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Abstract

Estimating camera wearer’s body pose from an egocen-

tric view (egopose) is a vital task in augmented and virtual

reality. Existing approaches either use a narrow field of

view front facing camera that barely captures the wearer,

or an extended head-mounted top-down camera for maxi-

mal wearer visibility. In this paper, we tackle the egopose

estimation from a more natural human vision span, where

camera wearer can be seen in the peripheral view and de-

pending on the head pose the wearer may become invisible

or has a limited partial view. This is a realistic visual field

for user-centric wearable devices like glasses which have

front facing wide angle cameras. Existing solutions are not

appropriate for this setting, and so, we propose a novel deep

learning system taking advantage of both the dynamic fea-

tures from camera SLAM and the body shape imagery. We

compute 3D head pose, 3D body pose, the figure/ground

separation, all at the same time while explicitly enforcing

a certain geometric consistency across pose attributes. We

further show that this system can be trained robustly with

lots of existing mocap data so we do not have to collect and

annotate large new datasets. Lastly, our system estimates

egopose in real time and on the fly while maintaining high

accuracy.

1. Introduction

Truly immersive experiences in augmented and virtual

reality (AR and VR) are driven by explicit characterization

of user’s (i.e., the device wearer) pose. In particular, this

user’s pose needs to be estimated from the perspective of

the device, which implicitly corresponds to their egocen-

tric perspective. Typically referred to as the egopose, this

corresponds to the 3D head and body pose of the camera

wearer. Egopose drives the necessary inputs required for

constructing naturalistic experiences in AR and VR. For in-

stance, world locked egopose representations provide the

necessary inputs for user’s interacting with the audio and

visual objects in a virtual scene. In particular, for conver-

sations involving a combination of real people and virtual

entities (like avatars or holograms), a precise characteriza-

tion of egopose is necessary to enable seamless switching

between multiple speakers while retaining immersion.
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Figure 1. Egopose estimation from a human vision span. The

head-mounted front facing fisheye camera often sees the wearer

only partially in the peripheral view. Sometimes, the wearer is

completely invisible in the camera’s field of view. We extract the

body part segmentation (row one), motion history image (row two)

and estimate the body and head pose of the wearer in real time (row

three). Row four shows the ground truth egoposes.

Egopose estimation is a challenging task. Existing ap-

proaches generally fall under two categories: non-optical

sensor based methods, and camera based approaches. Sen-

sors based approaches relying on magnetic and inertial at-

tributes give robust estimate of the egopose [13, 14]. How-

ever, they need specially designed equipment, are usually

harder to set up, and reasonably intrusive, inhibiting the

user’s general movement. Camera based methods are less

intrusive and can work in different environments. One cate-

gory of these approaches relies on top-down head-mounted

camera to have the best view of the wearer [2, 3, 6, 11],

while the other uses the narrow field of view (FOV) front

facing cameras in which camera wearer is mostly invisi-

ble [8, 9, 4, 5]. The former setting leads to reliable re-

sults as long as they can ‘see’ body parts clearly. However,

the head-mounted downward cameras need to extend to the

front to avoid the occlusion of the nose and cheek. When
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the wearer is missing from the FOV, the pose estimation

would completely fail. The later setting has the advantage

of estimating egopose without seeing the wearer, although it

cannot resolve some ambiguous body poses, especially the

arm poses.

In AR and VR devices, it is natural to have cameras

close to the wearer’s face and have a visual field similar

to human eyes: for the most part, the camera can see the

wearer’s hands and some other parts of the body only in the

peripheral view, and for a significant portion of the time it

cannot see the wearer at all, for instance when the camera

wearer looks up. This presents a new setting for egopose

– a human-eye-like vision span, which we believe has not

been studied. Our solution framework, as shown in Fig. 1,

takes advantage of both the camera motion and visible body

parts to give robust egopose estimation no matter the wearer

is visible or not in the camera’s FOV. We propose a deep

learning approach to tackle this problem.

