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Abstract

Learning mid-level representation for fine-grained
recognition is easily dominated by a limited number of
highly discriminative patterns, degrading its robustness and
generalization capability. To this end, we propose a novel
Stochastic Partial Swap (SPS)1 scheme to address this issue.
Our method performs element-wise swapping for partial
features between samples to inject noise during training.
It equips a regularization effect similar to Dropout, which
promotes more neurons to represent the concepts. Fur-
thermore, it also exhibits other advantages: 1) suppress-
ing over-activation to some part patterns to improve feature
representativeness, and 2) enriching pattern combination
and simulating noisy cases to enhance classifier general-
ization. We verify the effectiveness of our approach through
comprehensive experiments across four network backbones
and three fine-grained datasets. Moreover, we demonstrate
its ability to complement high-level representations, allow-
ing a simple model to achieve performance comparable
to the top-performing technologies in fine-grained recog-
nition, indoor scene recognition, and material recognition
while improving model interpretability.

1. Introduction
Fine-grained recognition is more challenging than gen-

eral object recognition, as the discriminative differences
of categories often reside in subtle parts of objects. Con-
ventional methods that succeed in generic object classifica-
tion, therefore, often fail to deliver gratifying results in fine-
grained classification, since they mainly focus on learning
high-level features and overlook subtle variations. Existing
works [54, 8, 55, 9, 56, 7, 35, 55, 28, 44, 53, 37, 20] attempt
to complement this capacity by exploring various tech-
niques. Part-based [54, 8, 55, 9] and sampling-based [56, 7]
are the most popular solutions in recent literature. The for-

1https://github.com/Shaoli-Huang/SPS.
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Figure 1. The left column shows the average number of regions
per image contributing to a given predicted value, when using the
baseline model trained on the CUB dataset. A more detailed de-
scription of this experiment is given in the Experiment section.
The right column illustrates an issue of adopting deep mid-level
models for fine-grained classification. In training data, the “Red-
yellow patch” pattern may distinguish the “Red-winged blackbird”
from most bird species. During training, the neural network tends
to associate this part mostly to this label by biasing its weights to
the corresponding region. The resulting mid-level model would
predict whether an object is a “Red-winged blackbird” mainly
based on this pattern while largely ignoring other roles of other
patterns.

mer primarily localize part regions by strongly-supervised
detection pipelines or weakly-supervised learning frame-
work, and then extract the discriminative local features as
complementary to high-level features. The sampling-based
approaches seek to enrich the representation learning by
conducting attention sampling over the input images. Al-
though these two techniques have succeeded in improving
performance, they either require complex training proce-
dures or intense computation in inference, limiting their ap-
plicability to real-world situations.

Incorporating deep mid-level models into fine-grained
recognition has demonstrated its potential in recent en-
deavours [35, 22, 52, 23], due to its unique merits. First,
mid-level models are easy to obtain and flexible to exploit,
thanks to the hierarchical structure of deep neural networks.
Second, they also exhibit a strong capability to capture lo-
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Figure 2. An illustration of the difference between the Dropout techniques and SPS. Dropout or its variants mainly inject manually-designed
noise into features, while SPS exploits samples as a source for noise injection.

cal information and serve as a critical complement to the
high-level representation approach in fine-grained recogni-
tion. The works of [22, 52] showcase that coupling mid-
level and high-level classification models indeed leads to
enhanced performance.

Despite the promising results, prior approaches have
been merely adopting off-the-shelf mid-level model in a
plug-and-play fashion rather than enhancing the mid-level
model per se. In this paper, we make one step forward along
this line, and strive to learn better mid-level representations
for fine-grained recognition. We observe that a mid-level
model determines the label primarily based on a small num-
ber of image regions. As shown in the left column of Fig. 1,
for a baseline model on the CUB-200-2011 training dataset,
on average the top 35.73 of the total 784 regions per im-
age, in fact, contribute to 99% of the final prediction scores.
We speculate that, this is because some subtle object parts
exhibit extremely powerful discriminability in the training
set, and thus the neural network bias its weight more to-
ward these few patterns. For example, as illustrated in the
right column of Fig. 1, a “Red-yellow patch” pattern is very
distinguishable for Red-winged blackbird. In this case, the
neural network tends to learn more neurons highly respon-
sive to this pattern, making it dominantly contribute to the
prediction. The resulting model will be therefore dominated
by a limited number of part patterns, degrading its robust-
ness and generalization ability.

