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Abstract

Typical domain adaptation techniques aim to transfer the
knowledge learned from a label-rich source domain to a
label-scarce target domain in the same label space. How-
ever, it is often hard to get even the unlabeled target do-
main data of a task of interest. In such a case, we can
capture the domain shift between the source domain and
target domain from an unseen task and transfer it to the
task of interest, which is known as zero-shot domain adap-
tation (ZSDA). Most of existing state-of-the-art methods for
ZSDA attempted to generate target domain data. However,
training such generative models causes significant compu-
tational overhead and is hardly optimized. In this paper, we
propose a novel ZSDA method that learns a task-agnostic
domain shift by collaborative training of domain-invariant
semantic features and task-invariant domain features via
adversarial learning. Meanwhile, the spatial attention map
is learned from disentangled feature representations to se-
lectively emphasize the domain-specific salient parts of the
domain-invariant features. Experimental results show that
our ZSDA method achieves state-of-the-art performance on
several benchmarks.

1. Introduction

Recent deep learning methods achieved success in var-
ious computer vision tasks including image classification,
segmentation, and object detection. However, such deep-
learned models often suffer from severe performance degra-
dation when the training data and testing data are from dif-
ferent domains due to the domain shift [12]. For example, a
scene segmentation model trained on synthetic images per-
forms worse when applied to real-world images, and vice
versa. To tackle this problem, domain adaptation techniques
that aim to transfer the knowledge learned from a label-rich
source domain to the desired target domain, also known as
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Trrelevant Task (IrT)

Figure 1: An example of zero-shot-domain adaptation. In
this scenario, IrT is the digit image analysis and Tol is the
fashion image analysis. The source and target domains are
grayscale and color image domains, respectively. The ob-
jective of zero-shot domain adaptation is to train a model
for Tol in the target domain, which is unseen during train-
ing time, by learning a task-agnostic domain shift 7°(+).

“transfer learning”, are actively being studied.

Typical domain adaptation methods assume that the tar-
get domain data is available at the training phase. However,
in real-world applications, it is often not feasible to get the
unlabeled target domain data that shares an identical label
space with the source domain data of interest. Such a situ-
ation refers to a new transfer learning task, known as zero-
shot domain adaptation (ZSDA) [25]. The objective of the
zero-shot domain adaptation task is to transfer the domain
shift to a task of interest (Tol) from an irrelevant task (IrT)
as shown in Fig 1. This domain adaptation technique sug-
gests a novel approach for various data scarcity problems.
Suppose that we have a scene text dataset and a synthetic
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text dataset to develop a scene text detection model. With
ZSDA, we can also have a model that supports other lan-
guages by adding easily producible synthetic datasets.

Prior ZSDA techniques can be categorized into two ap-
proaches based on their strategies; 1) generating the target
domain samples of Tol and 2) learning domain invariant
feature representations over different domains. The meth-
ods in the first approach typically use generative models
such as generative adversarial networks (GAN) [1 1] or vari-
ational autoencoder (VAE) [17] to reconstruct the target do-
main distribution and train a model with the generated sam-
ples. While this strategy is intuitive, generative models such
as GANs and VAEs are prone to problems such as collaps-
ing modes and label flipping. These problems can be made
worse by samples that are used in domain adaptation.

The other approach for ZSDA is to learn domain invari-
ant feature representations. Compared to the sample gen-
eration approach, those methods can avoid the aforemen-
tioned overhead and undesirable risks of reconstructing tar-
get domain data. Learning domain invariant feature repre-
sentations have been actively studied for a long time to solve
other types of transfer learning problems such as unsuper-
vised domain adaptation [10, 27], partial domain adapta-
tion [3], and few-shot domain adaptation [24]. However, all
the listed techniques are not directly applicable to ZSDA,
since they strictly require the unlabeled target domain data
to have the same label space with the source domain. When
the source and target domains have different labels, the dis-
criminative features for IrT are overestimated and the fea-
tures for Tol are underestimated while handling target do-
main data. Because of this difference among label distribu-
tions in domains, this results in a negative transfer effect.