Firstly, our proposal uses both the dynamic motion infor-

mation obtained from camera SLAM, and the occasionally

visible body parts for predictions. In addition to predict-

ing the egopose, the model computes 3D head pose and the

figure-ground segmentation of camera wearer in the ego-

centric view. Because of this joint estimation of head and

body pose, we can enforce certain geometrical consistency

during the inference, which can further improve results and

enable us to reposition the egopose in a global coordinate

system with camera SLAM information.

Secondly, the proposed method allows wearer to be in-

visible in the field of view; and in cases where the camera

wearer is partially visible, our method can take advantage

of both motion and visible shape features to further improve

the results.

Thirdly, one of the biggest challenges in egopose es-

timation is the availability of good datasets. It takes a

lot of effort to capture synchronized egocentric video and

body/head poses for hundreds of subjects. In this work,

we instead utilize existing datasets to the best extent pos-

sible, specifically leveraging mocap data collected over the

past decades. These mocap data usually only capture the

body joints movement and they do not include the egocen-

tric video. Building on [6], in this work, we also propose an

approach to synthesize not only the virtual view egocentric

images, but also the dynamic information associated with

the pose changes. We show that such synthetically gener-

ated datasets already have superior generalization power on

real videos. Lastly, our main application is in AR and VR

setting, and hence, we propose the model with low latency

design so it can be deployed in real-time applications.

The contributions of this paper are:

• An egopose estimation model from a novel perspec-

tive of the human vision span, critical to small factor

AR/VR glasses, where the FOV covers very limited

and sometimes no view of the wearer;

• A joint estimation procedure for ego-head and ego-

body poses;

• An approach for synthesizing data for egopose from

existing mocap data, which is generalizable to real sce-

narios; and

• A pose estimation model that is real-time, thereby en-

abling real-world AR and VR applications.

2. Related works

Human pose estimation is a critical task in computer vi-

sion. Both 2D and 3D human pose estimation techniques

have been extensively studied from a third person perspec-

tive [17, 18, 19, 20, 21, 22, 23, 24, 25, 30]. More re-

cently, egocentric pose estimation has also received interest

because of its relevance to immersive motion capture and

AR/VR applications. By attaching multiple cameras to a

person’s body, 3D egopose can be optimized by using cam-

era SLAM and body structure constraints [1]. In [15, 16], a

chest or head-mounted rgbd camera is used to estimate the

camera wearer’s hand, arm and torso motions. Jiang and

Grauman [8] use a chest-mounted rgb camera to estimate

the wearer’s full body 3D poses. They use a random for-

est to estimate the pose classes on global motion features,

followed by a convolutional network to classify the sitting

vs. standing pose based on the scene context. The result-

ing estimates are fused and jointly optimized over a long

video to extract the human pose sequence. This is not real-

time, and it does not explicitly use the visible body parts

to disambiguate upper body pose. Interaction with other

people in the chest-mounted camera’s FOV has also been

used to improve egopose estimation [9] with a deep learn-

ing approach. Yuan and Kitani [4, 5] propose deep learning

and control-based approaches for egopose estimation using

a narrow FOV head-mounted rgb camera. These methods

use optical flow as the input and camera wearer is mostly

invisible in the camera’s FOV. It is hard to use these meth-

ods to reconstruct poses that cannot be disambiguated by

head motion alone. Experiments show that these previous

motion based methods are not suitable for our new setting;

our proposed method gives much better results.

Egocentric pose estimation using body cameras that look

at the camera wearer has also been studied. In [10, 12], a

chest mounted fisheye camera is used and they rely on the

partial imagery of the wearer. However, this is intrusive and

the camera is hard to be mounted rigidly. A more often

used setting is a head-mounted downward looking camera,

which can always see most of the camera wearer. Rhodin et.

al. [2] use two head-mounted downward fisheye cameras

to capture egoposes. A single downward fisheye camera

[6, 11, 3] has also been used to give accurate 2D keypoints

and 3D egocentric poses with deep learning approaches. In

[3, 7], with a downward camera setting, the rotation of the
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torso is also estimated so that the 3D pose can be trans-

formed to a global system. The downward camera setup

may be suitable for a large VR or AR headset which can

position the cameras to have the best view of the wearer.

