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Abstract

Estimating camera wearer’s body pose from an egocen-
tric view (egopose) is a vital task in augmented and virtual
reality. Existing approaches either use a narrow field of
view front facing camera that barely captures the wearer,
or an extended head-mounted top-down camera for maxi-
mal wearer visibility. In this paper, we tackle the egopose
estimation from a more natural human vision span, where
camera wearer can be seen in the peripheral view and de-
pending on the head pose the wearer may become invisible
or has a limited partial view. This is a realistic visual field
for user-centric wearable devices like glasses which have
front facing wide angle cameras. Existing solutions are not
appropriate for this setting, and so, we propose a novel deep
learning system taking advantage of both the dynamic fea-
tures from camera SLAM and the body shape imagery. We
compute 3D head pose, 3D body pose, the figure/ground
separation, all at the same time while explicitly enforcing
a certain geometric consistency across pose attributes. We
further show that this system can be trained robustly with
lots of existing mocap data so we do not have to collect and
annotate large new datasets. Lastly, our system estimates
egopose in real time and on the fly while maintaining high
accuracy.

1. Introduction

Truly immersive experiences in augmented and virtual
reality (AR and VR) are driven by explicit characterization
of user’s (i.e., the device wearer) pose. In particular, this
user’s pose needs to be estimated from the perspective of
the device, which implicitly corresponds to their egocen-
tric perspective. Typically referred to as the egopose, this
corresponds to the 3D head and body pose of the camera
wearer. Egopose drives the necessary inputs required for
constructing naturalistic experiences in AR and VR. For in-
stance, world locked egopose representations provide the
necessary inputs for user’s interacting with the audio and
visual objects in a virtual scene. In particular, for conver-
sations involving a combination of real people and virtual
entities (like avatars or holograms), a precise characteriza-
tion of egopose is necessary to enable seamless switching
between multiple speakers while retaining immersion.

Our Results
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Figure 1. Egopose estimation from a human vision span. The
head-mounted front facing fisheye camera often sees the wearer
only partially in the peripheral view. Sometimes, the wearer is
completely invisible in the camera’s field of view. We extract the
body part segmentation (row one), motion history image (row two)
and estimate the body and head pose of the wearer in real time (row
three). Row four shows the ground truth egoposes.

Egopose estimation is a challenging task. Existing ap-
proaches generally fall under two categories: non-optical
sensor based methods, and camera based approaches. Sen-
sors based approaches relying on magnetic and inertial at-
tributes give robust estimate of the egopose [13, 14]. How-
ever, they need specially designed equipment, are usually
harder to set up, and reasonably intrusive, inhibiting the
user’s general movement. Camera based methods are less
intrusive and can work in different environments. One cate-
gory of these approaches relies on top-down head-mounted
camera to have the best view of the wearer [2, 3, 6, 11],
while the other uses the narrow field of view (FOV) front
facing cameras in which camera wearer is mostly invisi-
ble [8, 9, 4, 5]. The former setting leads to reliable re-
sults as long as they can ‘see’ body parts clearly. However,
the head-mounted downward cameras need to extend to the
front to avoid the occlusion of the nose and cheek. When
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the wearer is missing from the FOV, the pose estimation
would completely fail. The later setting has the advantage
of estimating egopose without seeing the wearer, although it
cannot resolve some ambiguous body poses, especially the
arm poses.

In AR and VR devices, it is natural to have cameras
close to the wearer’s face and have a visual field similar
to human eyes: for the most part, the camera can see the
wearer’s hands and some other parts of the body only in the
peripheral view, and for a significant portion of the time it
cannot see the wearer at all, for instance when the camera
wearer looks up. This presents a new setting for egopose
— a human-eye-like vision span, which we believe has not
been studied. Our solution framework, as shown in Fig. 1,
takes advantage of both the camera motion and visible body
parts to give robust egopose estimation no matter the wearer
is visible or not in the camera’s FOV. We propose a deep
learning approach to tackle this problem.

