposed calibration algorithms
for domain generalization: (a) set-level, (b) cluster-level
NN, and (c) cluster-level regression.

bration data from multiple domains, it would be natural
to relax this constraint so that different samples can have
different optimal scaling. Several classic calibration algo-
rithms [19, 35, 36] perform calibration based on binning
the data according to their uncalibrated confidence scores.
Motivated by these successes, we propose to group the cali-
bration samples by the similarity of image features to corre-
late the optimal temperature scaling to feature distributions.
Then, during testing we can predict the most appropriate
temperature given only a single test image feature from an
unknown distribution. Specifically, we perform K-means
clustering [16] on the image features (at the penultimate
layer of ResNet18 feature extractors) using calibration data.
The centroids of clusters are determined by minimizing the
within-cluster sum of squares. For each cluster, we per-
form a standard temperature scaling. At the testing stage,
we exploit two alternative methods to determine the most
appropriate temperature for each test sample.
Nearest neighbor (NN). In the first method, we simply
assign a given sample from the test domain to the cluster
whose centroid is the closest to the sample feature in Eu-
clidean distance. Then we apply the corresponding opti-
mal temperature for that cluster to calibrate the test sample
(Fig. 2 (b)). Intuitively, this procedure facilitates the align-
ment of the calibration and target distributions at the cluster
level. Let N denote the number of clusters, PC

j denote the
distribution of calibration domain features that are grouped
into cluster j, and PT

j denote the unknown distribution of
all test domain features that are assigned to the cluster j.
The optimal temperature for each cluster j is learned with
respect to the following objective:

t∗j = argmin
t

EPC
j

[
L(ϕ(x), y, t)

]
. (16)

Following a similar formulation in Eq. 9-Eq. 14, the oracle

objective for test samples from PT
j can be expressed as

EPT
j

[
L(ϕ(x), y, t)

]
= EPC

j

[
wC,j(x, y)L(ϕ(x), y, t)

]
,

(17)
for {x|PT

j (x) > 0} ⊆ {x|PC
j (x) > 0}. Here, wC,j(x) =

PT
j (x)

PC
j (x)

, and the generalization of learned temperatures de-

pends on the divergence d2
(
PT
j (x)||PC

j (x)
)
. Since PC

j is
chosen as the closest cluster to the test samples, chances are
high that PT

j and PC
j are better aligned than the set-level

distributions PT and PC , resulting in a density ratio wC,j

with a smaller variance (e.g., Fig. 1(c) with j = 3). There-
fore, cluster-level calibration holds the promise of further
improved calibration transfer.
Regression-based prediction. Nearest neighbor can be
considered as a special case of linear regression where the
jth weight is set to 1 while the others are set to 0. We further
investigate cluster-level calibration using learned weights as
a more generalized scheme (Fig. 2 (c)). Specifically, we
train a regression model that maps the mean feature of each
cluster to its corresponding cluster-level optimal tempera-
ture. We can thus apply the learned regression model to any
test feature to predict a proper temperature specific to the
test instance. Let Rθ denote the regression model R param-
eterized by θ, Rθ is determined by minimizing the following
mean-squared error:

θ∗ = argmin
θ

1

N

N∑
j=1

(
Rθ(EPC

j
(x))− t∗j

)2
. (18)

Essentially, we learn a function capturing the underlying
mapping from features to the proper temperature for cali-
bration and transfer it to the unknown target domain, instead
of directly transferring the temperatures learned on calibra-
tion domains.