However, for small factor AR/VR glasses and for hardware

configurations that are less bulky, the cameras have to be

very close to the face, thereby the downward facing camera

would have a bad view of the wearer due to the occlusion

of nose, mouth and cheek. The existing approaches cannot

handle such small factor AR/VR setups, a vital aspect of

the proposed approach. We tackle the egopose from a new

perspective where the camera has a human-eye-like field of

view, which can see the wearer using the peripheral view

and depending on the head pose the camera may have very

limited or no view of the camera wearer. Since existing ap-

proaches are not suitable for this more naturalistic setting,

we propose a new model.

3. Method

3.1. Overview

Problem definition: Given a sequence of video frames

{It} of a front facing head-mounted fisheye camera at each

time instant t, we estimate the 3D ego-body-pose Bt and

ego-head-pose Ht. Bt is an N × 3 body keypoint matrix

and Ht is a 2 × 3 head orientation matrix. The ego-body-

pose is defined in a local coordinate system in which the

hip line is rotated horizontally so that it is parallel to the xz

plane, and the hip line center is at the origin as shown in

Fig. 1. The ego-head-pose comprises of two vectors: a fac-

ing direction f and the top of the head’s pointing direction

u. Estimating the head and body pose together allows us to

transform the body pose to a global coordinate system using

camera SLAM. We target at real-time egopose estimation so

the deep models should be efficient and accurate.

Our proposed system is driven by a head-mounted front

facing fisheye camera with an around 180-degree FOV. As

motivated, and similar to a human-vision span, the camera

mostly focuses on the scene in the front with minimal vi-

sual of wearer’s body parts via peripheral view. In such

a setting, egopose estimation using only the head motion

or the visible parts imagery is not reliable. Our proposed

method takes advantage of both these information streams

and optimizes for the combination efficiently. The overall

system architecture is shown in Figure 2. The sequence

of blocks and operations is as follows: In one branch, the

fisheye video and optional IMU are used to extract the cam-

era pose and position in a global coordinate system. We

convert the camera motion and position to a compact repre-

sentation denoted as the motion history image. The motion

feature net processes the motion history image to extract dy-

namic features. Separately, in a parallel branch, the fisheye

image is also sent to the shape net to extract the wearer’s

foreground shape. We further extract shape features from

Fisheye 

video

IMU 

(optional) SLAM

Motion 

history 

Image

Motion 

feature

net

Foreground shape net 

Shape 

feature

net

Fusion

3D pose

Head pose

Stage One

Pose Vol

3D pose

refinement

Stage Two

Balancer

Figure 2. The proposed system architecture

the foreground shape presentation. The fusion network bal-

ances and combines the two branch outputs (dynamic fea-

tures and shape features) and gives the egopose estimates –

the initial body keypoints and head pose estimations. Once

this is done, we further refine the body keypoints using a 3D

approach, leading to the final egopose estimate. We address

each of these components one at a time.

3.2. Stage 1: Egopose initial estimate

We propose a new method using both dynamic features

and shape features for robust egopose estimation.

3.2.1 Motion history image and motion feature net

We propose the motion history image, a representation

which is invariant to scene structures and can characterize

the rotation, translation and height evolution in each time

interval. At each time instant t, we compute the incremen-

tal camera rotation Rt and translation dt from the previous

time instant t − 1 using camera poses and positions from

SLAM [26]. We incorporate Rt−I3×3, where I is an iden-

tity matrix, into the motion representation. dt needs to be

converted to the camera local system at each time instant t

so that it is invariant to the wearer’s facing orientation. To

remove unknown scaling factor, we further scale it with the

wearer’s height estimate. The transformed and normalized

dt is d̂t. Based on SLAM, a simple calibration procedure in

which the wearer stands and then squats can be used to ex-

tract the person’s height and ground plane’s rough position.