One promising approach for ZSDA is to learn disentan-
gled representations of domain-relevant features and task-
relevant features. Recent techniques [26, 20] have a fea-
ture disentangler to learn a domain-invariant representation
from multiple domains via adversarial learning. However,
domain-invariant features alone cannot be sufficiently dis-
criminative to deal with Tol distributions of the target do-
main, since the feature extractor never sees it in the training
phase.

To address the aforementioned issue, we propose a
more effective approach, which collaboratively learns
class-agnostic domain feature representations and domain-
invariant semantic feature representations. Our training
scheme has two phases: disentanglement and refinement.
In the disentanglement stage, we extend the domain adver-
sarial adaptation approaches [9, 29] to learn class-agnostic
domain features and domain-invariant features simultane-
ously. In the refinement stage, a domain feature is trans-
formed into a spatial attention map. The spatial atten-
tion map selectively emphasizes the domain-specific salient
parts of the domain-invariant semantic feature. This en-

hances the discriminative power of the imperfect semantic
features.

Our main contribution can be summarized as follows: (1)
We propose an end-to-end framework for zero-shot domain
adaptation which does not need any additional information
or assumptions in the problem definition. (2) We propose
a novel collaborative feature refinement with disentangled
feature representations that can prevent negative transfer ef-
fects during zero-shot domain adaptation. (3) Our proposed
method achieves state-of-the-art performance in extensive
experiments on various benchmarks for zero-shot domain
adaptation tasks.

2. Related Works

Domain-invariant Representation Domain adaptation
aims to transfer the knowledge learned from the source
domain to the target domain where labeled data is sparse
or non-existent. Domain adaptation typically involves
domain-invariant representation, which involves various
methods.  Some methods use Maximum Mean Dis-
crepancy (MMD) [22, 23] as a way to minimize fea-
ture distribution discrepancies among different domains.
With the development of generative adversarial networks
(GAN) [11], many adversarial strategies such as gradient re-
versal layer [9], domain adversarial loss [29], and classifier
discrepancy loss [19, 27] have been successfully used for
various domain adaptation tasks. Domain-agnostic learn-
ing (DAL) [26] proposes a method to disentangle the fea-
ture representation via adversarial learning. However, all
the aforementioned methods are not directly applicable to
the zero-shot domain adaptation problem, since they utilize
the unlabeled target domain data in the training phase.

Zero-shot Domain Adaptation Zero-shot domain adap-
tation (ZSDA) assumes that the label space of the given tar-
get domain data is different from the task of interest. Al-
though various methods have been explored recently, ZSDA
has not been well addressed due to negative transfer. Partial
domain adaptation methods [3, 2] propose a way to miti-
gate negative transfer, but these methods also rely on the
target domain data of Tol. In a similar problem setting, d-
SNE [40] proposes a metric-based few-shot domain adapta-
tion but the performance degradation is significant in zero-
shot settings.

Some existing works on ZSDA utilize additional infor-
mation to capture the accurate domain shift that is able to
be generalized for Tol. Ishii et al. [15] utilizes the known
attribute information of the domain (e.g., position of the
camera). Yang et al. [41] uses multiple sources and tar-
get domain data determined by a vector of continuous vari-
ables. Zero-shot deep domain adaptation (ZDDA) [25] does
not need such assumptions, but paired dual-domain samples
are required during the training time. These restrictions help
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align source and target domain representations but make it
difficult to adapt in real-world applications.

Existing state-of-the-arts approaches to ZSDA [33, 34,

] utilizes generative models such as coupled generative
adversarial networks (CoGAN) [21] and variational autoen-
coder (VAE) [17], which aim to reconstruct Tol samples in
target domain distribution. These methods use shared layers
to capture the semantic concepts of Tol samples and cou-
pled networks to generate dual-domain samples. However,
these generative approaches produce significant overhead
by generating target domain samples and inherit the diffi-
culties of the data generation task. Instead, we propose a
method to learn a refined semantic representation by using
an attention mechanism.