Firstly, our proposal uses both the dynamic motion infor-
mation obtained from camera SLAM, and the occasionally
visible body parts for predictions. In addition to predict-
ing the egopose, the model computes 3D head pose and the
figure-ground segmentation of camera wearer in the ego-
centric view. Because of this joint estimation of head and
body pose, we can enforce certain geometrical consistency
during the inference, which can further improve results and
enable us to reposition the egopose in a global coordinate
system with camera SLAM information.

Secondly, the proposed method allows wearer to be in-
visible in the field of view; and in cases where the camera
wearer is partially visible, our method can take advantage
of both motion and visible shape features to further improve
the results.

Thirdly, one of the biggest challenges in egopose es-
timation is the availability of good datasets. It takes a
lot of effort to capture synchronized egocentric video and
body/head poses for hundreds of subjects. In this work,
we instead utilize existing datasets to the best extent pos-
sible, specifically leveraging mocap data collected over the
past decades. These mocap data usually only capture the
body joints movement and they do not include the egocen-
tric video. Building on [6], in this work, we also propose an
approach to synthesize not only the virtual view egocentric
images, but also the dynamic information associated with
the pose changes. We show that such synthetically gener-
ated datasets already have superior generalization power on
real videos. Lastly, our main application is in AR and VR
setting, and hence, we propose the model with low latency
design so it can be deployed in real-time applications.

The contributions of this paper are:

* An egopose estimation model from a novel perspec-
tive of the human vision span, critical to small factor
AR/VR glasses, where the FOV covers very limited

and sometimes no view of the wearer;

* A joint estimation procedure for ego-head and ego-
body poses;

* An approach for synthesizing data for egopose from
existing mocap data, which is generalizable to real sce-
narios; and

* A pose estimation model that is real-time, thereby en-
abling real-world AR and VR applications.

2. Related works

Human pose estimation is a critical task in computer vi-
sion. Both 2D and 3D human pose estimation techniques
have been extensively studied from a third person perspec-
tive [17, 18, 19, 20, 21, 22, 23, 24, 25, 30]. More re-
cently, egocentric pose estimation has also received interest
because of its relevance to immersive motion capture and
AR/VR applications. By attaching multiple cameras to a
person’s body, 3D egopose can be optimized by using cam-
era SLAM and body structure constraints [1]. In [15, 16], a
chest or head-mounted rgbd camera is used to estimate the
camera wearer’s hand, arm and torso motions. Jiang and
Grauman [8] use a chest-mounted rgb camera to estimate
the wearer’s full body 3D poses. They use a random for-
est to estimate the pose classes on global motion features,
followed by a convolutional network to classify the sitting
vs. standing pose based on the scene context. The result-
ing estimates are fused and jointly optimized over a long
video to extract the human pose sequence. This is not real-
time, and it does not explicitly use the visible body parts
to disambiguate upper body pose. Interaction with other
people in the chest-mounted camera’s FOV has also been
used to improve egopose estimation [9] with a deep learn-
ing approach. Yuan and Kitani [4, 5] propose deep learning
and control-based approaches for egopose estimation using
a narrow FOV head-mounted rgb camera. These methods
use optical flow as the input and camera wearer is mostly
invisible in the camera’s FOV. It is hard to use these meth-
ods to reconstruct poses that cannot be disambiguated by
head motion alone. Experiments show that these previous
motion based methods are not suitable for our new setting;
our proposed method gives much better results.