Rt and d̂t are not sufficient to distinguish the static stand-

ing and sitting pose. Although the scene context image can

be helpful [8], it is sensitive to the large variation of peo-

ple’s height, e.g. a child’s standing view point can be similar

to an adult’s sitting view point. To solve this problem, we

propose to use the camera’s height relative to the person’s

standing pose (denoted by gt) in the motion representation.

We aggregate the movement features R, d and g through

time to construct the motion history image. Specifically, we

concatenate the flattened Rt − I3×3, the scaled transition

vector ad̂t and the scaled relative height c(gt − m), where

a = 15,m = 0.5, c = 0.3. Fig. 3 gives examples of the mo-

tion history images with the corresponding human poses.

As is evident, the proposed motion representation captures

the dynamics of the pose changes in both periodic or non-

periodic movements. We then construct a deep network, the

motion feature net, to extract the features from the motion

history image, shown in Fig. 4.
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Figure 3. The motion history image representation. Row one: head

and body pose samples in a sequence. Row two: corresponding

motion history images. This dynamic feature characterizes the

head and body poses and movements. (Figures in this paper are

best viewed in color).
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Figure 4. Motion feature network. Parameters for convolution

layers are input/output channels, kernel size, stride and padding.

For maxpooling layers, the parameters are kernel size, stride and

padding. b: batch size.

3.2.2 Space aware shape estimation

Apart from the head motion, the foreground shape of the

wearer is also closely coupled with the ego-head and ego-

body poses, and it is particularly useful to disambiguate the

upper body poses. To that end, we propose an efficient

method to extract body shape. Unlike existing keypoint ex-

traction scheme, from [6, 3], we argue that foreground body

shape is a more suitable representation for our problem. As

shown in Fig. 6, in the human vision span, the wearer is

often barely visible in the camera’s FOV and there are of-

ten very few visible body keypoints. Keypoint estimation is

thus a much harder task than the overall shape extraction. In

such setting, the foreground body shape often contains more

information about the possible body poses than the isolated

keypoints. For instance, if only two hands and part of the

arms are visible, the keypoints would give only the hand lo-

cations while the foreground body shape also indicates how

the arm is positioned in the space. The foreground shape

can also be extracted efficiently and thus more suitable for

real-time applications.

The proposed body shape network is shown in Fig 5(a).

The shape net is fully convolutional and thus if we directly

use the fisheye image as the input, we would obtain a spa-

tial invariant estimation, which is undesirable. Since the

wearer foreground is mostly concentrated at the lower part

of the image and the arms would often appear in specific re-
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Figure 5. (a) The shape net. UpS block: bilinear upsampling layer.

Target resolution is 256 × 256. CN layer concatenates features

from different scales along the channel dimension. Blocks B(.)

and C(.) are defined in Fig. 4. (b) Shape feature extraction net.

Figure 6. Foreground shape estimation not using spatial map (odd

number images) and using spatial map (even number images).

gions, the segmentation network should preferably be spa-

tially variant. To this end, we construct two more spatial

grids: the normalized x and y coordinate maps, and con-

catenate them with the input image along depth dimension

to generate a 256×256×5 tensor. These extra spatial maps

help incorporate the spatial prior into the network during the

training and inference. Fig. 6 shows the effects of these spa-

tial constraints. The spatial map helps not only reduce the

false alarms, but also correct missing detections in the fore-

ground. In this paper, we threshold the foreground prob-

ability map with 0.5 to obtain the final foreground shape

representation. The foreground shape then passes through a

small CNN, shown in Fig. 5(b), for feature extraction.

3.2.3 Feature balancing, fusion and initial egopose es-

timation

We fuse the dynamic features from Section 3.2.1 with shape

features from Section 3.2.2 for robust egopose estimation.

