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Abstract

Typical domain adaptation techniques aim to transfer the

knowledge learned from a label-rich source domain to a

label-scarce target domain in the same label space. How-

ever, it is often hard to get even the unlabeled target do-

main data of a task of interest. In such a case, we can

capture the domain shift between the source domain and

target domain from an unseen task and transfer it to the

task of interest, which is known as zero-shot domain adap-

tation (ZSDA). Most of existing state-of-the-art methods for

ZSDA attempted to generate target domain data. However,

training such generative models causes significant compu-

tational overhead and is hardly optimized. In this paper, we

propose a novel ZSDA method that learns a task-agnostic

domain shift by collaborative training of domain-invariant

semantic features and task-invariant domain features via

adversarial learning. Meanwhile, the spatial attention map

is learned from disentangled feature representations to se-

lectively emphasize the domain-specific salient parts of the

domain-invariant features. Experimental results show that

our ZSDA method achieves state-of-the-art performance on

several benchmarks.

1. Introduction

Recent deep learning methods achieved success in var-

ious computer vision tasks including image classification,

segmentation, and object detection. However, such deep-

learned models often suffer from severe performance degra-

dation when the training data and testing data are from dif-

ferent domains due to the domain shift [12]. For example, a

scene segmentation model trained on synthetic images per-

forms worse when applied to real-world images, and vice

versa. To tackle this problem, domain adaptation techniques

that aim to transfer the knowledge learned from a label-rich

source domain to the desired target domain, also known as
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Figure 1: An example of zero-shot-domain adaptation. In

this scenario, IrT is the digit image analysis and ToI is the

fashion image analysis. The source and target domains are

grayscale and color image domains, respectively. The ob-

jective of zero-shot domain adaptation is to train a model

for ToI in the target domain, which is unseen during train-

ing time, by learning a task-agnostic domain shift T (·).

”transfer learning”, are actively being studied.

Typical domain adaptation methods assume that the tar-

get domain data is available at the training phase. However,

in real-world applications, it is often not feasible to get the

unlabeled target domain data that shares an identical label

space with the source domain data of interest. Such a situ-

ation refers to a new transfer learning task, known as zero-

shot domain adaptation (ZSDA) [25]. The objective of the

zero-shot domain adaptation task is to transfer the domain

shift to a task of interest (ToI) from an irrelevant task (IrT)

as shown in Fig 1. This domain adaptation technique sug-

gests a novel approach for various data scarcity problems.

Suppose that we have a scene text dataset and a synthetic
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text dataset to develop a scene text detection model. With

ZSDA, we can also have a model that supports other lan-

guages by adding easily producible synthetic datasets.

Prior ZSDA techniques can be categorized into two ap-

proaches based on their strategies; 1) generating the target

domain samples of ToI and 2) learning domain invariant

feature representations over different domains. The meth-

ods in the first approach typically use generative models

such as generative adversarial networks (GAN) [11] or vari-

ational autoencoder (VAE) [17] to reconstruct the target do-

main distribution and train a model with the generated sam-

ples. While this strategy is intuitive, generative models such

as GANs and VAEs are prone to problems such as collaps-

ing modes and label flipping. These problems can be made

worse by samples that are used in domain adaptation.

The other approach for ZSDA is to learn domain invari-

ant feature representations. Compared to the sample gen-

eration approach, those methods can avoid the aforemen-

tioned overhead and undesirable risks of reconstructing tar-

get domain data. Learning domain invariant feature repre-

sentations have been actively studied for a long time to solve

other types of transfer learning problems such as unsuper-

vised domain adaptation [10, 27], partial domain adapta-

tion [3], and few-shot domain adaptation [24]. However, all

the listed techniques are not directly applicable to ZSDA,

since they strictly require the unlabeled target domain data

to have the same label space with the source domain. When

the source and target domains have different labels, the dis-

criminative features for IrT are overestimated and the fea-

tures for ToI are underestimated while handling target do-

main data. Because of this difference among label distribu-

tions in domains, this results in a negative transfer effect.

One promising approach for ZSDA is to learn disentan-

gled representations of domain-relevant features and task-

relevant features. Recent techniques [26, 20] have a fea-

ture disentangler to learn a domain-invariant representation

from multiple domains via adversarial learning. However,

domain-invariant features alone cannot be sufficiently dis-

criminative to deal with ToI distributions of the target do-

main, since the feature extractor never sees it in the training

phase.