Egocentric pose estimation using body cameras that look
at the camera wearer has also been studied. In [10, 12], a
chest mounted fisheye camera is used and they rely on the
partial imagery of the wearer. However, this is intrusive and
the camera is hard to be mounted rigidly. A more often
used setting is a head-mounted downward looking camera,
which can always see most of the camera wearer. Rhodin et.
al. [2] use two head-mounted downward fisheye cameras
to capture egoposes. A single downward fisheye camera
[6, 11, 3] has also been used to give accurate 2D keypoints
and 3D egocentric poses with deep learning approaches. In
[3, 7], with a downward camera setting, the rotation of the
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torso is also estimated so that the 3D pose can be trans-
formed to a global system. The downward camera setup
may be suitable for a large VR or AR headset which can
position the cameras to have the best view of the wearer.
However, for small factor AR/VR glasses and for hardware
configurations that are less bulky, the cameras have to be
very close to the face, thereby the downward facing camera
would have a bad view of the wearer due to the occlusion
of nose, mouth and cheek. The existing approaches cannot
handle such small factor AR/VR setups, a vital aspect of
the proposed approach. We tackle the egopose from a new
perspective where the camera has a human-eye-like field of
view, which can see the wearer using the peripheral view
and depending on the head pose the camera may have very
limited or no view of the camera wearer. Since existing ap-
proaches are not suitable for this more naturalistic setting,
we propose a new model.

3. Method
3.1. Overview

Problem definition: Given a sequence of video frames
{I} of a front facing head-mounted fisheye camera at each
time instant ¢, we estimate the 3D ego-body-pose 55; and
ego-head-pose #H;. B; is an N x 3 body keypoint matrix
and H; is a 2 x 3 head orientation matrix. The ego-body-
pose is defined in a local coordinate system in which the
hip line is rotated horizontally so that it is parallel to the xz
plane, and the hip line center is at the origin as shown in
Fig. 1. The ego-head-pose comprises of two vectors: a fac-
ing direction f and the top of the head’s pointing direction
u. Estimating the head and body pose together allows us to
transform the body pose to a global coordinate system using
camera SLAM. We target at real-time egopose estimation so
the deep models should be efficient and accurate.

Our proposed system is driven by a head-mounted front
facing fisheye camera with an around 180-degree FOV. As
motivated, and similar to a human-vision span, the camera
mostly focuses on the scene in the front with minimal vi-
sual of wearer’s body parts via peripheral view. In such
a setting, egopose estimation using only the head motion
or the visible parts imagery is not reliable. Our proposed
method takes advantage of both these information streams
and optimizes for the combination efficiently. The overall
system architecture is shown in Figure 2. The sequence
of blocks and operations is as follows: In one branch, the
fisheye video and optional IMU are used to extract the cam-
era pose and position in a global coordinate system. We
convert the camera motion and position to a compact repre-
sentation denoted as the motion history image. The motion
feature net processes the motion history image to extract dy-
namic features. Separately, in a parallel branch, the fisheye
image is also sent to the shape net to extract the wearer’s
foreground shape. We further extract shape features from
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Figure 2. The proposed system architecture

the foreground shape presentation. The fusion network bal-
ances and combines the two branch outputs (dynamic fea-
tures and shape features) and gives the egopose estimates —
the initial body keypoints and head pose estimations. Once
this is done, we further refine the body keypoints using a 3D
approach, leading to the final egopose estimate. We address
each of these components one at a time.

3.2. Stage 1: Egopose initial estimate

We propose a new method using both dynamic features
and shape features for robust egopose estimation.

3.2.1 Motion history image and motion feature net

We propose the motion history image, a representation
which is invariant to scene structures and can characterize
the rotation, translation and height evolution in each time
interval. At each time instant ¢, we compute the incremen-
tal camera rotation R; and translation d; from the previous
time instant ¢ — 1 using camera poses and positions from
SLAM [26]. We incorporate R; — 733, where Z is an iden-
tity matrix, into the motion representation. d; needs to be
converted to the camera local system at each time instant ¢
so that it is invariant to the wearer’s facing orientation. To
remove unknown scaling factor, we further scale it with the
wearer’s height estimate. The transformed and normalized
dy is cft. Based on SLAM, a simple calibration procedure in
which the wearer stands and then squats can be used to ex-
tract the person’s height and ground plane’s rough position.