5. Experiments
5.1. Datasets
Office-Home [30] contains images of 65 classes across four
domains corresponding to different rendering styles: Cli-
part (4365 images), Art (2427 images), Product (4439 im-
ages), and Real (4357 images). We split these four domains
into three subsets: one domain as the source for training
the classifier, two domains for post-hoc calibration of the
classifier, and one holdout domain as the target for evaluat-
ing the calibrated classifier. We perform experiments for all
12 possible splits of domains, including the combinations
where the source is relatively similar to the target judging
from the image realism of the domains (e.g., Art as source,
Clipart as target, Product and Real as calibration) and com-
binations where the source is relatively distant to the target
(e.g., Clipart as source, Real as target, Art and Product as
calibration). We randomly divide data from each domain
into a Large subset (80%) and a Small subset (20%). We use
the Large subset for either training the classifier or evaluat-
ing the calibration performance and we use the Small subset
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for either tuning the hyperparameters of classification train-
ing or calibrating the classifier. For each source domain,
we train a ResNet18 [10] initialized with parameters pre-
trained on ILSVRC-1000. We extract image features at the
penultimate layer of the network for clustering. For each
domain split, we perform 1000 evaluations each with 1500
randomly selected samples from the target domain to esti-
mate confidence intervals.
DomainNet [23] contains images of 345 classes across six
domains corresponding to different rendering styles: Quick-
draw (172500 images), Infograph (51605 images), Sketch
(69128 images), Clipart (48129 images), Painting (72266
images), and Real (172947 images). We split these six do-
mains into three subsets: two domains as the source, three
domains for the calibration, and one holdout domain as the
target. We perform experiments for all 60 possible splits
of domains, including the combinations where the source is
relatively similar to the target judging from the image real-
ism of the domains (e.g., Quickdraw and Sketch as source,
Infograph as target, Clipart, Painting and Real as calibra-
tion) and combinations where the source is relatively dis-
tant to the target (e.g., Quickdraw and Sketch as source,
Real as target, Clipart, Painting and Infograph as calibra-
tion). Following the train/test splits from [23], we use the
train split for training the classifier, a Small subset (10%)
of the test split for calibration, and a Large subset (90%) of
the test split for evaluation. We use a ResNet18 pretrained
on ILSVRC-1000 as the feature extractor and train an MLP
classifier. For each domain split, we conduct 1000 evalua-
tions each with 10000 randomly selected samples from the
target domain to estimate confidence intervals.

5.2. Experimental settings
Source-only calibration. We split the source domain as
described in Sec 5.1, using the Large subset to learn the
classifier and the Small subset to calibrate it. We directly
evaluate the calibrated model on the holdout target domain.
This experiment serves as a reference without calibration
transfer.
Target-only (oracle) calibration. Given a classifier trained
on the source domain, we calibrate it using the Small subset
of the target domain data and evaluate the calibration on the
Large subset. This is an oracle experiment, since it uses the
ground-truth labels and data from the target domain which
are not available for the domain generalization setting. Con-
sequently, this experiment sets the target performance for
calibration transfer.
Cross-domain calibration. Given a classifier trained on
the source domain, we calibrate it via our algorithms de-
scribed in Sec. 4 using the Small subsets from the calibra-
tion domains. We also average the logit outputs from these
three methods as an additional ensemble-based approach.
We evaluate the calibrated model on the Large subset of the
target domain which is unseen at both the classifier train-

ing and calibration stages. For cluster-level calibration, we
use eight clusters for Office-Home and nine clusters for Do-
mainNet. Our experiments suggest that the numbers of clus-
ters have minor effects on calibration performance. For the
cluster-level regression method, we choose a linear regres-
sion model considering the high dimensional feature space
and availability of samples from calibration domains.

5.3. Results and Discussions
Experimental results are summarized in Tables 1-3. We

report the mean and standard deviation of ECE scores (%).
Each column of Table 1 (for Office-Home) and Table 3
(for DomainNet) lists the ECE scores for a specific tar-
get domain averaged over different domain splits across
source and calibration domains. The last column lists the
ECE scores averaged over different target domains. Table 2
lists the performance on Office-Home for each domain split
(i.e., one combination of the source and target domains).
ECE scores for the domain adaptation baselines [20, 32] are
based on the reported results (using the CDAN [17] method)
from the original papers.

The standard deviation of ECE, σECE , is mainly af-
fected by two factors: sample variations within a domain
split and domain variations. Each σECE in Table 2 indi-
cates the effect of sample variations within a fixed domain
split. For all of the tested domain splits, we observe that
σECE < 1%. Results for each domain split on DomainNet
are included in the supplementary materials to save space,
where we observe that σECE < 0.4%. We see a much
larger σECE across domain splits in Table 1 and Table 3,
which measures the combined variations from samples and
domains. It is clear that domain variations dominate the
variance of the ECE scores.