To address the aforementioned issue, we propose a

more effective approach, which collaboratively learns

class-agnostic domain feature representations and domain-

invariant semantic feature representations. Our training

scheme has two phases: disentanglement and refinement.

In the disentanglement stage, we extend the domain adver-

sarial adaptation approaches [9, 29] to learn class-agnostic

domain features and domain-invariant features simultane-

ously. In the refinement stage, a domain feature is trans-

formed into a spatial attention map. The spatial atten-

tion map selectively emphasizes the domain-specific salient

parts of the domain-invariant semantic feature. This en-

hances the discriminative power of the imperfect semantic

features.

Our main contribution can be summarized as follows: (1)

We propose an end-to-end framework for zero-shot domain

adaptation which does not need any additional information

or assumptions in the problem definition. (2) We propose

a novel collaborative feature refinement with disentangled

feature representations that can prevent negative transfer ef-

fects during zero-shot domain adaptation. (3) Our proposed

method achieves state-of-the-art performance in extensive

experiments on various benchmarks for zero-shot domain

adaptation tasks.

2. Related Works

Domain-invariant Representation Domain adaptation

aims to transfer the knowledge learned from the source

domain to the target domain where labeled data is sparse

or non-existent. Domain adaptation typically involves

domain-invariant representation, which involves various

methods. Some methods use Maximum Mean Dis-

crepancy (MMD) [22, 23] as a way to minimize fea-

ture distribution discrepancies among different domains.

With the development of generative adversarial networks

(GAN) [11], many adversarial strategies such as gradient re-

versal layer [9], domain adversarial loss [29], and classifier

discrepancy loss [19, 27] have been successfully used for

various domain adaptation tasks. Domain-agnostic learn-

ing (DAL) [26] proposes a method to disentangle the fea-

ture representation via adversarial learning. However, all

the aforementioned methods are not directly applicable to

the zero-shot domain adaptation problem, since they utilize

the unlabeled target domain data in the training phase.

Zero-shot Domain Adaptation Zero-shot domain adap-

tation (ZSDA) assumes that the label space of the given tar-

get domain data is different from the task of interest. Al-

though various methods have been explored recently, ZSDA

has not been well addressed due to negative transfer. Partial

domain adaptation methods [3, 2] propose a way to miti-

gate negative transfer, but these methods also rely on the

target domain data of ToI. In a similar problem setting, d-

SNE [40] proposes a metric-based few-shot domain adapta-

tion but the performance degradation is significant in zero-

shot settings.

Some existing works on ZSDA utilize additional infor-

mation to capture the accurate domain shift that is able to

be generalized for ToI. Ishii et al. [15] utilizes the known

attribute information of the domain (e.g., position of the

camera). Yang et al. [41] uses multiple sources and tar-

get domain data determined by a vector of continuous vari-

ables. Zero-shot deep domain adaptation (ZDDA) [25] does

not need such assumptions, but paired dual-domain samples

are required during the training time. These restrictions help
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align source and target domain representations but make it

difficult to adapt in real-world applications.

Existing state-of-the-arts approaches to ZSDA [33, 34,

35] utilizes generative models such as coupled generative

adversarial networks (CoGAN) [21] and variational autoen-

coder (VAE) [17], which aim to reconstruct ToI samples in

target domain distribution. These methods use shared layers

to capture the semantic concepts of ToI samples and cou-

pled networks to generate dual-domain samples. However,

these generative approaches produce significant overhead

by generating target domain samples and inherit the diffi-

culties of the data generation task. Instead, we propose a

method to learn a refined semantic representation by using

an attention mechanism.

Attention Mechanism Recently, attention mechanism

has been widely applied to various neural network archi-

tectures that capture relevant characteristics of human per-

ception. It enables the models to focus on the salient part

of a given feature, and it is shown that the mechanism

can improve model performance in various computer vision

tasks including image segmentation [4, 8], image classifica-

tion [37, 32], and image generation [42, 39]. In particular,

Vaswani et al. [30] propose a self-attention mechanism that

computes global dependencies given inputs and achieves

state-of-the-art results in machine translation. There are

also attempts at applying attention mechanism to unsuper-

vised domain adaptation by learning a transferable atten-

tion [36] and temporal alignment [5].