Attention Mechanism Recently, attention mechanism
has been widely applied to various neural network archi-
tectures that capture relevant characteristics of human per-
ception. It enables the models to focus on the salient part
of a given feature, and it is shown that the mechanism
can improve model performance in various computer vision
tasks including image segmentation [4, 8], image classifica-
tion [37, 32], and image generation [42, 39]. In particular,
Vaswani et al. [30] propose a self-attention mechanism that
computes global dependencies given inputs and achieves
state-of-the-art results in machine translation. There are
also attempts at applying attention mechanism to unsuper-
vised domain adaptation by learning a transferable atten-
tion [36] and temporal alignment [5].

3. Methodology

In the zero-shot domain adaptation (ZSDA), we have two
different tasks, a task of interest (Tol) and an irrelevant task
(IrT). Tol and IrT have different label spaces C, and C;,., re-
spectively. We also have two domains, a source domain Dy
and a target domain D;. The data samples from the source
domain of each task are denoted by X7 = {z7,y"} and
X = {27, yir} , where y© € C, and y'" € C;,. Simi-
larly, the data samples from the target domain of each task
are defined as X7 and X;". The goal of ZSDA task is to
learn a model for the unseen data X by using three labeled
datasets X7, X" and X".

We propose to solve the ZSDA problem by learning two
different features, class-agnostic domain features f; and
domain-invariant semantic features f.. These two features
fa and f. are extracted from different feature extractors G4
and G., respectively. Such two types of features f; and
fe are derived from feature disentanglement by eliminat-
ing class-relevant and domain-relevant information from a
shared representation, respectively. In typical unsupervised
domain adaptation tasks, the domain-invariant feature f.
from feature disentanglement can be sufficient since the dis-
crimination on X can be retained by the availability of un-

labeled data samples {z} }. However, in the ZSDA setting,
the semantic features for Tol in f, are often aligned with the
Itr'T feature distribution due to the discrepancy between Dy
and D; during the training phase.

To alleviate this problem, we introduce a feature re-
finement stage to learn a domain-specific spatial attention
map from the class-agnostic domain features f; that guides
where to attend in the f.. By applying this domain-specific
attention map to the f., the negative transfer effect is re-
duced while the positive transfer effect is enhanced. Note
that, we describe our method based on an assumption that
the given tasks are those for image classification.

3.1. Feature Disentanglement

The goal of the feature disentanglement process is to re-
move domain-relevant information from the f. = G.(x)
and task-relevant information from the f; = Gy(z).
Our feature disentanglement method adopts an adversarial
learning strategy with a domain discriminator D, and two
classifiers C,. and C;, for Tol and IrT, respectively. The
overall procedure of the feature disentanglement procedure
is illustrated in Fig. 2a.

Domain-invariant Feature The domain-invariant se-
mantic feature f. is learned via adversarial learning be-
tween D and GG.. The domain discriminator D is asked to
distinguish the domain label from given features f; or f..
Specifically, the loss function for the domain discriminator
Lp is defined as follows:

L} = ~Ey, wp,log(D(f4))] = Ez,op, [log(1 — D(f4))]
(D

L = ~E,, p [log(D(f.))] = Espnp, [log(1l — D(f.))]

2
Lp =LY+ Ll 3)

On the other hand, the feature extractor (G, is trained
with two classifiers C). and C;,. to preserve the semantic
information of f,. This is achieved by minimizing the clas-
sification errors. Thus, the loss functions of two classifiers
are defined as follows:

LL = ~Bayympror [0y, Co(£2)] @)

Cécir = _]E(mwy)’\’per [K(y, Cl’r(.fc))]’ (5)

where £(+) is the cross-entropy loss, and p”, p*" are the prob-
ability distributions of Tol and IrT, respectively. Mean-
while, the semantic feature extractor GG, is trained to fool
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Figure 2: Overview of our method. (a) The G, extracts a semantic feature f. and G4 extracts a domain feature f;. Then
the domain and the class information are removed from f. and fy via adversarial training, respectively. (b) After the disen-
tanglement stage, the refinement module is trained to produce a refined feature f,. based on the attention mechanism. Both
processes are repeated in every iteration. Note that, the orange-colored box (R) represents the refine module.

the domain discriminator D to learn domain-invariant fea-
tures. As a result, the aggregated loss functions of the fea-
ture extractors during the domain-disentanglement process
are represented as follows:

Lo, =LE + L — L ©)

Lg, =L ©)