To this end, we propose a novel Stochastic Partial
Swap (SPS) strategy to enhance the generalization of mid-
level models. The swapping-noise strategy randomly se-
lects one sample feature as a noise source during training
and swaps some of its feature units into the corresponding
locations of another sample. Our proposed method differs
from existing injection methods in exploiting sample fea-
tures as a noise source (illustrated in Fig.2). This strat-

egy delivers several advantages in learning mid-level rep-
resentation. First, if most of the swapped-in elements are
inactive neurons, our method has a similar regularization
effect of DropOut, which encourages more neurons for fea-
ture representation. Second, our approach helps suppress
some neurons that dominate the predictions. For instance,
if some neurons with dominant roles in predicting one cate-
gory are swapped into one sample feature of another class,
they may cause the sample to be mispredicted. In this case,
the cost function will penalize these neurons for their mis-
leading influence. Last but not least, this strategy comes
with augmentation abilities to enhance the classifier’s ro-
bustness. For example, swapping partial features between
the intra-class samples will allow the classifier to see more
pattern combination of the class. Also, exchanging partial
neurons between the inter-class instances produces a sam-
ple feature that contains noisy patterns of another category.

We extensively evaluate our method on seven datasets
across three different tasks. Experiments show that our ap-
proach improves the performance of the baseline by a large
margin. Our learned mid-level model obtains an accuracy
of 87.29% on the CUB dataset and outperforms other reg-
ularization methods and even the high-level model. By in-
corporating the high-level representation, our approach with
simplicity and efficiency further achieves state-of-the-art or
comparable performance on CUB-200-2011, Aircraft, Stan-
ford Cars, Food101, MIT indoor, and GTOS datasets.

2. Related Work

Fine-grained recognition plays a crucial role in various
image and video tasks [25, 46, 34, 43, 32, 45]. In what
follows, we give a brief review of domains related to fine-
grained recognition.

Fine-grained Recognition. Despite remarkable suc-
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cess in generic classification, high-level representation ap-
proaches based on deep neural networks fail to achieve sat-
isfactory fine-grained recognition performance. This pri-
mary because it cannot capture the subtle visual difference
yet is critical to fine-grained recognition. Therefore, var-
ious methods [54, 8, 55, 42, 9, 56, 7, 35, 41, 55, 28, 44,
53, 37, 20] have been proposed to explore a complemen-
tary representation to the high-level models. These meth-
ods can be divided into two main categories: part-based and
mid-level representation. The first mainly exploit a way to
localize part regions and consequently learn a part-based
representation. Typical approaches to learn a part detec-
tor involves using strongly-supervised learning [53, 13] or
weakly-supervised learning [54, 8, 55, 28]. Recent works
in this group attempt to learn a richer part representation
by employing dense part sampling [44, 56] or sparse-part-
sampling [7]. Although part-based methods have shown
great success in improving the classification performance,
they require either strongly-annotated training data, which
is costly to obtain, or the need to design more sophisticated
frameworks to inference part regions.

Exploiting mid-level representation has attracted in-
creasing attention in this field [35, 22, 52]. [35] introduced
a cross-channel pooling layer to improve the discriminative
ability of the mid-level model. [52] directly incorporated
the mid-level with high-level features to build a strong ex-
pert network. [22] exploited the spatial relation between
the mid-level and high-level features to learn robust multi-
scale features. These works relate to our work mostly. How-
ever, they mainly embedded the mid-level model into their
methods. In contrast, this paper investigates the mid-level
model’s learning problem and further explores a noise per-
turbation strategy to address the issue.

Noise Injection Methods. Due to the massive learn-
ing parameters, deep neural networks usually suffer from
overfitting, which necessitates regularization methods. Our
proposed approach relates to noise regularization tech-
niques [50, 27, 24, 1, 19, 48]. Classic methods, includ-
ing Dropout and its variants, mainly inject noises during
training by adding or multiplying noise. For example,
Dropout randomly drops neurons during training, Gaus-
sian Dropout [27] multiplies the feature units by Gaus-
sian random noise. Compared with these methods that in-
ject manually-defined noise to feature vectors, our proposed
scheme generates noise features by exploiting partial ele-
ments of other sample as noise sources, which can effec-
tively inhibit some neurons from expressing overconfidence
for a specific category. It also provides a more reasonable
way to mimic real data noise for improving the robustness
of the classifier.

Mixing-based Data Augmentation. Recent mixing-
based methods [50, 48, 12, 51] show impressive perfor-
mance by combining images and further fusing the labels

accordingly. Our work differs from these works on mix-
ing augmentation from two aspects. First, typical mixing-
based methods (such as Mixup and CutMix) augment the
training data distribution by providing vicinal samples of a
data point. By contrast, our proposed method is motivated
to solve the problem that mid-level representations concen-
trate on a few patterns. Second, although our work is in-
spired by sample mixing, our work differs from these works
in method design and working mechanism due to different
motivations. The mixing-based methods focus on generat-
ing vicinal samples (by blending images and mixing the cor-
responding labels) to make the input distribution smoother
for training the neural networks. By comparison, we are
concerned about how to inject noise into features (by swap-
ping feature units of samples) to ensure the neuron repre-
sentation involves more patterns in making predictions.

3. Approach
In this section, we first describe a common practice to

learn a deep mid-level representation and introduce our pro-
posed method SPS in the following subsection.