3. Methodology

In the zero-shot domain adaptation (ZSDA), we have two

different tasks, a task of interest (ToI) and an irrelevant task

(IrT). ToI and IrT have different label spaces Cr and Cir, re-

spectively. We also have two domains, a source domain Ds

and a target domain Dt. The data samples from the source

domain of each task are denoted by Xr
s = {xr

s, y
r
s} and

Xir
s = {xir

s , yirs } , where yrs ∈ Cr and yirs ∈ Cir. Simi-

larly, the data samples from the target domain of each task

are defined as Xr
t and Xir

t . The goal of ZSDA task is to

learn a model for the unseen data Xr
t by using three labeled

datasets Xr
s , X

ir
s and Xir

t .

We propose to solve the ZSDA problem by learning two

different features, class-agnostic domain features fd and

domain-invariant semantic features fc. These two features

fd and fc are extracted from different feature extractors Gd

and Gc, respectively. Such two types of features fd and

fc are derived from feature disentanglement by eliminat-

ing class-relevant and domain-relevant information from a

shared representation, respectively. In typical unsupervised

domain adaptation tasks, the domain-invariant feature fc
from feature disentanglement can be sufficient since the dis-

crimination on Xr
t can be retained by the availability of un-

labeled data samples {xr
t}. However, in the ZSDA setting,

the semantic features for ToI in fc are often aligned with the

IrT feature distribution due to the discrepancy between Ds

and Dt during the training phase.

To alleviate this problem, we introduce a feature re-

finement stage to learn a domain-specific spatial attention

map from the class-agnostic domain features fd that guides

where to attend in the fc. By applying this domain-specific

attention map to the fc, the negative transfer effect is re-

duced while the positive transfer effect is enhanced. Note

that, we describe our method based on an assumption that

the given tasks are those for image classification.

3.1. Feature Disentanglement

The goal of the feature disentanglement process is to re-

move domain-relevant information from the fc = Gc(x)
and task-relevant information from the fd = Gd(x).
Our feature disentanglement method adopts an adversarial

learning strategy with a domain discriminator D, and two

classifiers Cr and Cir for ToI and IrT, respectively. The

overall procedure of the feature disentanglement procedure

is illustrated in Fig. 2a.

Domain-invariant Feature The domain-invariant se-

mantic feature fc is learned via adversarial learning be-

tween D and Gc. The domain discriminator D is asked to

distinguish the domain label from given features fd or fc.

Specifically, the loss function for the domain discriminator

LD is defined as follows:

Lfd
D = −Exs∼Ds

[log(D(fd))]− Ext∼Dt
[log(1−D(fd))]

(1)

Lfc
D = −Exs∼Ds

[log(D(fc))]− Ext∼Dt
[log(1−D(fc))]

(2)

LD = Lfd
D + Lfc

D (3)

On the other hand, the feature extractor Gc is trained

with two classifiers Cr and Cir to preserve the semantic

information of fc. This is achieved by minimizing the clas-

sification errors. Thus, the loss functions of two classifiers

are defined as follows:

Lfc
Cr

= −E(x,y)∼pToI
[ℓ(y, Cr(fc))] (4)

Lfc
Cir

= −E(x,y)∼pIrT
[ℓ(y, Cir(fc))], (5)

where ℓ(·) is the cross-entropy loss, and pr, pir are the prob-

ability distributions of ToI and IrT, respectively. Mean-

while, the semantic feature extractor Gc is trained to fool
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(b) Collaborative learning stage

Figure 2: Overview of our method. (a) The Gc extracts a semantic feature fc and Gd extracts a domain feature fd. Then

the domain and the class information are removed from fc and fd via adversarial training, respectively. (b) After the disen-

tanglement stage, the refinement module is trained to produce a refined feature fr based on the attention mechanism. Both

processes are repeated in every iteration. Note that, the orange-colored box (R) represents the refine module.

the domain discriminator D to learn domain-invariant fea-

tures. As a result, the aggregated loss functions of the fea-

ture extractors during the domain-disentanglement process

are represented as follows:

LGc
= Lfc

Cr
+ Lfc

Cir
− Lfc

D (6)

LGd
= Lfd

D (7)