Task-invariant Feature Once the domain information is
disentangled from f,, the class-relevant semantic informa-
tion is removed from the domain-specific feature f,; via ad-
versarial learning between the classifiers and the domain
feature extractor G 4. At first, the classifiers C,. and C;,. are
fixed and only Gy is updated to disable the classification
capability from f,;. This is achieved by maximizing the en-
tropy of the predicted class distribution. The loss function
is defined as follows:
N

1 & ) 1 )
Lg,=——) logC.(fj) — — > logCi(f7), 8
G n, ; ( d) nir ; ( d)

where n, and n;, are the numbers of data samples in Tol
and IrT, respectively. Once the domain feature extractor G4
is updated, the classifiers are then trained to identify the
class-relevant features from f; while G is fixed. Similar
to Eq. 4, the loss functions for two classifiers are defined as
follows:

£ = By 0 CED] O

Ll = —B(yyymp [0y, Cir(£1))] (10)

3.2. Collaborative Learning

As discussed earlier, the semantic features optimized for
IrT is prone to mislead the classifier for Tol C,., even though
the contextual and domain information are successfully dis-
entangled. To address this, we propose a collaborative re-
finement for the feature map to highlight the important parts
of the target domain via a domain-specific attention map
from f,4. Fig 2b shows the overall process of the refinement
step. Specifically, we model our attention method upon the
transformer architecture [30].

Given a domain feature f; € RE*N | first feed it into
convolution layers and transform it into two features A and
B, where {A, B} € R“*Y. Additionally, C, C, and N
are the numbers of channels, reduced channels, and spatial
locations of a feature map, respectively. Note that, we con-
sistently set C' = (/8 in all the experiments. The resulting
attention map M is computed as follows:

exp(A;" - By)
S exp(A;T - By)

an

mj; =

where m;; represents the i*" position’s importance on ;"
position. Meanwhile, the semantic feature f. is also fed
into a convolution layer and transformed into a feature C €
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Figure 3: The sample images of synthetic domains of X-NIST.

RE*N  Then the output of a refinement module O is:

N
0; :72(mﬁci) + Fj (12)
=1

where F' = f.. The -y is a learnable scalar initialized at zero
and gradually learns to assign more weight to the domain-
specific attended feature map. The above equation (Eq. 12)
is computed at both refinement modules as illustrated in
Fig. 2b to produce the refined feature f.. Note that all re-
finement modules share the same domain feature f; as an
input. This overall refinement process is trained by the fol-
lowing classification losses,

LI = = \Be e [0y, Cin(£:))]
N )‘T'E(%y)"‘lf [y, Cr(fr)]s

and the refined feature f, is utilized for the final classifica-
tion result. A, is a hyper-parameter to balance the losses of
the disentanglement stage and the collaborative loss £/~. In
practice, we set A\, = 3.0.

13)

4. Experiments

We evaluate our proposed method against the state-
of-the-art ZSDA techniques on both synthetic and real
datasets.

4.1. Datasets

To evaluate our ZSDA method for classification tasks,
we use MINST (Dyy) [18], Fashion-MNIST (Dp) [38],
NIST (Dy) [13], EMNIST (Dg) [6], and Office-Home [31]
datasets. We denote the set of character datasets,
{.D]\/[7 DF, DN, DE)} as X-NIST.

MNIST is a hand-written digit image dataset. It contains
60,000 training and 10,000 testing images. Each example
is a 28 x 28 size grayscale image, associated with a label
from 10 classes.

Fashion-MNIST contains silhouettes of fashion images.
It has the same number of training and testing samples as
MNIST. Also, each example is a 28 x 28 size grayscale
image, associated with a label from 10 classes as is MNIST.

NIST is a hand-written letters dataset. We selected 52
classes from this dataset which are upper and lower case
letters. It contains 387,361 training and 23,941 testing im-
ages, and each is a 128 x 128 size grayscale image.

EMNIST is a hand-written letters dataset derived from
NIST and converted to a 28 x 28 size image format as like
MNIST. In this paper, we use EMNIST letters split, which
merges the upper and lower case letters. In total, it contains
124,800 training and 20,800 testing images from 26 classes.