3.1. Learning Deep Mid-level Representation

Standard practice for fine-grained recognition is to fine-
tune a backbone network on the target training set. The
resulting model extracts features by applying global aver-
age pooling over the last convolutional layer, therefore cap-
turing high-level information of objects. However, recent
works [35, 22, 52] have demonstrated that the mid-level
representation exhibits strong complementary ability to the
high-level representation in fine-grained recognition. Al-
though their method designs for learning mid-level models
are different, they all share some standard practices. There-
fore, based on these approaches’ implementation detail, we
sum up a simple learning framework as a baseline. As illus-
trated in Fig.3, the baseline plugs a mid-level classification
branch to a standard classification framework. This new
branch’s feature block contains a 1x1 convolutional layer
initialized with random weights, a ReLU activation layer,
and a Global Max Pooling layer. During training, the two
branches are trained jointly. It is also worth mentioning that
we block gradients passing from the mid-level component
to the backbone layers until the later training stage. This
training practice helps stabilize the training procedure and
prevents the intermediate layers from learning toward ab-
stracting high-level information.

3.2. Stochastic Partial Swap

Although the mid-level representation can supplement
the high-level representation to improve accuracy, the per-
formance remains unsatisfactory when used solely. This
might because the learned mid-level model tends to be dom-
inated by a small number of highly discriminative patterns
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Figure 3. A baseline framework to learn mid-level representation.
Here, ℓg and ℓm are both cross-entropy losses for the mid-level
and high-level classification branches, respectively.

degrading its robustness and generalization capability. A
naive solution to address this problem is to apply dropout to
the feature layer. However, since the dropout manly erases
some neurons to zeros, it does not suppress some over-
confident neurons (with highly high activation values) in
training, as the gradients passing to the erased neurons will
be zero. Therefore, Although dropout encourages the neural
network to activate more neurons to represent a concept, the
resulting representation might still be dominated by some
highly activated neurons. To remedy this situation, we pro-
pose a Stochastic Partial Swap (SPS) that performs element-
wise swapping for partial features between samples to inject
noise in training the neural network. This training strat-
egy delivers more advantages over existing noise injection
methods. First, it provides a way to allow gradients to sup-
press the overconfident neurons. For example, when a neu-
ron is highly activated to one sample yet its corresponding
feature value is injected into another instance from a dif-
ferent category, the neural network would produce a signif-
icant error in classifying the injected sample and penalize
the neuron’s excessive activation. It also serves as a better
way to mimic real noise data for training the classifier, as
it injects real activation values of one sample into another
sample instead of artificial noise. In the following, we de-
scribe in detail our proposed method.

Noise Injection. The main idea of SPS is to inject par-
tial features of one sample into those of another example.
For each sample (feature vector) in the mini-batch, we first
randomly select another sample from the same mini-batch
as a noise source and swap their partial feature elements
element-wise. Given a sample xi and a randomly selected
sample xj from the same mini-batch, the noise injecting op-
eration can be expressed as:

f̃m
ρ∼U(α,β)(xi) = M ⊙ fm(xi) + (1−M)⊙ fm(xj), (1)

where U stands for uniform distribution with two parame-
ters α and β, ⊙ denotes element-wise multiplication, fm(·)
refers to feature extractor of mid-level branch, and M ∈

Figure 4. Comparison of SPS with baseline and dropout in how
many regions they mainly rely on to determine the label on CUB-
200-2011 training set.

Rdim(fm(x)) denotes a binary mask. Here, we generated M
based on the drawn value ρ that specifies the proportion of
the number of feature elements to be exchanged, that is

M [k] =

{
1 rand(0, 1) ≤ ρ

0 rand(0, 1) > ρ
, (2)

where k ∈ [0, dim(fm(x))− 1] is the dimension index.
Training loss. As mentioned above, we inject noise

by exchanging some feature units, which helps prevent the
neural network from over-focusing on a small number of
discriminative patterns. In addition, this strategy can also
provide samples that simulate noise patterns, thereby en-
hancing the robustness of the classifier against noise. To
amplify these properties, we also apply the noise inject op-
eration multiple times to yield more perturbed cases of each
sample within a mini-batch. Thus, the training loss for a
single training instance (xi, yi) is defined as:

T∑
t=1

ℓ(Cm(f̃m
ρ∼U(α,β)(xi)), yi) + λℓ(Cg(fg(xi)), yi), (3)

where ℓ(·) is the cross-entropy loss, T denotes number of
times the noise injection is applied to a sample, C(·) refers
to the classifier, and fg(·) is the feature extractor of the
high-level branch. Here, the regularization term is omit-
ted for simplicity. It is also worth mentioning that the noise
injection operation will be disabled in testing.

4. Experiments
4.1. Experimental Setup

Datasets. We conduct experiments on seven datasets across
three different tasks: Caltech-UCSD Birds-200-2011(CUB-
200-2011) [31], Stanford Cars [18] FGVC Aircrafts [23],
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Datasets Method ResNet-50 ResNet-101 DenseNet-121 InceptionV3

CUB-200-2011
H-baseline 85.15 86.28 85.85 84.71
M-baseline 82.87 84.83 83.12 84.55
SPS 87.29 87.65 87.11 86.93

Stanford-Car
H-baseline 93.09 93.16 91.77 92.53
M-baseline 90.42 92.06 89.75 91.13
SPS 94.35 94.22 93.63 93.48

FGVC Aircrafts
H-baseline 91.05 91.74 90.49 90.28
M-baseline 89.61 90.54 89.68 90.34
SPS 92.31 92.32 92.21 92.04

Table 1. Performance comparisons with baselines using different network backbones. The value in the bracket indicates the performance
improvement of our method relative to the M-baseline.