Task-invariant Feature Once the domain information is

disentangled from fc, the class-relevant semantic informa-

tion is removed from the domain-specific feature fd via ad-

versarial learning between the classifiers and the domain

feature extractor Gd. At first, the classifiers Cr and Cir are

fixed and only Gd is updated to disable the classification

capability from fd. This is achieved by maximizing the en-

tropy of the predicted class distribution. The loss function

is defined as follows:

LGd
= −

1

nr

nrX

j=1

logCr(f
j
d)−

1

nir

nirX

j=1

logCir(f
j
d), (8)

where nr and nir are the numbers of data samples in ToI

and IrT, respectively. Once the domain feature extractor Gd

is updated, the classifiers are then trained to identify the

class-relevant features from fd while Gd is fixed. Similar

to Eq. 4, the loss functions for two classifiers are defined as

follows:

Lfd
Cr

= −E(x,y)∼pr [ℓ(y, Cr(fd))] (9)

Lfd
Cir

= −E(x,y)∼pir [ℓ(y, Cir(fd))] (10)

3.2. Collaborative Learning

As discussed earlier, the semantic features optimized for

IrT is prone to mislead the classifier for ToI Cr, even though

the contextual and domain information are successfully dis-

entangled. To address this, we propose a collaborative re-

finement for the feature map to highlight the important parts

of the target domain via a domain-specific attention map

from fd. Fig 2b shows the overall process of the refinement

step. Specifically, we model our attention method upon the

transformer architecture [30].

Given a domain feature fd ∈ R
C×N , first feed it into

convolution layers and transform it into two features A and

B, where {A, B} ∈ R
C̄×N . Additionally, C, C̄, and N

are the numbers of channels, reduced channels, and spatial

locations of a feature map, respectively. Note that, we con-

sistently set C̄ = C/8 in all the experiments. The resulting

attention map M is computed as follows:

mji =
exp(Ai

T ·Bj)PN

i=1 exp(Ai
T ·Bj)

, (11)

where mji represents the ith position’s importance on jth

position. Meanwhile, the semantic feature fc is also fed

into a convolution layer and transformed into a feature C ∈
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Figure 3: The sample images of synthetic domains of X-NIST.

R
C×N . Then the output of a refinement module O is:

Oj = γ

NX

i=1

(mjiCi) + Fj (12)

where F = fc. The γ is a learnable scalar initialized at zero

and gradually learns to assign more weight to the domain-

specific attended feature map. The above equation (Eq. 12)

is computed at both refinement modules as illustrated in

Fig. 2b to produce the refined feature fr. Note that all re-

finement modules share the same domain feature fd as an

input. This overall refinement process is trained by the fol-

lowing classification losses,

Lfr =− λrE(x,y)∼pir [ℓ(y, Cir(fr))]

− λrE(x,y)∼pr [ℓ(y, Cr(fr))],
(13)

and the refined feature fr is utilized for the final classifica-

tion result. λr is a hyper-parameter to balance the losses of

the disentanglement stage and the collaborative loss Lfr . In

practice, we set λr = 3.0.

4. Experiments

We evaluate our proposed method against the state-

of-the-art ZSDA techniques on both synthetic and real

datasets.

4.1. Datasets

To evaluate our ZSDA method for classification tasks,

we use MINST (DM ) [18], Fashion-MNIST (DF ) [38],

NIST (DN ) [13], EMNIST (DE) [6], and Office-Home [31]

datasets. We denote the set of character datasets,

{DM , DF , DN , DE)} as X-NIST.

MNIST is a hand-written digit image dataset. It contains

60,000 training and 10,000 testing images. Each example

is a 28 × 28 size grayscale image, associated with a label

from 10 classes.

Fashion-MNIST contains silhouettes of fashion images.

It has the same number of training and testing samples as

MNIST. Also, each example is a 28 × 28 size grayscale

image, associated with a label from 10 classes as is MNIST.

NIST is a hand-written letters dataset. We selected 52

classes from this dataset which are upper and lower case

letters. It contains 387,361 training and 23,941 testing im-

ages, and each is a 128 × 128 size grayscale image.

EMNIST is a hand-written letters dataset derived from

NIST and converted to a 28 × 28 size image format as like

MNIST. In this paper, we use EMNIST letters split, which

merges the upper and lower case letters. In total, it contains

124,800 training and 20,800 testing images from 26 classes.

