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Abstract

Although the visual appearances of small-scale objects
are not well observed, humans can recognize them by as-
sociating the visual cues of small objects from their mem-
orized appearance. It is called cued recall. In this paper,
motivated by the memory process of humans, we introduce
a novel pedestrian detection framework that imitates cued
recall in detecting small-scale pedestrians. We propose a
large-scale embedding learning with the large-scale pedes-
trian recalling memory (LPR Memory). The purpose of
the proposed large-scale embedding learning is to memo-
rize and recall the large-scale pedestrian appearance via
the LPR Memory. To this end, we employ the large-scale
pedestrian exemplar set, so that, the LPR Memory can re-
call the information of the large-scale pedestrians from the
small-scale pedestrians. Comprehensive quantitative and
qualitative experimental results validate the effectiveness of
the proposed framework with the LPR Memory.

1. Introduction
Pedestrian detection is one of the important research top-

ics in the computer vision field [21, 28, 42, 60]. It has
attracted considerable attention in real-world applications
such as video surveillance [3, 56] and autonomous driving
systems [12, 23]. To detect pedestrians, various modalities
have been utilized. The most commonly used modality is
the visible modality (e.g. RGB) which is intuitive to human
eyes [13]. Also, the thermal modality has been adopted
for pedestrian detection recently [17, 24, 25]. The thermal
modality has the advantage that it is robust to illumination
variation [32] and weather conditions [22].

Despite the strengths of both modalities, pedestrian de-
tection still has a problem in detecting small-scale pedes-
trians [41, 49]. Although some efforts have been made to
mitigate the small-scale issue [29, 53], small-scale pedes-
trian detection has an inherent problem. As shown in the
top of Figure 1, different from the large-scale pedestrian,
the visual appearance of the small-scale pedestrian is often
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Figure 1. Comparison between the small- and large-scale pedestri-
ans (top) and t-SNE visualization of their latent features (bottom)
in (a) visible and (b) thermal modalities. Due to the lack of visual
information in the small-scale pedestrians, their latent faetures are
hard to be separated from the background.

blurred and obscure in both modalities (we divide the small-
and large-scales according to [22]). We further visualize the
small- and large-scale pedestrians with the background in
the feature space using t-SNE [51]. As shown in the bot-
tom of Figure 1, the large-scale pedestrian (blue) and the
background (red) could be separated from each other easily.
However, feature distributions of the small-scale pedestrian
(green) and the background (red) are not distinguishable, so
that, it is difficult to discriminate between the small-scale
pedestrians and the background. Since the visual appear-
ance of the small-scale pedestrians is insufficient, the deep
networks are more likely to miss the small-scale pedestri-
ans [41, 49, 55].

To tackle the above problem in small-scale pedestrian
detection, we consider how humans distinguish the small-
scale pedestrians. As observed in Figure 1, the deep net-
works are likely to miss the small-scale pedestrians, be-
cause they have a lack of visual information. Nevertheless,
humans are capable of identifying small-scale pedestrians,
even with insufficient visual information. In cognitive psy-
chology, humans recognize small-scale objects by recall-
ing large-scale ones from their memories based on cues ob-
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served in the small-scale objects [5, 38]. It is called cued
recall. In this way, although the visual information of small-
scale pedestrians is insufficient, humans can recognize them
as pedestrians based on their visual cues (e.g. head, body,
etc.).

Based on our motivation, we propose a novel pedes-
trian detection framework to address the small-scale is-
sue, by mimicking how humans identify the small-scale
pedestrian through cued recall. To this end, we design a
Large-scale Pedestrian Recalling (LPR) Memory to mem-
orize and recall the visual appearance of the large-scale
pedestrians even with the insufficient small-scale pedes-
trian appearances. For the LPR Memory to memorize and
recall the prior knowledge about the large-scale pedestri-
ans effectively, we devise a large-scale embedding learn-
ing. Through the large-scale embedding learning, the pro-
posed LPR Memory can effectively cope with the small-
scale pedestrians by addressing the relevant information of
the large-scale pedestrians, playing a role of cued recall of
humans. The comprehensive experiments and visualization
results with each modality (thermal and visible) validate the
effectiveness of the LPR Memory.

To sum up, the major contributions of this paper are sum-
marized as follows:

• Motivated by the process of cued recall, we devise
the LPR Memory to resolve the inherent small-scale
pedestrian detection problem. To the best of our
knowledge, it is the first attempt to handle small-scale
pedestrian detection with cued recall of the memory.