Food-101 [2], NABirds [30], MIT67 [26], and Ground
Terrain in Outdoor Scenes(GTOS) [39]. The first four
datasets are widely used to evaluate the performance of fine-
grained classification methods. NABirds is a large-scale
fine-grained dataset containing 555 categories. MIT67 is a
benchmark dataset for indoor scene recognition. GTOS is a
dataset of ground materials in the outdoor scene introduced
recently for material classification. For each dataset, we use
the provided train and test splits for all the experiments. If
not specified, we resize images to 512x512 and then crop to
448x448 and train all models only using the class labels us-
ing standard data augmentation practices, including random
cropping and flipping. In testing, we use a center-cropped
image.
Backbone Networks and Baselines. In our experiments,
we evaluate our method based on four network backbones
including ResNet-50 [10], ResNet-101 [10], InceptionV3
[29], and DenseNet-121 [11]. For each backbone, we con-
struct two baselines and term them as H-baseline and M-
baseline throughout the rest of the paper.

H-baseline is a standard fine-tuning method, in which
the backbone’s last layer replaced with a new layer and then
fine-tune the network on the target datasets.

M-baseline has been recently explored in recent works
[44, 52] aiming to learn a mid-level representation for fine-
grained recognition. We construct the M-baseline by in-
serting another classification branch into the intermediate
layer of the H-baseline network. As suggested in [52], the
new branch consists of a 1x1 conv layer, a ReLU layer,
a global Max Pooling (GMP) layer, and a fully connected
layer. Specifically, for the ResNet and DenseNet structure,
we used the output of the penultimate Conv block (residual
or dense block) as the input to the new branch . In terms of
the InceptionV3, since it contains a auxiliary classification
branch placed on top of the intermediate layer, we simply
replace the this branch with the new branch.
Training Details. We used pre-trained weights on Imagenet
to initialize the backbone networks. The initial learning rate
was set to 0.001 for the pre-trained layers and 0.01 for the

Method Parameter Accracy(%)
M-baseline - 82.87
+Dropout p = 0.5 85.48
+AlphaDropout p = 0.4 84.58
+Mixup λ ∼ Beta(0.2, 0.2) 85.53
+Cutmix λ ∼ Beta(1, 1) 85.71
SPS ρ = 0.4 86.65
SPS ρ ∼ U(0.3, 0.5) 87.29

Table 2. Evaluations and comparisons to regularization methods
on CUB-200-2011 dataset.

rest layers. We then trained the networks for 160 epochs
using an SGD optimizer with a learning rate decay factor
of 0.1 for every 40 epochs. We used center-cropped images
as inputs and obtained the average accuracy of the last five
epochs as the performance measure in testing.
Quantifying the contribution of image regions to the
prediction In order to further verify the observed issue
about learning the mid-level representation, we counted
how many regions of the image that the learned model
mainly use to make predictions. Next, we describe how to
quantify an image region’s contribution to the prediction.
Given an image I with the label y, we denote its inter-
mediate output feature maps F ∈ Rd×a×b, where d and
(a, b) are the channels number and the output size respec-
tively. Each spatial location index i ∈ [1, a× b] of F corre-
sponds to an image region Ri,which makes a total number
of a × b regions for the image. Suppose we have the re-
sulting mid-level feature f ∈ Rd and the classifier weight
vector w ∈ Rd corresponding to the label y, then the output
logit o = wt ·max(F ), where max(·) refers to the global
max pooling operation. Now, we calculate the contribution
of the region Ri by

C(Ri) =
∑

k∈[1,d]

argmax(Fk)=i

(max(F k)× wk)/o, (4)

where F k and wk corresponds to the kth channel of F and
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the kth element of w respectively. Finally, given a percent-
age value, we sort the regions’ contribution values in de-
scending order and then continuously accumulate regions
to determine at least how many areas can contribute this
percentage to the output.
The hyperparameters of comparing methods. We
compared our method with several representative regula-
tion methods including Dropout [27], AlphaDropout [15],
Mixup [50], and Cutmix [48]. We applied these methods to
the mid-level baseline branch and reported their results with
optimal hyperparameter for each method.
Complementary capabilities for classification. To verify
the complementary ability of the learned mid-level repre-
sentation to the high-level representation, we fuse the output
logits from the mid-and high-level classification branch and
test the performance. Since the high-level branch is used
as an auxiliary classifier in learning SPS, obtaining such
a fused output does not require an additional training pro-
cess. For the following reported results, we use High-level
+ SPS to represent this way of using the combined output to
make predictions. We also tested the complementary ability
when using multiple SPS modules. We found the two SPS
modules perform the best, this is because adding more SPS
modules will bias the fused prediction towards the mid-level
representation. Thus, we employ two SPS modules for ex-
periments in this setting and used the same hyperparameters
for all datasets.