To evaluate the effectiveness of calibration transfer, we
define improvement ratio (IR) as

IR =
ECES − ECE

ECES − ECET
, (19)

where ECES and ECET refer to the averaged ECE scores
obtained via source-only calibration and target-only cali-
bration, respectively. Without calibration transfer, we start
from the performance of source-only calibration. Using cal-
ibration transfer, we want to approach the performance of
target-only calibration. The IR metric evaluates where the
performance of a calibration transfer method is located with
respect to these starting and ending points. Table 5 lists the
IRs evaluated on Office-Home and DomainNet.1

Comparison against source-only calibration. Without
calibration transfer, directly using the temperature learned
from the source distribution fails for both datasets. It can
even potentially lead to larger errors in comparison to uncal-
ibrated models (comparing the first and second rows in Ta-
ble 1). Compared to uncalibrated and source-only, our algo-

1Additional results including alternative metrics and confidence inter-
vals can be found in the supplementary materials.
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Methods Clipart Art Product Real Average
Uncalibrated 14.74±2.23 9.31±2.33 5.66±1.23 4.92±0.94 8.66±4.38
Source-only 18.02±1.81 10.79±4.46 6.90±2.78 6.09±1.05 10.45±5.50
Target-only (oracle) 4.10±0.72 3.56±0.59 4.10±1.10 4.01±0.68 3.94±0.83
TransCal [32] 21.37 20.60 11.37 8.23 15.39
WTS [20] 18.97 8.60 3.90 7.63 9.78
Set-level 9.96±1.78 4.21±0.59 5.57±2.12 7.47±3.00 6.80±2.99
Cluster-level NN 11.43±1.83 4.90±1.65 5.10±1.36 6.49±2.06 6.98±3.17
Cluster-level Regression 12.00±1.41 4.61±0.80 5.11±1.12 6.03±1.82 6.94±3.26
Ensemble 11.31±1.75 4.14±0.94 4.69±1.23 5.98±1.82 6.53±3.20
Table 1: Calibration performance (ECE %) on Office-Home averaged by target domain.

Uncalibrated Source-only
Target-only

(oracle)
TransCal

[32]
WTS
[20] Set-level

Cluster
-level NN

Cluster-level
Regression Ensemble

A→ C 11.84±0.76 16.95±0.77 4.30±0.70 22.9 12.8 10.98±0.76 12.54±0.81 13.10±0.81 12.53±0.76
P→ C 15.81±0.82 20.30±0.84 4.24±0.68 40.4 26.8 7.71±0.76 9.12±0.84 10.43±0.84 9.10±0.79
R→ C 16.58±0.86 16.82±0.86 3.76±0.66 4.5 17.3 11.19±0.84 12.64±0.84 12.48±0.83 12.28±0.84
C→ A 7.61±0.53 7.37±0.52 4.08±0.48 21.7 6.9 4.50±0.45 4.72±0.48 4.48±0.48 5.02±0.47
P→ A 12.52±0.53 17.05±0.53 3.43±0.46 18.5 8.5 3.68±0.46 6.92±0.53 5.46±0.50 4.36±0.47
R→ A 7.80±0.48 7.96±0.48 3.16±0.41 21.6 10.4 4.44±0.46 3.05±0.43 3.90±0.42 3.04±0.39
C→ P 5.78±0.78 5.57±0.76 3.32±0.61 14 6.4 3.22±0.59 3.50±0.59 3.95±0.63 3.25±0.57
A→ P 6.81±0.77 10.64±0.82 5.35±0.71 9.3 1.5 5.39±0.78 6.26±0.79 6.08±0.76 5.56±0.75
R→ P 4.38±0.62 4.50±0.64 3.63±0.59 15.6 3.8 8.1±0.74 5.54±0.68 5.30±0.67 5.27±0.68
C→ R 5.86±0.69 5.75±0.68 3.67±0.62 6.4 5.7 3.73±0.63 4.00±0.63 3.95±0.64 3.82±0.66
A→ R 4.31±0.63 5.34±0.70 4.19±0.62 5.1 6.4 7.86±0.79 6.75±0.73 6.08±0.71 6.25±0.74
P→ R 4.59±0.64 7.18±0.78 4.18±0.67 13.9 10.8 10.83±0.77 8.72±0.76 8.05±0.78 7.88±0.75

Table 2: Calibration performance (ECE %) on Office-Home.