Office-Home dataset is a more challenging domain adap-
tation benchmark crawled through several search engines
and online image directories. It consists of images from
4 different domains: Artistic images (Ar), Clip Art (Cl),
Product images (Pr), and Real-World images (Rw). The
dataset contains images of 65 object categories for each do-
main, and the total number of images in the dataset is ap-
proximately 15,500.

The datasets Dy, Dy, Dy, and Dg are all in a gray
domain (domain G). To evaluate our method, we follow
the same protocol with CoCoGAN [33] that creates color
(domain C), edge (domain E), and negative domain (do-
main N). The color domain is created by using Ganin’s
method [9], blending the original image with randomly ex-
tracted patches from the BSDS500 dataset [1]. The edge
domain image is obtained by using the canny edge detector,
and the negative domain image I, is obtained by applying
I, = 255 — I for a given grayscale image /. The sample
images of the generated domains are shown in Fig 3.

4.2. Implementation Details

We implement our method using PyTorch. In all ex-
periments, the discriminator D is implemented with two
fully connected layers, and classifiers C,. and Cj;, are im-
plemented as a single fully connected layer. We use two
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. Tol MNIST (Das) FashionMNIST (Dpg) | NIST (Dy) | EMNIST (Dg)

Domains | Methods T [ Dp Dy Dp | Dy Dn D Dy Dr | Das Dy
ZDDA 732 920 948 | 51.6 439 653 343 219 | 712 47.0
CoCoGAN 78.1 924 956 | 56.8 56.7 66.8 | 41.0 449 | 750 54.8
G—C | Wangetal. 81.2 933 950 | 574 58.7 620 | 446 455 | 724 58.9
Ours (No Refine) | 68.6 86.7 96.6 | 57.3 612 733 313 17.1 | 819 71.7
Ours 93.3 97.0 979 | 67.7 726 763 | 457 313 | 864 74.1
ZDDA 725 915 932 | 541 540 658 | 423 284 | 73.6 50.7
CoCoGAN 796 949 954 | 615 575 71.0 | 480 363|779 58.6
G—E | Wangetal. 814 935 963 | 632 587 724 | 499 38.6 | 782 61.1
Ours (No Refine) | 84.7 89.2 943 | 542 39.0 632 | 467 33.8 | 685 67.0
Ours 929 955 989 | 65.0 60.7 744 | 534 469 | 91.1 82.9
ZDDA 779 824 905 | 614 474 627 37.8 38.7 | 76.2 53.4
CoCoGAN 80.3 87.5 93.1 | 66.0 522 693 | 457 53.8 | 81.1 56.5

G — N | Wang et al. - - - - - - - - - -
Ours (No Refine) | 88.5 958 99.0 | 60.6 82.6 844 | 582 529 |93.0 91.0
Ours 977 97.0 99.2 | 81.3 854 842 | 58.7 59.0 | 934 89.9
ZDDA 674 857 876|551 492 595 39.6 23.7 | 755 52.0
CoCoGAN 732 89.6 94.7 | 61.1 507 702 | 475 57.7 | 80.2 67.4
C—>G | Wangetal. 737 91.0 934 | 624 535 715 50.6 58.1 | 83.5 70.9
Ours (No Refine) | 98.7 98.0 99.2 | 889 86.6 89.0 | 61.2 64.2 | 909 92.1
Ours 989 99.1 99.3 | 89.3 89.1 89.6 | 69.0 69.1 | 92.8 93.3
ZDDA 785 90.7 876 | 56.6 57.1 67.1 34.1 395 | 67.7 45.5
CoCoGAN 80.1 928 93.6 | 634 61.0 728 | 470 439 | 788 58.4
N — G | Wangertal. 82.6 946 958 | 67.0 682 779 | 51.1 442 | 79.7 62.2
Ours (No Refine) | 89.8 972 98.9 | 61.7 82.7 82.1 526 53.8 | 92.9 914
Ours 949 985 99.2 | 834 840 863 | 584 510|933 91.3

Table 1: Experimental results on the synthetic domains. The domain G, C, E, and N refer to gray, color, edge, and negative
domains. Ours (No Refine) represents the results without the refinement stage. The best results are marked in bold. The

baseline results are taken from the papers [25, 33, 34].

refinement modules for all experiments.