4.2. Results and Analysis

SPS involves more regions to make prediction. We com-
pared our SPS with the M-baseline and DropOut in how
many regions they mainly rely on to determine the label.
Here, we used the backbone network Resnet-50 and training
dataset CUB-200-2011. For each image, we first computed
the region contribution score described in the section 4.1
and counted the least number of regions that can contribute
99% to the prediction. Then we obtained the average num-
ber over the training data and showed the result in Fig. 4.
We can find that, for the baseline model, on average, there
are 35.73 (out of 784) regions per image can contribute 99%
of the prediction score. This result shows that the resulting
mid-level model tends to rely on a minimal number of part
patterns in inferencing the label. By comparison, our pro-
posed method SPS increases the number to 56.74, which
demonstrates it can promote more regions to jointly con-
tribute to the prediction.
SPS improves generalization performance on test data.
To verify the effectiveness of learning mid-level represen-
tation, we tested our method on four network backbones
and three fine-grained datasets. As shown in Table 1,
our method considerably outperforms the baselines consis-
tently regardless of different datasets or network structures.
In terms of learning mid-level representation, SPS outper-

forms the M-baseline by a large margin. In addition, we can
observe that the accuracy improvement is more significant
on CUB dataset. This may be explained by that this data set
has a small number of training images and contains some
highly distinguishable parts, making the middle-level model
more likely to be dominated by a few regions. We also com-
pared our method with different regularization methods and
showed the results in Table 2. We can see that all regulariza-
tion methods improve the mid-level model, while our pro-
posed method performs the best in performance improve-
ment.
SPS exhibits strong complementary ability. To verify the
complementary ability of the learned mid-level represen-
tation, we fused outputs from the SPS and the high-level
classification branch for final prediction. As shown in Ta-
ble 3, the combined model (considerably outperform the H-
baseline which demonstrated the learned mid-level repre-
sentation can complement the high-level representation in
terms of classification capacity. For instance, the perfor-
mance of using a single high-level representation is 85.15%
on the CUB dataset, yet the accuracy can be improved to
88.42% when coupled with an SPS module. Moreover, Ta-
ble 4 shows that this superiority also holds for large-scale
datasets.
Fine-grained classification. Table 3 shows the perfor-
mance comparison of different techniques of fine-grained
recognition. Our proposed method achieved comparable
or better performance than other approaches. It is worth
mentioning that our method only used a single backbone
network both in training and testing, while top-performing
methods require multiple backbone feature extractions.
Both S3N [7] and MGE-CNN [52] need three network feed-
forward passes to produce prediction, which requires larger
GPU memory and more expensive computation.
Indoor scene and Outdoor ground material recognition.
We evaluated our method on the MIT indoor and GTOS
dataset. As shown in Table 5. the technique [17] achieves
the best result. However, it may benefit from using pre-
trained weights on the Place205 dataset, which has similar
domain information with the MIT indoor dataset. Nonethe-
less, compared to the latest methods [21, 47] using the
same experimental settings, our method performs the best.
We also conduct experiments on a new challenging dataset
GTOS introduced for material classification. The results
also reveal that our approach using a single scale in both
training and testing outperforms all the comparing methods.

4.3. Visualization and model interpretation

Filter visualization. To gain an intuitive understanding of
the superiority of our method, we visualized and compared
the top 5 filters learned by the M-baseline and the SPS.
Fig. 5 shows the visualization results. First, we can observe
that the baseline model’s top 5 filters are mostly activated in
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Method Backbone Accracy(%)
CUB-200-2011 Stanford-Car Aircraft Food101

Low-rank B-CNN [16] 1xVGG-16 84.2 90.9 87.3 -
GP-256 [36] 1xVGG-16 85.8 92.8 89.8 85.7
MA-CNN [55] 3xVGG-19 86.5 91.5 89.9 -
Kernel-Pooling [5] 1xVGG-16 86.2 92.4 86.9 85.5
MAMC [28] 1xResnet-50 86.5 93.0 - -
DFL-CNN [35] 1xResnet-50 87.4 93.1 91.7 -
NTS-Net [44] 3xResnet-50 87.5 93.9 91.4 -
DCL [3] 1xResnet-50 87.8 94.5 93.0 -
TASN [56] 1xResnet-50 87.9 93.8 - -
Cross-X [22] 1xResnet-50 87.7 94.6 92.6 -
S3N [7] 3xResnet-50 88.5 94.7 92.8 -
MGE-CNN [52] 3xResnet-50 88.5 93.9 - -
H-baseline 1xResnet-50 85.15 93.09 91.05 87.32
H-baseline + M-baseline 1xResnet-50 87.32 93.78 91.48 88.19
SPS 4

5xResnet-50 87.29 94.35 92.31 87.65
H-baseline + SPS 1xResnet-50 88.42 94.65 92.55 89.33
H-baseline + SPS* 1xResnet-50 88.70 94.93 92.73 89.70

Table 3. Comparison of different techniques on four fine-grained datasets. Here,n× backbone means the method requires n forward pass
of the backbone network in testing, while 4

5
xResnet-50 indicates the first four of five Conv blocks of Resnet-50 is needed. SPS* denote

results obtained by using two mid-level branches.