Methods Quickdraw Infograph Sketch Clipart Painting Real Average
Uncalibrated 21.42±3.33 23.99±3.94 16.65±2.06 11.63±2.68 16.43±3.91 11.82±2.09 16.99±5.51
Source-only 20.24±2.57 24.58±4.52 17.06±2.18 11.67±3.26 16.83±3.71 11.24±3.21 16.93±5.72
Target-only (oracle) 0.68±0.28 1.81±0.33 2.01±0.86 2.51±0.58 2.68±0.72 2.33±0.37 2.00±0.87
Set-level 10.01±2.25 7.39±3.30 3.52±2.58 6.83±4.68 5.87±4.43 13.38±4.37 7.83±4.87
Cluster-level NN 8.10±1.95 7.91±2.24 3.04±1.31 6.06±2.74 4.17±1.77 9.35±2.65 6.44±3.12
Cluster-level Regr. 11.72±5.81 11.93±6.74 7.29±5.19 8.49±3.74 7.08±5.51 9.55±5.39 9.34±5.80
Ensemble 9.81±2.54 9.51±2.99 3.12±1.59 5.71±2.50 3.66±2.54 8.15±2.74 6.66±3.67

Table 3: Calibration performance (ECE %) on DomainNet averaged for each target domain.

×σECE < −3 (−3,−2) (−2, 0) (0, 2) (2, 3) > 3

TransCal [32] 1 0 0 1 0 10
WTS [20] 1 1 0 1 1 8

Table 4: Number of Office-home domain splits with reduc-
tion in ECE achieved by our methods, with 95% confidence
(2σECE) and 99% confidence (3σECE).

rithms can improve the generalization performance of cal-
ibration and achieve lower ECEs for both Office-Home (a
reduction of 3.92 percentage points in ECE from the source-
only calibration in Table 1) and DomainNet (a reduction of
10.27 percentage points in ECE from the source-only cali-
bration in Table 3).
Comparison against domain adaptation methods. For
Office-Home, we compare the performance of our methods
against two recent calibration transfer methods designed for
domain adaptation: TransCal [32] and Weighted Tempera-
ture Scaling (WTS) [20]. On average, we achieve a reduc-
tion of 8.86 percentage points in ECE against TransCal and

Office-Home DomainNet
TransCal [32] 0.25 -
WTS [20] -0.03 -
Set-level 0.56 0.61
Cluster-level NN 0.53 0.70
Cluster-level Regression 0.54 0.51
Ensemble 0.60 0.69

Table 5: Improvement ratio based on averaged ECE scores.

a reduction of 3.25 percentage points in ECE against WTS
(Table 1). While σECE across domain splits is relatively
high, the reduction in ECE achieved by our algorithms is
still significant, considering that σECE < 1% for each do-
main split. Comparing to TransCal, the reduction in ECE is
larger than 3σECE for 10 out of 12 domain splits (i.e., with
a confidence > 99% for 83% tested cases in Table 4). For
WTS, the reduction in ECE is larger than 2σECE for 9 out
of the 12 domain splits (i.e., with a confidence > 95% for
75% tested cases in Table 4).
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As for the IRs in Table 5, TransCal is able to compensate
for about one fourth (IR=25%) of the difference between the
ECE scores of the target-only and source-only calibration,
whereas WTS turns out to perform only comparably with
the source-only calibration (IR=−3%)2. As expected, our
methods yield a higher IR (IR=60%, an improvement of 35
percentage points over TransCal), compensating for slightly
more than half of the differences between the ECE scores of
the source-only and the target-only calibration.
Comparison among our methods. As expected, our en-
semble method performs the best (on Office-Home) or on
par with the best performance (on DomainNet). Comparing
set-level and cluster-level methods, they achieve better per-
formance with respect to different domain splits. On Office-
Home (Table 1), the set-level method achieves an averaged
ECE of 6.80% and IR of 56% whereas the cluster-level NN
method yields an averaged ECE of 6.98% and IR of 53%.
On DomainNet, the cluster-level NN method achieves bet-
ter performance over several different target domains (Ta-
ble 3). It produces an averaged ECE of 6.44% and IR of
70% (compensating for 70% of the calibration errors caused
by domain shifts). This verifies that the strategy of learning
multiple calibration models at the cluster level and using the
nearest neighbor algorithm to select the most proper tem-
perature for each test sample can effectively improve cali-
bration performance.