A simple strategy is to directly concatenate them and pro-

cess the concatenation through a regression network. Un-

fortunately, this leads to poor results, and it is important to

balance the two sets of features. To this end, we use a fully

connected network, the balancer as shown in Fig. 5(b), to re-

duce the dimensions of shape features and then do the con-

catenation, thereby implicitly balancing the weight between

two features. It turns out that the shape features can be

quite low dimensional (e.g. 16d), while the movement fea-

tures are long (e.g., 512d). With shorter input, there would

be fewer neurons in the fully connected layer that are con-

nected to it, and thus it has less voting power for the output.

This scheme also has the effect of smoothing out the noisy
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Figure 7. (a) Fusion network, (b) 3D shape feature network.
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shape observations. Once these adjustments are done, the

concatenated motion feature with the balanced shape fea-

ture are fed to three fully connected networks to infer the

pose vector and the two head orientation vectors as shown

in Fig. 7(a).

3.3. Stage 2: 3D egopose refinement

Given an estimate of the egopose, we further refine it

by fixing the head pose estimation from Stage 1, and re-

estimating full body 3D pose. Using the head/camera pose

and foreground shape estimations from Stage 1, we con-

struct a 3D volume by back-projecting the foreground pixels

in a 2m×2m×2m volume, as shown in Fig. 8. The volume

is discretized into a 41×41×41 3D matrix. We assign value

1 if a voxel projects to the wearer foreground and 0 other-

wise. This representation is related to [30], which back-

projects the key point maps to form a volume that repre-

sents the 3D soft triangulation. Instead of soft-triangulating,

our method represents a 3D body shape envelop using the

current head pose and body shape estimations. We then

pass the 3D shape representation to a 3D CNN, shown in

Fig. 7(b), for feature extraction. The resulting features are

flattened and concatenated with the motion feature, the ini-

tial 3D pose estimation, and then fed to a fully connected

network for 3D body pose estimation. This refinement re-

gression network has similar structure to the fusion network

in Fig. 7(a) where the input now also includes the initial 3D

keypoint estimation and the output is body pose estimation

alone. In Fig. 8, we overlay the refined 3D poses in the vol-

ume. With this explicit 3D representation that directly cap-

tures the 3D geometry, we are able to achieve better body

pose estimation.

3.4. Model training and loss function

We first train Stage 1 (refer to Fig. 2), and depending

on the estimation on training data results, we subsequently

train Stage 2. We use the L1 norm to quantify the errors in

body keypoints and head orientation estimations.

Ld = |b− bg|+ |h− hg| (1)

where b and bg are the flattened body keypoint 3D coordi-

nates and their ground truth, h is the head orientation vector

(concatenation of the vectors f and u), and hg is its corre-

sponding ground truth. To improve the generalization, we

further include several regularization terms that constrain

the structure of the regression results. The two head orien-

tation vectors are orthonormal, and so, we minimize

Lo = |f · u|+ | ||f ||2 − 1|+ | ||u||2 − 1| (2)

where · is the inner product of two vectors and ||.|| is the

L2 norm. We also enforce the body length symmetry con-

straints. Let l(i) and l(j) be a pair of symmetrical bone

lengths and the set of the symmetrical bones is P . We min-

imize

Ls =
X

(i,j)∈P

|l(i) − l(j)| (3)

We also enforce the consistency of the head pose, body pose

and body shape maps. From the head pose, we compute

the camera local coordinate system. With the equidistant

fisheye camera model, let (xk, yk), k = 1..K be the 2D

projections of the 3D body keypoints. We minimize

Lc =

KX

k=1

[min(D(yk, xk)− q, 0) + q] (4)

where D is the distance transform of the binary body shape

map and q is a truncation threshold e.g. 20 pixels. With α,

β set to 0.01 and γ to 0.001, the final loss function is

L = Ld + αLo + βLs + γLc (5)

Note that for Stage 2, the head vector related terms are re-

moved from the loss.