Figure 5. Visualization and comparison of the top 5 filters learned by the baseline method and the proposed method. (Better view zoomed
in and with color.)

Method ResNet-50 ResNet-101
H-baseline 84.43 85.36
M-baseline 82.85 85.21
SPS 86.11 86.92
H-baseline + M-baseline 86.10 86.97
H-baseline + SPS 87.11 87.85

Table 4. Result on the large-scale fine-grained dataset NABirds

the same part regions, while ours are distributed in differ-
ent regions. This reveals that our approach effectively re-
duces the predominance of some certain strong patterns and
encourages using more diverse patterns to represent the in-
put. Also, the baseline method may be easily influenced by

noisy patterns. For instance, the 2th row shows the baseline
model detects a tail style, a noisy pattern that is accidentally
constructed by combining the tail from another aircraft.
Model interpretation. Unlike Global Average Pooling-
based methods that provide model explanation using global
visual cues, our approach is based on Global Max Pool-
ing and thereby can provide a more detailed interpretation
(subtle-part importance) of the model prediction. Besides,
our method also enhances model interpretability by encour-
aging attention to more part regions and thus a more com-
plete presentation. We introduce the following method for
our model interpretation. Given an image and a feature map
location index i, we first compute the region contribution
score C(Ri) as described in Sec. 4.1. Next, we generate a
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Method Backbone Input Size Accracy(%)

MIT indoor

Places-205 [33] * VGG16 224 81.2
Spectral Features [14] * VGG16 224 84.3
SOP+SC+SigmE [17] * Resnet-50 336 86.3
Deep Filter Banks [4] VGG19 224 81.0
FASON [6] FSON 448 81.7
SMSO [47] Resnet-50 448 79.7
λ democratic [21] Resnet-101 448 84.3
H-baseline + SPS(Ours) Resnet-50 448 83.1
H-baseline + SPS(Ours) Resnet-101 448 84.6

GTOS

Deep Filter Banks [4] VGG19 240 77.1
Multiview DAIN [40] Resnet-50 240 81.4
DeepTEN [38] Resnet-50 ms 84.5
MAP-net [49] Resnet-50 224 84.7
H-baseline + SPS(Ours) Resnet-50 224 85.6

Table 5. Evaluations and comparisons to the state of the art on MIT indoor and GTOS dataset. (Methods marked with * use model
pretrained on the Places dataset, others on the Imagenet datast)

25.85%
15.39%
10.57%
5.30%
3.48%

23.53%
10.56%
6.15%
5.70%
5.27%

32.09%
18.47%
11.64%
4.37%
3.88%

18.42%
14.40%
10.57%
5.79%
4.79%

14.15%
8.33%
6.87%
6.06%
5.80%

12.23%
11.85%
9.27%
7.56%
7.31%

18.10%
8.28%
7.43%
6.73%
5.15%

12.53%
8.65%
7.23%
7.00%
6.05%

21.80%
20.36%
15.36%
7.13%
5.46%

18.56%
12.74%
8.82%
7.61%
5.98%

14.54%
13.42%
7.71%
7.20%
6.34%

29.96%
23.21%
7.81%
4.69%
3.73%

Laysan AlbatrossLeast Auklet Red Winged Blackbird

Eastern Towhee

Northern Flicker

Scissor tailed Flycatcher Rose Breasted Grosbeak

Western GullFlorida Jay

Tropical KingbirdGreat Crested Flycatcher Pigeon Guilemot

Figure 6. Some model interpretation results. For each image, we show the predicted class name, the top-5 important part regions with
different color masking, and the corresponding contribution scores. (Better view zoomed in and with color.)

Local Class Activation Map (LCAM) by averaging CAMs
whose max indices are i. Here, the LCAM represents the at-
tention of certain filters that are most activated at the same
location, which is useful to locate a part region. Finally,
we sort the region contribution scores and show the top-k
contribution scores and the corresponding regions. Fig. 6
provides some interpretation results. We can see that our
method provides a comprehensible interpretation of what
part regions are most important for model prediction. Tak-
ing the first picture as an example, we can understand that
the model predicts it as Northern Flicker mainly according
to some distinguishable patterns in areas such as the beak,
the upper breast, the lower breast, and belly.