The cluster-level regression-based method produces
slightly higher errors than the other two methods on aver-
age. Conceptually, learning a regression model that cap-
tures the underlying mapping from features to correspond-
ing optimal temperatures can allow run-time extrapolation
such that, instead of selecting from temperatures learned
for clusters, one can directly predict a proper temperature
for the specific test instance. In practice, its performance is
more sensitive to the accuracy and robustness of the learned
regression model, clusters and features used. More param-
eters also need to be estimated, compared to temperature
scaling that estimates only a single parameter.
Comparison across different domains. In Table 1 and
Table 3, domains are arranged from left to right with in-
creasing image realism. For both datasets, the lowest cal-
ibration errors are achieved for domains that reside in the
middle of the spectrum. For example, Art has the lowest
ECE on Office-Home, whereas Sketch has the lowest ECE
on DomainNet. These observations agree with our theoret-
ical analysis, which states that the overlap of the data dis-
tributions between the target and calibration domains deter-
mines the calibration error. For domains at the ends of the
spectrum, chances of obtaining good alignment using the
remaining domains decrease. This directly leads to the ob-

2As TransCal and WTS reported different ECE scores for source-only
and target-only calibration, we use their respective numbers to compute the
improvement ratios for fair comparison.

served U shape of ECE scores across the domain spectrum
(i.e., low in the middle and high at both ends).

In comparison to domain adaptation, we assume the
availability of multiple source domains. Our assumption
is more realistic for applications such as recognition us-
ing new sensor platforms or autonomous driving under ex-
treme weather/unexplored terrains. If unlabeled target data
is available at the calibration stage, we can use it to estimate
the density ratio. In this setting, our method reduces to cal-
ibration transfer via domain adaptation but with the capa-
bility to choose the right calibration domain or portion of it
to optimize the transfer. It is also worth noting that we by-
pass the step of optimizing feature alignment, a commonly
used method for domain generalization. Instead, we focus
on improving the confidence prediction to better match the
classification accuracy, given any classifiers whether or not
optimized to maintain accuracy across domains. Our cal-
ibration methods can be applied on top of a feature space
that is aligned across domains to further reduce the remain-
ing misalignment from the calibration point of view. We
include additional experiments and discussion in the sup-
plementary materials.

6. Conclusions
In this work, we addressed the problem of confidence

calibration for domain generalization, a more challenging
problem than calibration for domain adaption as no data
from the target domain is used. Our key idea is to exploit
multiple calibration domains with covariate shifts against
the source domain used for training the classification model
and between each other. We compared the proposed solu-
tions under the same theoretical framework against calibra-
tion methods based on domain adaptation. We showed that
introducing multiple calibration domains can effectively re-
duce the variance of the density ratio, the main factor that
determines the upper bound of the calibration error against
the oracle. Encouraged by our theoretical study, we pro-
posed three alternative algorithms based on temperature
scaling, namely set-level, cluster-level with nearest neigh-
bor, and cluster-level with linear regression. Through exper-
iments using the Office-Home and DomainNet datasets, we
demonstrated that our methods can outperform calibration
methods via domain adaptation with statistically significant
(with a confidence > 95%) improvement for at least 75%
of the tested scenarios.
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