3.5. Leveraging synthetic data

It is challenging to capture a large set of synchro-

nized head-mounted camera video and the corresponding

‘matched’ body mocap data. Hence, we leverage a total

of 2548 CMU mocap sequences [27] and Blender [28], to

generate synthetic training data. These sequences involve

a few hundred different subjects, and the total length is ap-

proximately 10hrs. For each mocap sequence, we randomly

choose a person mesh from 190 different mesh models to

generate the synthetic data. An example synthetic person

is shown in Fig. 9, which illustrates the body keypoints,

body mesh, three axes of the camera local coordinate sys-

tem, and the rendered person with alpha channel in the cam-

era’s view.

The data synthesis process follows these steps. We first

re-target skeletons in mocap data to person mesh models
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Figure 9. Synthetic data. Row 1: synthetic person meshes, key-

points, head orientation. Camera’s local coordinate system is

shown as 3 lines red (x), green (y) and blue (z). Row 2: ren-

dered person image in the head-mounted camera’s virtual FOV.

The alpha channel of the image gives the person foreground mask.

to generate animations. We then rigidly attach a virtual

front facing fisheye camera between two eyes of each per-

son model. A motion history map is then computed using

the virtual camera pose and position history in the anima-

tions. Using this camera setup, we render the camera view

with an equidistant fisheye model. The rendered image’s al-

pha channel then gives the person’s foreground mask. Note

that, in our setting, the camera’s −z and y axes are aligned

with the two head orientation vectors. Overall, this provides

high quality data for boosting training as well as validating

the proposed egopose deep models. Lastly, since this syn-

thesized data are invariant to the scene and wearer’s appear-

ances, they can be easily generalized to real videos.

4. Experiments

We evaluate the proposed method on both synthetic and

real video data and compare it with some existing ap-

proaches. Note that, as motivated in Section 1, our task

is novel. Hence, there are no previous methods that serve

as appropriate baselines. We therefore use the state-of-the-

art egopose methods with our inputs, and we also evaluate

and compare different variations of the proposed method to

justify our design choices. The baselines include:

• xr-egopose [6]: Designed to estimate wearer’s

pose using head-mounted downward fisheye cameras.

It extracts the 2D and 3D body keypoints at the same

time. This method needs to see the camera wearer to

estimate the egopose.

• pd-egopose [5]: Uses deep learning and an explicit

control mechanism for egopose estimation. It uses an

optical flow as the input and does not need to see the

camera wearer in the FOV.

• MotionOnly, ShapeOnly, Stage1Only,

NoHeight, Stage1RNN, HandMap: Multiple

variations of the proposed system – using only Stage 1
network and motion history image as input, using only

the body shape, bypassing Stage 2 pose refinement,

bypassing the height information in the motion history

image, using Stage 1 network with an RNN structure

instead, and using hand keypoint map instead of the

body shape as the input. These baselines validate the

necessity of each of the proposed components in the

overall system architecture from Fig. 2.
• AllStand and AllSit: Two special cases that al-

ways give a standard standing pose or sitting pose.

We use the body and head pose estimation errors to quan-

tify the egopose estimation accuracy. The body pose esti-

mation error is the average Euclidean distance between the

estimated 3D keypoints and the ground truth keypoints in

the normalized coordinate system. During training and test-

ing, the ground truth 3D body poses are normalized to have

a body height around 170 centimeters. The head pose es-

timation error is quantified by the angles between the two

estimated head orientations and the ground truth directions.

4.1. Tests on synthetic data

Recall the synthetic dataset setup from section 3.5.

Among the full 2548 synthetic sequences, we randomly

pick 180 of the sequences for training and another 60 se-

quences for testing. Such a setting is to reduce the chance

that two mocap sequences share the same subject. The body

shape model is trained by pasting rendered foreground im-

ages on random background images from the ADE20K [29]

dataset. Note that the motion feature is obtained from the

motion of the virtual camera on the virtual person’s head.