5. Conclusion

By statistics, we observed that the deep mid-level model
has an issue that only a tiny percentage of image regions

mainly contribute to the prediction. We thereby presented
a Stochastic Partial Swap method to address the issue. Our
main idea is to utilize real features as noises to disturb an-
other feature during training. We demonstrated that this
strategy effectively promotes the neural network to rely on
more regions in making a prediction. We also showed its
superiority in enhancing model generalization and inter-
pretability. Despite these advantages, SPS is not directly
applicable to Global Pooling Based models. In future work,
we will explore a more general version of SPS for represen-
tation learning, and generalize SPS to wilder domains such
as person Re-identification, and few-shot learning.

6. Acknowledgements

Dr. Shaoli Huang is supported by ARC FL-170100117.
Xinchao Wang is supported by the Start-up Fund of Na-
tional University of Singapore.

627



References
[1] Jimmy Ba and Brendan Frey. Adaptive dropout for training

deep neural networks. In Advances in neural information
processing systems, pages 3084–3092, 2013.

[2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101–mining discriminative components with random
forests. In ECCV, pages 446–461. Springer, 2014.

[3] Yue Chen, Yalong Bai, Wei Zhang, and Tao Mei. Destruction
and construction learning for fine-grained image recognition.
In CVPR, pages 5157–5166, 2019.

[4] Mircea Cimpoi, Subhransu Maji, and Andrea Vedaldi. Deep
filter banks for texture recognition and segmentation. In
CVPR, pages 3828–3836, 2015.

[5] Yin Cui, Feng Zhou, Jiang Wang, Xiao Liu, Yuanqing Lin,
and Serge Belongie. Kernel pooling for convolutional neural
networks. In CVPR.

[6] Xiyang Dai, Joe Yue-Hei Ng, and Larry S Davis. Fason:
First and second order information fusion network for texture
recognition. In CVPR, pages 7352–7360, 2017.

[7] Yao Ding, Yanzhao Zhou, Yi Zhu, Qixiang Ye, and Jianbin
Jiao. Selective sparse sampling for fine-grained image recog-
nition. In ICCV, pages 6599–6608, 2019.

[8] Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to see
better: Recurrent attention convolutional neural network for
fine-grained image recognition. In CVPR, pages 4438–4446,
2017.

[9] Weifeng Ge, Xiangru Lin, and Yizhou Yu. Weakly super-
vised complementary parts models for fine-grained image
classification from the bottom up. In CVPR, pages 3034–
3043, 2019.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016.

[11] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[12] Shaoli Huang, Xinchao Wang, and Dacheng Tao. Snap-
mix: Semantically proportional mixing for augmenting fine-
grained data. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 35, pages 1628–1636, 2021.

[13] Shaoli Huang, Zhe Xu, Dacheng Tao, and Ya Zhang. Part-
stacked cnn for fine-grained visual categorization. In CVPR,
pages 1173–1182, 2016.

[14] Salman H Khan, Munawar Hayat, and Fatih Porikli. Scene
categorization with spectral features. In ICCV, pages 5638–
5648, 2017.

[15] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and
Sepp Hochreiter. Self-normalizing neural networks. In NIPS,
pages 971–980, 2017.

[16] Shu Kong and Charless Fowlkes. Low-rank bilinear pooling
for fine-grained classification. In CVPR, pages 7025–7034,
2017.

[17] Piotr Koniusz, Hongguang Zhang, and Fatih Porikli. A
deeper look at power normalizations. In CVPR, pages 5774–
5783, 2018.

[18] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013.

[19] Zhe Li, Boqing Gong, and Tianbao Yang. Improved dropout
for shallow and deep learning. In Advances in neural infor-
mation processing systems, pages 2523–2531, 2016.

[20] Di Lin, Xiaoyong Shen, Cewu Lu, and Jiaya Jia. Deep
lac: Deep localization, alignment and classification for fine-
grained recognition. In CVPR, pages 1666–1674, 2015.

[21] Tsung-Yu Lin, Subhransu Maji, and Piotr Koniusz. Second-
order democratic aggregation. In ECCV, pages 620–636,
2018.

[22] Wei Luo, Xitong Yang, Xianjie Mo, Yuheng Lu, Larry S
Davis, Jun Li, Jian Yang, and Ser-Nam Lim. Cross-x learn-
ing for fine-grained visual categorization. In ICCV, pages
8242–8251, 2019.

[23] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. Technical re-
port, 2013.

[24] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov.
Variational dropout sparsifies deep neural networks. In Pro-
ceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2498–2507. JMLR. org, 2017.

[25] Jiayan Qiu, Yiding Yang, Xinchao Wang, and Dacheng Tao.
Hallucinating visual instances in total absentia. In ECCV,
2020.

[26] Ariadna Quattoni and Antonio Torralba. Recognizing indoor
scenes. In CVPR, pages 413–420. IEEE, 2009.

[27] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. JMLR,
15(1):1929–1958, 2014.

[28] Ming Sun, Yuchen Yuan, Feng Zhou, and Errui Ding. Multi-
attention multi-class constraint for fine-grained image recog-
nition. ECCV, 2018.

[29] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818–2826, 2016.