R; and dt are not sufficient to distinguish the static stand-
ing and sitting pose. Although the scene context image can
be helpful [£], it is sensitive to the large variation of peo-
ple’s height, e.g. a child’s standing view point can be similar
to an adult’s sitting view point. To solve this problem, we
propose to use the camera’s height relative to the person’s
standing pose (denoted by ¢;) in the motion representation.
We aggregate the movement features R, d and g through
time to construct the motion history image. Specifically, we
concatenate the flattened R; — Z33, the scaled transition
vector ad, and the scaled relative height ¢(g; — m), where
a = 15,m = 0.5, c = 0.3. Fig. 3 gives examples of the mo-
tion history images with the corresponding human poses.
As is evident, the proposed motion representation captures
the dynamics of the pose changes in both periodic or non-
periodic movements. We then construct a deep network, the
motion feature net, to extract the features from the motion
history image, shown in Fig. 4.
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Figure 3. The motion history image representation. Row one: head
and body pose samples in a sequence. Row two: corresponding
motion history images. This dynamic feature characterizes the
head and body poses and movements. (Figures in this paper are
best viewed in color).
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Figure 4. Motion feature network. Parameters for convolution
layers are input/output channels, kernel size, stride and padding.
For maxpooling layers, the parameters are kernel size, stride and
padding. b: batch size.

L

3.2.2 Space aware shape estimation

Apart from the head motion, the foreground shape of the
wearer is also closely coupled with the ego-head and ego-
body poses, and it is particularly useful to disambiguate the
upper body poses. To that end, we propose an efficient
method to extract body shape. Unlike existing keypoint ex-
traction scheme, from [0, 3], we argue that foreground body
shape is a more suitable representation for our problem. As
shown in Fig. 6, in the human vision span, the wearer is
often barely visible in the camera’s FOV and there are of-
ten very few visible body keypoints. Keypoint estimation is
thus a much harder task than the overall shape extraction. In
such setting, the foreground body shape often contains more
information about the possible body poses than the isolated
keypoints. For instance, if only two hands and part of the
arms are visible, the keypoints would give only the hand lo-
cations while the foreground body shape also indicates how
the arm is positioned in the space. The foreground shape
can also be extracted efficiently and thus more suitable for
real-time applications.

The proposed body shape network is shown in Fig 5(a).
The shape net is fully convolutional and thus if we directly
use the fisheye image as the input, we would obtain a spa-
tial invariant estimation, which is undesirable. Since the
wearer foreground is mostly concentrated at the lower part
of the image and the arms would often appear in specific re-
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Figure 5. (a) The shape net. UpS block: bilinear upsampling layer.
Target resolution is 256 x 256. CN layer concatenates features
from different scales along the channel dimension. Blocks B(.)
and C(.) are defined in Fig. 4. (b) Shape feature extraction net.
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Figure 6. Foreground shape estimation not using spatial map (odd
number images) and using spatial map (even number images).

gions, the segmentation network should preferably be spa-
tially variant. To this end, we construct two more spatial
grids: the normalized x and y coordinate maps, and con-
catenate them with the input image along depth dimension
to generate a 256 x 256 x 5 tensor. These extra spatial maps
help incorporate the spatial prior into the network during the
training and inference. Fig. 6 shows the effects of these spa-
tial constraints. The spatial map helps not only reduce the
false alarms, but also correct missing detections in the fore-
ground. In this paper, we threshold the foreground prob-
ability map with 0.5 to obtain the final foreground shape
representation. The foreground shape then passes through a
small CNN, shown in Fig. 5(b), for feature extraction.