For xr-egopose, we use the ground truth keypoint 2D

heat map to replace the first stage fully convolutional net-

work’s output. We thus reasonably assume the initial key-

point heat map estimation network in xr-egopose can

give a perfect result. Our proposed method on the other

hand uses the inferred foreground shape as the input. As can

be seen from the estimation result in Table. 1, even though

we give xr-egopose an advantage in the form of gener-

ally superior inputs, our method still improves the accuracy

by 13%. This is not surprising because of the setting we are

operating with: xr-egopose depends on the visible body

parts which are now in general absent in a human vision

span. The trends are similar with regard to pd-egopose.

Note that the original pd-egopose requires the optical

flow image as the input. For this synthetic experiment, we

let the method take the enlarged motion history image as

the surrogate for the optical flow. For evaluations on real

data, as we will discuss in Section 4.2, the optical flow im-

ages are used instead of these surrogates. The outputs from

pd-egopose are normalized for valid comparison. As

shown in Table 1, the proposed method gives much better

result when estimating the body keypoints.

Table 1 also shows that the full model leads to over-

all best results compared to the different variations (special

cases resulting from changing different components of the

system). Figs. 10 and 11 further illustrate this behavior. We

see that the motion only or the shape only methods give

inferior results. While motion information is important for
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Figure 10. Comparison with variations of the proposed method.

Row one: ground truth body and head poses. Row two: the result

of the proposed method. Row three: the result of MotionOnly

method.
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Figure 11. Comparison with variations of the proposed method.

Row one: the ground truth. Row two: the proposed method’s

result. Row three: ShapeOnly’s result. Row four: NoHeight’s

result.

estimating the lower body pose, the body shape can help im-

prove the upper body pose estimation. And independently

either cannot achieve good performance. The results also

confirm that the proposed two-stage approach indeed im-

proves accuracy compared to a single stage method without

pose refinement. The RNN network structure gives slightly

better results for the 3D keypoints estimation. When us-

ing the refinement network, the non-recurrent version gives

better results for both keypoints and head orientation. Our

design thus chooses the simpler non-recurrent network. The

inclusion of camera height in the motion history map also

attributes to these more accurate results. Lastly, the perfor-

mance of AllStand and AllSit (from Table 1) shows

that a naive method gives much larger errors for the head

and body pose estimation. It also retrospectively confirms

that the metric used in evaluations is meaningful in quanti-

fying egopose estimation quality.

4.2. Test on real videos

Building on top of the evaluations on synthetic data, we

evaluate the proposed approach on real videos. We capture

the body and head poses using a motion capture suit on three

subjects. The synchronized fisheye video is captured by the

GoPro fusion camera. The training data is from one subject

and we test on all three, with no overlap on the training and

testing data. The real video for training and each subject’s

test videos are about 15-min long. In this test, the body

shape model is trained on a dataset with 50K images and the

egopose model is trained using a mixture of the synthetic

and real data. The synthetic training data include 900 from

the 2548 sequences. Fig. 12 and Table 2 summarize the

results.