Office-Home dataset is a more challenging domain adap-

tation benchmark crawled through several search engines

and online image directories. It consists of images from

4 different domains: Artistic images (Ar), Clip Art (Cl),

Product images (Pr), and Real-World images (Rw). The

dataset contains images of 65 object categories for each do-

main, and the total number of images in the dataset is ap-

proximately 15,500.

The datasets DM , Df , DN , and DE are all in a gray

domain (domain G). To evaluate our method, we follow

the same protocol with CoCoGAN [33] that creates color

(domain C), edge (domain E), and negative domain (do-

main N). The color domain is created by using Ganin’s

method [9], blending the original image with randomly ex-

tracted patches from the BSDS500 dataset [1]. The edge

domain image is obtained by using the canny edge detector,

and the negative domain image In is obtained by applying

In = 255 − I for a given grayscale image I . The sample

images of the generated domains are shown in Fig 3.

4.2. Implementation Details

We implement our method using PyTorch. In all ex-

periments, the discriminator D is implemented with two

fully connected layers, and classifiers Cr and Cir are im-

plemented as a single fully connected layer. We use two
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Domains Methods
ToI MNIST (DM ) FashionMNIST (DF ) NIST (DN ) EMNIST (DE)

IrT DF DN DE DM DN DE DM DF DM DF

G → C

ZDDA 73.2 92.0 94.8 51.6 43.9 65.3 34.3 21.9 71.2 47.0

CoCoGAN 78.1 92.4 95.6 56.8 56.7 66.8 41.0 44.9 75.0 54.8

Wang et al. 81.2 93.3 95.0 57.4 58.7 62.0 44.6 45.5 72.4 58.9

Ours (No Refine) 68.6 86.7 96.6 57.3 61.2 73.3 31.3 17.1 81.9 71.7

Ours 93.3 97.0 97.9 67.7 72.6 76.3 45.7 31.3 86.4 74.1

G → E

ZDDA 72.5 91.5 93.2 54.1 54.0 65.8 42.3 28.4 73.6 50.7

CoCoGAN 79.6 94.9 95.4 61.5 57.5 71.0 48.0 36.3 77.9 58.6

Wang et al. 81.4 93.5 96.3 63.2 58.7 72.4 49.9 38.6 78.2 61.1

Ours (No Refine) 84.7 89.2 94.3 54.2 39.0 63.2 46.7 33.8 68.5 67.0

Ours 92.9 95.5 98.9 65.0 60.7 74.4 53.4 46.9 91.1 82.9

G → N

ZDDA 77.9 82.4 90.5 61.4 47.4 62.7 37.8 38.7 76.2 53.4

CoCoGAN 80.3 87.5 93.1 66.0 52.2 69.3 45.7 53.8 81.1 56.5

Wang et al. - - - - - - - - - -

Ours (No Refine) 88.5 95.8 99.0 60.6 82.6 84.4 58.2 52.9 93.0 91.0

Ours 97.7 97.0 99.2 81.3 85.4 84.2 58.7 59.0 93.4 89.9

C → G

ZDDA 67.4 85.7 87.6 55.1 49.2 59.5 39.6 23.7 75.5 52.0

CoCoGAN 73.2 89.6 94.7 61.1 50.7 70.2 47.5 57.7 80.2 67.4

Wang et al. 73.7 91.0 93.4 62.4 53.5 71.5 50.6 58.1 83.5 70.9

Ours (No Refine) 98.7 98.0 99.2 88.9 86.6 89.0 61.2 64.2 90.9 92.1

Ours 98.9 99.1 99.3 89.3 89.1 89.6 69.0 69.1 92.8 93.3

N → G

ZDDA 78.5 90.7 87.6 56.6 57.1 67.1 34.1 39.5 67.7 45.5

CoCoGAN 80.1 92.8 93.6 63.4 61.0 72.8 47.0 43.9 78.8 58.4

Wang et al. 82.6 94.6 95.8 67.0 68.2 77.9 51.1 44.2 79.7 62.2

Ours (No Refine) 89.8 97.2 98.9 61.7 82.7 82.1 52.6 53.8 92.9 91.4

Ours 94.9 98.5 99.2 83.4 84.0 86.3 58.4 51.0 93.3 91.3

Table 1: Experimental results on the synthetic domains. The domain G, C, E, and N refer to gray, color, edge, and negative

domains. Ours (No Refine) represents the results without the refinement stage. The best results are marked in bold. The

baseline results are taken from the papers [25, 33, 34].

refinement modules for all experiments.