[30] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber,
Jessie Barry, Panos Ipeirotis, Pietro Perona, and Serge Be-
longie. Building a bird recognition app and large scale
dataset with citizen scientists: The fine print in fine-grained
dataset collection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 595–604,
2015.

[31] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011.

[32] Jue Wang, Shaoli Huang, Xinchao Wang, and Dacheng Tao.
Not all parts are created equal: 3d pose estimation by mod-
elling bi-directional dependencies of body parts. In ICCV,
2019.

[33] Limin Wang, Sheng Guo, Weilin Huang, and Yu Qiao.
Places205-vggnet models for scene recognition. arXiv
preprint arXiv:1508.01667, 2015.

628



[34] Xinchao Wang, Engin Turetken, Francois Fleuret, and Pascal
Fua. Tracking interacting objects using intertwined flows.
TPAMI, 38:2312–2326, 2016.

[35] Yaming Wang, Vlad I Morariu, and Larry S Davis. Learn-
ing a discriminative filter bank within a cnn for fine-grained
recognition. In CVPR, pages 4148–4157, 2018.

[36] Xing Wei, Yue Zhang, Yihong Gong, Jiawei Zhang, and
Nanning Zheng. Grassmann pooling as compact homoge-
neous bilinear pooling for fine-grained visual classification.
In ECCV, pages 355–370, 2018.

[37] Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang,
Yuxin Peng, and Zheng Zhang. The application of two-level
attention models in deep convolutional neural network for
fine-grained image classification. In CVPR, pages 842–850,
2015.

[38] Jia Xue, Hang Zhang, and Kristin Dana. Deep texture man-
ifold for ground terrain recognition. In CVPR, pages 558–
567, 2018.

[39] Jia Xue, Hang Zhang, Kristin Dana, and Ko Nishino. Dif-
ferential angular imaging for material recognition. In CVPR,
pages 764–773, 2017.

[40] Jia Xue, Hang Zhang, Kristin Dana, and Ko Nishino. Dif-
ferential angular imaging for material recognition. In CVPR,
pages 764–773, 2017.

[41] Yiding Yang, Zunlei Feng, Mingli Song, and Xinchao Wang.
Factorizable graph convolutional networks. In NeurIPS, vol-
ume 33, 2020.

[42] Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and
Xinchao Wang. Distilling knowledge from graph convolu-
tional networks. In CVPR, pages 7074–7083, 2020.

[43] Yiding Yang, Zhou Ren, Haoxiang Li, Chunluan Zhou, Xin-
chao Wang, and Gang Hua. Learning Dynamics via Graph
Neural Networks for Human Pose Estimation and Tracking.
In CVPR, 2021.

[44] Ze Yang, Tiange Luo, Dong Wang, Zhiqiang Hu, Jun Gao,
and Liwei Wang. Learning to navigate for fine-grained clas-
sification. In ECCV, pages 420–435, 2018.

[45] Jingwen Ye, Yixin Ji, Xinchao Wang, Kairi Ou, Dapeng Tao,
and Mingli Song. Student Becoming the Master: Knowledge
Amalgamation for Joint Scene Parsing, Depth Estimation,
and More. In CVPR, 2019.

[46] Xiaoqing Yin, Xinchao Wang, Jun Yu, Maojun Zhang, Pas-
cal Fua, and Dacheng Tao. FishEyeRecNet: A Multi-Context
Collaborative Deep Network for Fisheye Image Rectifica-
tion. In ECCV, 2018.

[47] Kaicheng Yu and Mathieu Salzmann. Statistically-motivated
second-order pooling. In ECCV, pages 600–616, 2018.

[48] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2019.

[49] Wei Zhai, Yang Cao, Jing Zhang, and Zheng-Jun Zha. Deep
multiple-attribute-perceived network for real-world texture
recognition. In ICCV, pages 3613–3622, 2019.

[50] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In ICLR, 2018.

[51] Lianbo Zhang, Shaoli Huang, and Wei Liu. Intra-class part
swapping for fine-grained image classification. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 3209–3218, 2021.

[52] Lianbo Zhang, Shaoli Huang, Wei Liu, and Dacheng Tao.
Learning a mixture of granularity-specific experts for fine-
grained categorization. In ICCV, pages 8331–8340, 2019.

[53] Ning Zhang, Jeff Donahue, Ross Girshick, and Trevor Dar-
rell. Part-based r-cnns for fine-grained category detection. In
ECCV, pages 834–849. Springer, 2014.

[54] Xiaopeng Zhang, Hongkai Xiong, Wengang Zhou, Weiyao
Lin, and Qi Tian. Picking deep filter responses for fine-
grained image recognition. In CVPR, pages 1134–1142,
2016.

[55] Heliang Zheng, Jianlong Fu, Tao Mei, and Jiebo Luo. Learn-
ing multi-attention convolutional neural network for fine-
grained image recognition. In ICCV, pages 5209–5217,
2017.

[56] Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, and Jiebo Luo.
Looking for the devil in the details: Learning trilinear atten-
tion sampling network for fine-grained image recognition. In
CVPR, pages 5012–5021, 2019.

629