3.2.3 Feature balancing, fusion and initial egopose es-
timation

We fuse the dynamic features from Section 3.2.1 with shape
features from Section 3.2.2 for robust egopose estimation.
A simple strategy is to directly concatenate them and pro-
cess the concatenation through a regression network. Un-
fortunately, this leads to poor results, and it is important to
balance the two sets of features. To this end, we use a fully
connected network, the balancer as shown in Fig. 5(b), to re-
duce the dimensions of shape features and then do the con-
catenation, thereby implicitly balancing the weight between
two features. It turns out that the shape features can be
quite low dimensional (e.g. 16d), while the movement fea-
tures are long (e.g., 512d). With shorter input, there would
be fewer neurons in the fully connected layer that are con-
nected to it, and thus it has less voting power for the output.
This scheme also has the effect of smoothing out the noisy
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Figure 7. (a) Fusion network, (b) 3D shape feature network.
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Figure 8. The pose volume representation. Odd columns: fore-
ground image with foreground mask in the alpha channel. Even
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shape observations. Once these adjustments are done, the
concatenated motion feature with the balanced shape fea-
ture are fed to three fully connected networks to infer the
pose vector and the two head orientation vectors as shown
in Fig. 7(a).

3.3. Stage 2: 3D egopose refinement

Given an estimate of the egopose, we further refine it
by fixing the head pose estimation from Stage 1, and re-
estimating full body 3D pose. Using the head/camera pose
and foreground shape estimations from Stage 1, we con-
struct a 3D volume by back-projecting the foreground pixels
ina 2m x 2m x 2m volume, as shown in Fig. 8. The volume
is discretized into a 41 x 41 x 41 3D matrix. We assign value
1 if a voxel projects to the wearer foreground and O other-
wise. This representation is related to [30], which back-
projects the key point maps to form a volume that repre-
sents the 3D soft triangulation. Instead of soft-triangulating,
our method represents a 3D body shape envelop using the
current head pose and body shape estimations. We then
pass the 3D shape representation to a 3D CNN, shown in
Fig. 7(b), for feature extraction. The resulting features are
flattened and concatenated with the motion feature, the ini-
tial 3D pose estimation, and then fed to a fully connected
network for 3D body pose estimation. This refinement re-
gression network has similar structure to the fusion network
in Fig. 7(a) where the input now also includes the initial 3D
keypoint estimation and the output is body pose estimation
alone. In Fig. 8, we overlay the refined 3D poses in the vol-
ume. With this explicit 3D representation that directly cap-
tures the 3D geometry, we are able to achieve better body
pose estimation.

3.4. Model training and loss function

We first train Stage 1 (refer to Fig. 2), and depending
on the estimation on training data results, we subsequently
train Stage 2. We use the L1 norm to quantify the errors in

body keypoints and head orientation estimations.
Ld:|b_bg‘+|h_hg| 6]

where b and by, are the flattened body keypoint 3D coordi-
nates and their ground truth, h is the head orientation vector
(concatenation of the vectors f and u), and h,, is its corre-
sponding ground truth. To improve the generalization, we
further include several regularization terms that constrain
the structure of the regression results. The two head orien-
tation vectors are orthonormal, and so, we minimize

Lo = |f -l + [[[£]* — 1] + [ [Jul* — 1] 2)

where - is the inner product of two vectors and ||.|| is the
L2 norm. We also enforce the body length symmetry con-
straints. Let [ and 1U) be a pair of symmetrical bone
lengths and the set of the symmetrical bones is P. We min-

imize

L, = Z 1) — 1)) 3)

(4,7)EP

We also enforce the consistency of the head pose, body pose
and body shape maps. From the head pose, we compute
the camera local coordinate system. With the equidistant
fisheye camera model, let (zk,yx),k = 1..K be the 2D
projections of the 3D body keypoints. We minimize

K

Lc = Z[mln(D(yk,xk) - Q7O) + q] (4)
k=1

where D is the distance transform of the binary body shape
map and q is a truncation threshold e.g. 20 pixels. With «,
[ set to 0.01 and y to 0.001, the final loss function is

L=Lg+aLo+ BLs+ L. )

Note that for Stage 2, the head vector related terms are re-
moved from the loss.