In the experiments on the X-NIST dataset, we use three

convolutional layers to implement both feature extractor Gd

and Gc. The input image size is resized to 28 × 28, and the

feature dimensionalities of fd, fc, and fr are 128 × 7 × 7.

The batch size is set to 64.

In the experiments on the Office-Home dataset, we use

ResNet-50 [14] as the feature extractors, and the semantic

feature extractor Gd is initialized with ImageNet [7] pre-

trained weights. Note that, the previous works [34, 25] also

utilize ImageNet samples or ImageNet pre-trained weights.

The feature dimensionalities of fd, fc and fr are 512 × 7 ×
7, and the batch size is set to 8.

We use an Adam optimizer [16] with β1 = 0.5 and

β2 = 0.999 for all experiments. The initial learning rate

is set to 0.0002 and decayed by 0.1 two times through the

entire training iterations. The number of epochs is set based

on the ToI dataset sizes, 100 for {DM , DF , DE}, 30 for

DN , and 50 for Office-Home dataset. In addition, we sam-

ple the equal number of training data from each of Xir
s ,

Xir
t and Xr

s for a mini-batch (64 for X-NIST, 8 for Office-

Home). We also forced to match the labels for Xir
s and

Xir
t within a mini-batch, and we observe that this sampling

method helps to find the domain shift between the same

class in the early stage of training and thus improves the

performances on several domain adaptation settings. The

effectiveness of the label-matching sampling method is de-

scribed in supplementary the material.

Since the ZSDA problem assumes that the target-domain

data of ToI is unavailable during the training phase, the way

to report test set accuracy depends on whether or not a val-

idation set has been provided. If a validation set has been

provided such as the X-NIST dataset, then the test set accu-

racy that we report is when the sum of validation accuracies

on Xir
s , Xir

t and Xr
s reaches the the highest. Otherwise, the

test set accuracy is reported at the last epoch.
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A. Source domain = Art, Clip Art

Source Art (Ar) Clip Art (Cl)

Target Cl Pr Rw Ar Pr Rw

CoCoGAN 62.2 69.5 74.5 66.7 74.0 66.4

Wang et al. 62.7 71.9 76.3 72.6 75.1 73.9

Source Only 55.1±4.5 65.3±2.3 77.5±2.3 42.5±2.3 62.1±2.3 59.5±1.8
Ours 71.0±3.2 76.5±1.9 85.1±1.1 62.1±3.0 68.7±2.1 75.1±2.3

B. Source domain = Product, Real-World

Source Product (Pr) Real-World (Rw)

Target Ar Cl Rw Ar Cl Pr

CoCoGAN 57.6 53.4 71.7 69.2 51.3 65.8

Wang et al. 70.3 60.8 74.8 72.2 61.4 72.2

Source Only 47.9±3.5 52.3±3.4 70.2±1.7 65.8±2.1 60.6±4.2 83.2±2.5
Ours 64.4±2.1 69.2±1.8 82.0±0.6 77.9±1.0 76.2±2.5 88.5±1.8

Table 2: Experimental results on Office-Home dataset. The results from the methods CoCoGAN, and Wang et al. are the

accuracy when they use 10 random categories as the ToI. Our method and source only method report the average accuracy

and standard error of the mean (SEM) over six different ToI/IrT splits. The baseline results are taken from the paper [34].

4.3. Results on X-NIST Dataset

Given four datasets, we conduct experiments on ten dif-

ferent pairs of ToI and IrT. Note that, we did not conduct

experiments between DE and DN , since the two datasets

cover the same task. As a result, we conduct experiments

on five different source and target domain pairs which are

(G → C), (G → E), (G → N), (C → G), and (N → G). Then

we compare our method with three baselines: ZDDA [25],

CoCoGAN [33], and Wang et al. [34].

Table 1 reports the classification accuracies on the un-

seen target domain data of ToI. Our method significantly

outperforms the baseline methods. Especially in (C → G)

and (N → G) tasks, our proposed method achieves 18.09%

and 11.7% performance improvements on average com-

pared to the respective state-of-the-art techniques. This

confirms that our method effectively learns the domain-

invariant semantic features from the ToI and captures the

important regions at the target domain images. Meanwhile,

the performance only drops in the (NIST, FashionMNIST)

task pair and (gray, color) domain pair. This seems that the

IrT-like objects of the background color image hinder iden-

tifying the ToI objects in a higher degree since the content

size of NIST is smaller than others.