In the experiments on the X-NIST dataset, we use three
convolutional layers to implement both feature extractor G4
and G.. The input image size is resized to 28 x 28, and the
feature dimensionalities of fy, f., and f,. are 128 x 7 x 7.
The batch size is set to 64.

In the experiments on the Office-Home dataset, we use
ResNet-50 [14] as the feature extractors, and the semantic
feature extractor G4 is initialized with ImageNet [7] pre-
trained weights. Note that, the previous works [34, 25] also
utilize ImageNet samples or ImageNet pre-trained weights.
The feature dimensionalities of fy, f. and f, are 512 x 7 X
7, and the batch size is set to 8.

We use an Adam optimizer [16] with 57 = 0.5 and
B2 = 0.999 for all experiments. The initial learning rate
is set to 0.0002 and decayed by 0.1 two times through the
entire training iterations. The number of epochs is set based
on the Tol dataset sizes, 100 for {Dys, Dr, Dg}, 30 for

Dy, and 50 for Office-Home dataset. In addition, we sam-
ple the equal number of training data from each of X¢",
X" and X for a mini-batch (64 for X-NIST, 8 for Office-
Home). We also forced to match the labels for X" and
X" within a mini-batch, and we observe that this sampling
method helps to find the domain shift between the same
class in the early stage of training and thus improves the
performances on several domain adaptation settings. The
effectiveness of the label-matching sampling method is de-
scribed in supplementary the material.

Since the ZSDA problem assumes that the target-domain
data of Tol is unavailable during the training phase, the way
to report test set accuracy depends on whether or not a val-
idation set has been provided. If a validation set has been
provided such as the X-NIST dataset, then the test set accu-
racy that we report is when the sum of validation accuracies
on X", X" and X reaches the the highest. Otherwise, the
test set accuracy is reported at the last epoch.
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A. Source domain = Art, Clip Art

Source Art (Ar) Clip Art (Cl)

Target Cl Pr Rw Ar Pr Rw
CoCoGAN 62.2 69.5 74.5 66.7 74.0 66.4
Wang et al. 62.7 71.9 76.3 72.6 75.1 73.9
Source Only | 55.1+4.5 65.3+2.3 77.5+2.3 | 42.5+£2.3 62.1£2.3 59.5£1.8
Ours 71.0+3.2 76.5+1.9 85.1£1.1 | 62.14£3.0 68.7+2.1 75.14+2.3

B. Source domain = Product, Real-World

Source Product (Pr) Real-World (Rw)

Target Ar Cl Rw Ar Cl Pr
CoCoGAN 57.6 53.4 71.7 69.2 51.3 65.8
Wang et al. 70.3 60.8 74.8 72.2 61.4 72.2
Source Only | 47.943.5 52.343.4 70.2+1.7 | 65.842.1 60.6+4.2 83.2+2.5
Ours 64.4+2.1 69.2+1.8 82.0£0.6 | 77.94+£1.0 76.24+2.5 88.5+1.8

Table 2: Experimental results on Office-Home dataset. The results from the methods CoCoGAN, and Wang et al. are the
accuracy when they use 10 random categories as the Tol. Our method and source only method report the average accuracy
and standard error of the mean (SEM) over six different Tol/IrT splits. The baseline results are taken from the paper [34].

4.3. Results on X-NIST Dataset

Given four datasets, we conduct experiments on ten dif-
ferent pairs of Tol and IrT. Note that, we did not conduct
experiments between Dy and Dy, since the two datasets
cover the same task. As a result, we conduct experiments
on five different source and target domain pairs which are
(G—0C),(G—E),(G—N),(C—G),and (N — G). Then
we compare our method with three baselines: ZDDA [25],
CoCoGAN [33], and Wang et al. [34].

Table | reports the classification accuracies on the un-
seen target domain data of Tol. Our method significantly
outperforms the baseline methods. Especially in (C — G)
and (N — Q) tasks, our proposed method achieves 18.09%
and 11.7% performance improvements on average com-
pared to the respective state-of-the-art techniques. This
confirms that our method effectively learns the domain-
invariant semantic features from the Tol and captures the
important regions at the target domain images. Meanwhile,
the performance only drops in the (NIST, FashionMNIST)
task pair and (gray, color) domain pair. This seems that the
IrT-like objects of the background color image hinder iden-
tifying the Tol objects in a higher degree since the content
size of NIST is smaller than others.