3.5. Leveraging synthetic data

It is challenging to capture a large set of synchro-
nized head-mounted camera video and the corresponding
‘matched’ body mocap data. Hence, we leverage a total
of 2548 CMU mocap sequences [27] and Blender [28], to
generate synthetic training data. These sequences involve
a few hundred different subjects, and the total length is ap-
proximately 10hrs. For each mocap sequence, we randomly
choose a person mesh from 190 different mesh models to
generate the synthetic data. An example synthetic person
is shown in Fig. 9, which illustrates the body keypoints,
body mesh, three axes of the camera local coordinate sys-
tem, and the rendered person with alpha channel in the cam-
era’s view.

The data synthesis process follows these steps. We first
re-target skeletons in mocap data to person mesh models
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Figure 9. Synthetic data. Row 1: synthetic person meshes, key-
points, head orientation. Camera’s local coordinate system is
shown as 3 lines red (z), green (y) and blue (z). Row 2: ren-
dered person image in the head-mounted camera’s virtual FOV.
The alpha channel of the image gives the person foreground mask.

to generate animations. We then rigidly attach a virtual
front facing fisheye camera between two eyes of each per-
son model. A motion history map is then computed using
the virtual camera pose and position history in the anima-
tions. Using this camera setup, we render the camera view
with an equidistant fisheye model. The rendered image’s al-
pha channel then gives the person’s foreground mask. Note
that, in our setting, the camera’s —z and y axes are aligned
with the two head orientation vectors. Overall, this provides
high quality data for boosting training as well as validating
the proposed egopose deep models. Lastly, since this syn-
thesized data are invariant to the scene and wearer’s appear-
ances, they can be easily generalized to real videos.

4. Experiments

We evaluate the proposed method on both synthetic and
real video data and compare it with some existing ap-
proaches. Note that, as motivated in Section 1, our task
is novel. Hence, there are no previous methods that serve
as appropriate baselines. We therefore use the state-of-the-
art egopose methods with our inputs, and we also evaluate
and compare different variations of the proposed method to
justify our design choices. The baselines include:

* xr—egopose [0]: Designed to estimate wearer’s
pose using head-mounted downward fisheye cameras.
It extracts the 2D and 3D body keypoints at the same
time. This method needs to see the camera wearer to
estimate the egopose.

* pd-egopose [5]: Uses deep learning and an explicit
control mechanism for egopose estimation. It uses an
optical flow as the input and does not need to see the
camera wearer in the FOV.

e MotionOnly, ShapeOnly, StagelOnly,
NoHeight, StagelRNN, HandMap: Multiple
variations of the proposed system — using only Stage 1
network and motion history image as input, using only
the body shape, bypassing Stage 2 pose refinement,
bypassing the height information in the motion history
image, using Stage 1 network with an RNN structure

instead, and using hand keypoint map instead of the
body shape as the input. These baselines validate the
necessity of each of the proposed components in the
overall system architecture from Fig. 2.
e AllStand and A11Sit: Two special cases that al-
ways give a standard standing pose or sitting pose.
We use the body and head pose estimation errors to quan-
tify the egopose estimation accuracy. The body pose esti-
mation error is the average Euclidean distance between the
estimated 3D keypoints and the ground truth keypoints in
the normalized coordinate system. During training and test-
ing, the ground truth 3D body poses are normalized to have
a body height around 170 centimeters. The head pose es-
timation error is quantified by the angles between the two
estimated head orientations and the ground truth directions.