To verify the effectiveness of our proposed attention

mechanism, we also performed ablation experiments on the

X-NIST dataset. We removed the feature refinement pro-

cess during training and evaluated model performance only

using domain-invariant feature fc. The results without re-

finement module are reported in Table 1. In most cases, the

refinement module significantly improves the performance

compared to when it is not used. Specifically, the average

performance over all experimental settings improves from

81.72% to 88.28%. Those results clearly demonstrate the

benefits of our attention module that helps to prevent nega-

tive transfer in ZSDA.

4.4. Results on Office-Home Dataset

To evaluate our method in real-world domains, we also

conducted experiments on the Office-Home dataset. Since

this dataset does not provide an explicit split between ToI

and IrT, the previous works on ZSDA (CoCoGAN [33] and

Wang et al. [34]) used 10 random categories from 65 cat-

egories in Office-Home as the ToI, and the rest of them as

the IrT. Since he training/test category splits are not explicit

reported in those previous work, we conducted the experi-

ments in the following manner to make the comparison as

fair as possible:

First, we split the 65 categories of Office-Home into six

different subsets while the number of each categories in

each subset is fixed to 10. For each subset, we use the subset

as the ToI and the rest as the IrT (i.e. 10 ToI categories and

55 IrT categories). We conducted experiments on all of the

12 different domain adaptation tasks, and the average accu-

racy and standard error of the mean (SEM) over six different

ToI/IrT splits is reported. We also reported performance on

ResNet-50 model trained only with the ToI data of source

domain as Source Only.

Table 2 shows the experimental results on the Office-

Home benchmark. Even if the domain shift between the

source and the target domain is more ambiguous than that

of the synthetic domains, our method significantly outper-

forms the Source Only results. Also, our method out-
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Figure 4: Grad-CAM [28] visualization results on Office-Home experiments (Ar → Cl). The fc visualizations are from the

last convolutional outputs of GT , and the fr visualizations are from the convolutional outputs after the first refinement mod-

ule. The input images Xr
t are unseen ToI samples from each target domain, and P is the softmax score of the classification

results corresponding to each feature.

✥❞ ✥✦ ✧★

Figure 5: Visualization of channel-wise mean of each fea-

ture map from the Office-Home domain adaptation results.

performs state-of-the-art baselines by 4.38% on average.

These results confirm the merits of our proposed method for

ZSDA even in the most challenging real-world scenarios.

4.5. Visualization of Feature Refinement

Grad-CAM [28] is a visualization technique that pro-

duces a localization map highlighting attended regions in

the image by utilizing gradients. We apply Grad-CAM on

the two Office-Home domain adaptation results to qualita-

tively analyze the effect of the refinement module. Fig 4

shows the attended regions when features fc and fr are fed

to the classifier Cr. We observe that less weighted parts of

the target object in fc become highlighted in the fr.

Fig 5 shows the visualization of channel-wise mean of

each feature map. In this example, we can see that the

empty regions of the figures which are usually present in the

clip art domain are highlighted in fd, and the non-empty re-

gions are highlighted in the refined feature fr. These results

demonstrate that our refinement module can effectively em-

phasize the under-estimated or missed ToI features while

suppressing the irrelevant features.

5. Conclusion

In this paper, we propose an attention-based collabora-

tive learning method with disentangled feature representa-

tions to solve the challenging ZSDA problem where the tar-

get domain data of ToI is unavailable. Our method first

disentangles the given input to task-invariant and domain-

invariant features based on adversarial learning. The refine-

ment module collaboratively learns where to emphasize or

suppress from the domain-invariant feature based on a task-

agnostic attention map inferred from task-invariant features.

To the best of our knowledge, this is the first attempt to use

an attention mechanism in ZSDA. The ablation study ver-

ifies that the proposed attention-based refinement module

significantly improves the overall performance of the zero-

shot domain adaptation, and we provide visual explanations

about the feature refinement results. Our future work con-

tains extensions of the proposed method to other computer

vision tasks such as scene text detection and recognition.
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