As expected, the proposed method gives robust egopose

estimation even though the camera only has a limited or

no view of the wearer. Table 2 shows performance us-

ing different training schemes, and the proposed method

clearly outperforms others in general. Using large synthetic

data for training also boosts this superior performance. Al-

though real video camera model is slightly different from

the virtual cameras in synthetic dataset, we still recover es-

timates reasonably well. Note that we do not have the key-

point labeling for real video, and so we use xr-egopose

network with foreground map instead of body keypoint

map. Similar to the setup from Section 4.1, we assume

the initial foreground map estimation is fixed. The train-

ing thus optimizes the rest of the network. As Table 2

shows, the proposed method gives much better result than

both xr-egopose and pd-egopose. Sample illustra-

tions are shown in Fig. 12. Our method gives reliable re-

sults. The failure cases in the experiments are mostly due

to too noisy foreground estimation. Our training dataset for

the foreground extraction is relatively small. We can reduce

such errors by training on larger dataset. Further, we can

reposition the estimated egopose in a global coordinate sys-

tem using the head pose and the camera SLAM. Here we

rotate the egopose to align with the camera’s pose only hor-

izontally to ensure correct global pose even when the head

pose estimation is imperfect. Fig. 13 illustrates such ego-

pose estimates in a global system. Lastly, as argued in Sec-

tion 1, the proposed setup is real-time and efficient. With

RTX2080Ti, Stages 1 and 2 take about 4ms and 3ms per

frame respectively, and so the full system runs at 30Hz per

sec while taking up a fraction of the GPU.

5. Conclusion
We introduce and tackle a new problem of estimating

wearer’s egopose from a human vision span. This is a chal-

lenging task, primarily due to the very limited view of the

wearer with instances where the wearer is completely invis-

ible in FOV. We propose a novel two-stage deep learning

method which takes advantage of a new motion history im-

age feature and the body shape feature. We estimate both
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Figure 12. Real video test. Rows 1,6,9: body shape segmentation overlaid on the egocentric video. Rows 2,7,10: ground truth egoposes. Rows 3,8,11: the

proposed method’s (ours III) results. Row 4: xr-egopose II result. Row 5: pd-egopose result. (Best viewed in color).

Stage1 Stage1RNN FullModel ShapeOnly MotionOnly NoHeight HandMap xr-egopose[6] pd-egopose[5] AllStand AllSit

Keypoints (Avg) 12.53 12.52 11.76 13.89 14.55 14.52 26.10 13.26 14.46 23.23 29.81
(Std) (21.00) (19.13) (16.25) (16.27) (16.28) (33.36) (18.78) (16.60) (15.32) (19.00) (20.78)

Head V1 (Avg) 11.26 11.72 11.26 13.03 15.36 13.01 16.26 – – 67.84 76.04
(Std) (14.71) (13.96) (14.71) (17.25) (13.14) (16.34) (16.99) – – (25.04) (15.56)

Head V2 (Avg) 13.04 14.00 13.04 14.19 16.51 14.83 16.38 – – 83.17 84.70
(Std) (13.57) (13.61) (13.57) (17.39) (13.13) (18.51) (14.12) – – (33.15) (26.80)

Table 1. Synthetic data comparison. The keypoints errors have the unit of centimeters and the head angle errors have the unit of degrees.

Ous I Ours II Ours III pdpose [5] xrpose I [6] xrpose II [6] AllStand AllSit

KPs 15.70 16.13 14.87 17.59 16.86 17.29 20.61 27.87
(11.96) (11.33) (11.42) (13.77) (12.99) (12.99) (16.61) (18.44)

HV1 18.75 21.01 19.31 – – – 71.83 78.75
(12.53) (12.55) (11.73) – – – (28.07) (17.51)

HV2 16.58 16.13 15.81 – – – 73.96 77.53
(11.02) (11.39) (9.60) – – – (31.60) (25.05)

Table 2. Comparison of errors in real video test. Ours I, II, III: our method

trained on real videos, on synthetic data only, and on a mixture of real and

synthetic data. xrpose I, II: xr-egopose trained on real data only, and

on the mixture of real and synthetic data. pdpose: pd-egopose trained

on real data. KPs: keypoints. HV1, 2: head orientation vector 1 and 2.

the head and body pose at the same time while explicitly

enforcing geometrical constraints. Evaluations show good

performance, robust to variation in camera settings while

leveraging synthetic data sources thereby avoiding to re-
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Figure 13. Repositioning the estimated egopose in a global coordinate

system based on the estimated ego-head-pose and camera SLAM. Example

results at 0.25 (left) and 0.0625 (right) of the original frame rates.

collect large new datasets. The system is real-time and valu-

able for different egocentric experiences and applications in

AR and VR.
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