4.1. Tests on synthetic data

Recall the synthetic dataset setup from section 3.5.
Among the full 2548 synthetic sequences, we randomly
pick 180 of the sequences for training and another 60 se-
quences for testing. Such a setting is to reduce the chance
that two mocap sequences share the same subject. The body
shape model is trained by pasting rendered foreground im-
ages on random background images from the ADE20K [29]
dataset. Note that the motion feature is obtained from the
motion of the virtual camera on the virtual person’s head.
For xr-egopose, we use the ground truth keypoint 2D
heat map to replace the first stage fully convolutional net-
work’s output. We thus reasonably assume the initial key-
point heat map estimation network in xr—-egopose can
give a perfect result. Our proposed method on the other
hand uses the inferred foreground shape as the input. As can
be seen from the estimation result in Table. 1, even though
we give xr—egopose an advantage in the form of gener-
ally superior inputs, our method still improves the accuracy
by 13%. This is not surprising because of the setting we are
operating with: xr—egopose depends on the visible body
parts which are now in general absent in a human vision
span. The trends are similar with regard to pd-egopose.
Note that the original pd—-egopose requires the optical
flow image as the input. For this synthetic experiment, we
let the method take the enlarged motion history image as
the surrogate for the optical flow. For evaluations on real
data, as we will discuss in Section 4.2, the optical flow im-
ages are used instead of these surrogates. The outputs from
pd-egopose are normalized for valid comparison. As
shown in Table 1, the proposed method gives much better
result when estimating the body keypoints.

Table 1 also shows that the full model leads to over-
all best results compared to the different variations (special
cases resulting from changing different components of the
system). Figs. 10 and 11 further illustrate this behavior. We
see that the motion only or the shape only methods give
inferior results. While motion information is important for
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Figure 10 Comparlson with variations of the proposed method
Row one: ground truth body and head poses. Row two: the result
of the proposed method. Row three: the result of Mot ionOnly
method.
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Figure 11. Comparlson with variations of the proposed method
Row one: the ground truth. Row two: the proposed method’s
result. Row three: ShapeOnly’s result. Row four: NoHeight'’s
result.

estimating the lower body pose, the body shape can help im-
prove the upper body pose estimation. And independently
either cannot achieve good performance. The results also
confirm that the proposed two-stage approach indeed im-
proves accuracy compared to a single stage method without
pose refinement. The RNN network structure gives slightly
better results for the 3D keypoints estimation. When us-
ing the refinement network, the non-recurrent version gives
better results for both keypoints and head orientation. Our
design thus chooses the simpler non-recurrent network. The
inclusion of camera height in the motion history map also
attributes to these more accurate results. Lastly, the perfor-
mance of A11Stand and A11Sit (from Table 1) shows
that a naive method gives much larger errors for the head
and body pose estimation. It also retrospectively confirms
that the metric used in evaluations is meaningful in quanti-
fying egopose estimation quality.

4.2. Test on real videos

Building on top of the evaluations on synthetic data, we
evaluate the proposed approach on real videos. We capture
the body and head poses using a motion capture suit on three
subjects. The synchronized fisheye video is captured by the
GoPro fusion camera. The training data is from one subject
and we test on all three, with no overlap on the training and
testing data. The real video for training and each subject’s
test videos are about 15-min long. In this test, the body
shape model is trained on a dataset with 50K images and the
egopose model is trained using a mixture of the synthetic
and real data. The synthetic training data include 900 from
the 2548 sequences. Fig. 12 and Table 2 summarize the
results.

As expected, the proposed method gives robust egopose
estimation even though the camera only has a limited or
no view of the wearer. Table 2 shows performance us-
ing different training schemes, and the proposed method
clearly outperforms others in general. Using large synthetic
data for training also boosts this superior performance. Al-
though real video camera model is slightly different from
the virtual cameras in synthetic dataset, we still recover es-
timates reasonably well. Note that we do not have the key-
point labeling for real video, and so we use xr—egopose
network with foreground map instead of body keypoint
map. Similar to the setup from Section 4.1, we assume
the initial foreground map estimation is fixed. The train-
ing thus optimizes the rest of the network. As Table 2
shows, the proposed method gives much better result than
both xr-egopose and pd-egopose. Sample illustra-
tions are shown in Fig. 12. Our method gives reliable re-
sults. The failure cases in the experiments are mostly due
to too noisy foreground estimation. Our training dataset for
the foreground extraction is relatively small. We can reduce
such errors by training on larger dataset. Further, we can
reposition the estimated egopose in a global coordinate sys-
tem using the head pose and the camera SLAM. Here we
rotate the egopose to align with the camera’s pose only hor-
izontally to ensure correct global pose even when the head
pose estimation is imperfect. Fig. 13 illustrates such ego-
pose estimates in a global system. Lastly, as argued in Sec-
tion 1, the proposed setup is real-time and efficient. With
RTX2080Ti, Stages 1 and 2 take about 4ms and 3ms per
frame respectively, and so the full system runs at 30Hz per
sec while taking up a fraction of the GPU.