To verify the effectiveness of our proposed attention
mechanism, we also performed ablation experiments on the
X-NIST dataset. We removed the feature refinement pro-
cess during training and evaluated model performance only
using domain-invariant feature f.. The results without re-
finement module are reported in Table 1. In most cases, the
refinement module significantly improves the performance
compared to when it is not used. Specifically, the average

performance over all experimental settings improves from
81.72% to 88.28%. Those results clearly demonstrate the
benefits of our attention module that helps to prevent nega-
tive transfer in ZSDA.

4.4. Results on Office-Home Dataset

To evaluate our method in real-world domains, we also
conducted experiments on the Office-Home dataset. Since
this dataset does not provide an explicit split between Tol
and ItT, the previous works on ZSDA (CoCoGAN [33] and
Wang et al. [34]) used 10 random categories from 65 cat-
egories in Office-Home as the Tol, and the rest of them as
the Ir'T. Since he training/test category splits are not explicit
reported in those previous work, we conducted the experi-
ments in the following manner to make the comparison as
fair as possible:

First, we split the 65 categories of Office-Home into six
different subsets while the number of each categories in
each subset is fixed to 10. For each subset, we use the subset
as the Tol and the rest as the IrT (i.e. 10 Tol categories and
55 IrT categories). We conducted experiments on all of the
12 different domain adaptation tasks, and the average accu-
racy and standard error of the mean (SEM) over six different
Tol/IrT splits is reported. We also reported performance on
ResNet-50 model trained only with the Tol data of source
domain as Source Only.

Table 2 shows the experimental results on the Office-
Home benchmark. Even if the domain shift between the
source and the target domain is more ambiguous than that
of the synthetic domains, our method significantly outper-
forms the Source Only results. Also, our method out-
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Figure 4: Grad-CAM [28] visualization results on Office-Home experiments (Ar — Cl). The f. visualizations are from the
last convolutional outputs of G, and the f, visualizations are from the convolutional outputs after the first refinement mod-
ule. The input images X are unseen Tol samples from each target domain, and P is the softmax score of the classification

results corresponding to each feature.

AT

Figure 5: Visualization of channel-wise mean of each fea-
ture map from the Office-Home domain adaptation results.

performs state-of-the-art baselines by 4.38% on average.
These results confirm the merits of our proposed method for
ZSDA even in the most challenging real-world scenarios.

4.5. Visualization of Feature Refinement

Grad-CAM [28] is a visualization technique that pro-
duces a localization map highlighting attended regions in
the image by utilizing gradients. We apply Grad-CAM on
the two Office-Home domain adaptation results to qualita-
tively analyze the effect of the refinement module. Fig 4
shows the attended regions when features f. and f, are fed
to the classifier C,.. We observe that less weighted parts of
the target object in f. become highlighted in the f;..

Fig 5 shows the visualization of channel-wise mean of
each feature map. In this example, we can see that the
empty regions of the figures which are usually present in the

clip art domain are highlighted in f;, and the non-empty re-
gions are highlighted in the refined feature f,.. These results
demonstrate that our refinement module can effectively em-
phasize the under-estimated or missed Tol features while
suppressing the irrelevant features.

5. Conclusion

In this paper, we propose an attention-based collabora-
tive learning method with disentangled feature representa-
tions to solve the challenging ZSDA problem where the tar-
get domain data of Tol is unavailable. Our method first
disentangles the given input to task-invariant and domain-
invariant features based on adversarial learning. The refine-
ment module collaboratively learns where to emphasize or
suppress from the domain-invariant feature based on a task-
agnostic attention map inferred from task-invariant features.
To the best of our knowledge, this is the first attempt to use
an attention mechanism in ZSDA. The ablation study ver-
ifies that the proposed attention-based refinement module
significantly improves the overall performance of the zero-
shot domain adaptation, and we provide visual explanations
about the feature refinement results. Our future work con-
tains extensions of the proposed method to other computer
vision tasks such as scene text detection and recognition.
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