5. Conclusion

We introduce and tackle a new problem of estimating
wearer’s egopose from a human vision span. This is a chal-
lenging task, primarily due to the very limited view of the
wearer with instances where the wearer is completely invis-
ible in FOV. We propose a novel two-stage deep learning
method which takes advantage of a new motion history im-
age feature and the body shape feature. We estimate both
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Figure 12. Real video test. Rows 1, 6 9: body shape segmentation overlaid on the egocentric video. Rows 2,7, 10 ground truth egoposes. Rows 3,8,11: the
proposed method’s (ours III) results. Row 4: xr-egopose Il result. Row 5: pd-egopose result. (Best viewed in color).

\ | Stagel [ StageIRNN [ FullModel | ShapeOnly | MotionOnly | NoHeight [ HandMap [ xr-egopose[6] | pd-egopose[5] | AllStand | AlISit |

Keypoints (Avg) | 12.53 1252 1176 13.89 1455 1452 26.10 13.26 14.46 2323 2981
(Std) | (21.00) (19.13) (16.25) (16.27) (16.28) (33.36) (18.78) (16.60) (15.32) (19.00) | (20.78)

Head VI (Avg) | 11.26 .72 11.26 13.03 15.36 13.01 16.26 - - 67.84 76.04
(Std) | (14.71) (13.96) (14.71) (17.25) (13.14) (16.34) (16.99) - - (25.04) | (15.56)

Head V2 (Avg) | 13.04 14.00 13.04 14.19 16,51 1483 16.38 - - 83.17 34.70
(Std) | (13.57) (13.61) (13.57) (17.39) (13.13) (18.51) (14.12) - - (33.15) | (26.80)

Table 1. Synthetic data comparison. The keypoints errors have the unit of centimeters and the head angle errors have the unit of degrees.

\ [ Ous I [Ours I[Ours I pdpose [5][xrpose I [0][xrpose IT [6][AllStand] AlISit |

KPs| 15.70 | 16.13 | 14.87 | 17.50 16.86 1729 | 2061 | 27.87
(11.96)|(11.33)| (11.42) | (13.77) | (12.99) | (12.99) | (16.61) |(18.44)

HVI1| 18.75 | 21.01 | 19.31 - - - 71.83 | 78.75
(12.53)[(12.55)| (11.73) — = - (28.07) |(17.51)
HV2| 16.58 | 16.13 | 15.81 - - - 73.96 | 77.53

(11.02)[(11.39)| (9.60) - - (31.60) |(25.05)
Table 2. Comparison of errors in real video test. Ours I, II, III: our method
trained on real videos, on synthetic data only, and on a mixture of real and
synthetic data. xrpose I, II: xr—egopose trained on real data only, and
on the mixture of real and synthetic data. pdpose: pd-egopose trained
on real data. KPs: keypoints. HV1, 2: head orientation vector 1 and 2.

the head and body pose at the same time while explicitly

Figure 13. Repositioning the estimated egopose in a global coordinate
system based on the estimated ego-head-pose and camera SLAM. Example
results at 0.25 (left) and 0.0625 (right) of the original frame rates.

enforcing geometrical constraints. Evaluations show good collect large new datasets. The system is real-time and valu-
performance, robust to variation in camera settings while able for different egocentric experiences and applications in
leveraging synthetic data sources thereby avoiding to re- AR and VR.
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