• In order to guide the LPR Memory to memorize and
recall the appearance of the large-scale pedestrians
from the small-scale pedestrians, we devise a large-
scale embedding learning. Consequently, our detec-
tion framework with the LPR Memory can perform ro-
bust small-scale pedestrian detection.

2. Related Works
2.1. Pedestrian Detection in Visible Modality

Since the pedestrian detection is closely related to the
human life, it has attracted increasing attention [21, 60]. In
general, pedestrian detection frameworks adopt the visible
modality (e.g. RGB). Along with the various hand-craft
methods [2, 9, 11], deep learning methods have been intro-
duced recently for robust pedestrian detection [41, 42, 49,
55]. Many deep learning approaches have been proposed to
handle various problems, such as occlusion [35, 40, 57, 58]
and scale variation [33, 53, 59].

2.2. Pedestrian Detection in Thermal Modality

Recently, thermal-based pedestrian detection has been
adopted actively [14, 17, 24, 25], because it is known to be

robust against irregular illumination [32] and weather con-
dition [22]. Guo et al. [17] adopted the generative adversar-
ial networks (GANs) to generate synthetic thermal images
from the visible images. Then, both real and synthetic ther-
mal images are utilized to enrich the visual feature of the
pedestrian. In [24], the domain-adaptation method was uti-
lized for the thermal-based pedestrian detection, while tak-
ing advantage of the visible modality. Kieu et al. [25] intro-
duced a task-conditioned domain adaptation method with
the auxiliary network. These methods have in common that
they utilize the visible modal information to improve the
visual feature of the thermal modality [25].

2.3. Small-scale Object Detection

Detecting small-scale objects is an essential issue in the
object detection task [8,27,29,34,39,45]. In [29], the scale
normalization method was proposed to resolve the scale
variation problem by mapping the features of various scales
to the scale-invariant subspace. Noh et al. [39] performed
adversarial training with GAN to obtain the super-resolved
feature maps of the small-scale objects. Kim et al. [27] pro-
posed a class uncertainty-aware (CUA) loss to guide the de-
tection framework to focus on the small-scale objects.

When the small-scale problem is extended to the pedes-
trian detection task, RPN+BF [55] was proposed to replace
the classifier of the Faster R-CNN [46] with a boosted for-
est (BF) for aggregating feature maps. In MS-CNN [7], the
Faster R-CNN is employed for multi-scale detection net-
works to detect the small-scale pedestrians. In [53], the self-
mimic learning (SML) method was proposed to reduce the
intra-class feature variance by mimicking the feature maps
of the large-scale pedestrians. Although this method tries to
learn the feature maps of the large-scale pedestrians for the
small-scale pedestrians, there is no explicit guidance in the
inference time. In contrast, our LPR Memory can provide
explicit guidance to recall the appearance of the large-scale
pedestrians, motivated by cued recall.

2.4. Memory Network

Recently, memory augmented neural networks have been
introduced in various computer vision fields [6, 10, 15, 18,
30, 31, 37, 43, 50, 52, 61]. For example, MeGA-CDA [52]
was designed to guide the category-specific attention map in
domain adaptive object detection. Deng et al. [10] proposed
a long-term memory for video object detection to memorize
the various appearance of objects. Among various memory
architectures, the key-value memory has been adopted for
question answering and trajectory prediction [4, 37]. In this
paper, for small-scale pedestrian detection, we introduce a
novel LPR Memory with a large-scale embedding learning
based on the key-value memory architecture. Then, the LPR
Memory can memorize and recall the large-scale pedestrian
context from small-scale pedestrian features.
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Figure 2. Network configuration of the proposed framework. Dotted line indicates the path used in the training phase only. ⊕ denotes the
concatenation and 1×1 convolution operations. We use the large-scale pedestrian exemplar set E to train the LPR Memory to memorize
and recall large-scale pedestrian information.

3. Proposed Method

3.1. Overall Architecture

The overall architecture of the proposed pedestrian de-
tection framework is shown in Figure 2. A backbone net-
work (e.g. VGG16 [47] or ResNet [19]) receives an input
image x (thermal image example) to encode the image fea-
ture map. Next, a Region Proposal Network (RPN) esti-
mates N object candidate regions, called Region of Interests
(RoIs). Based on the RoIs, RoI Align [27] is conducted to
extract RoI features F = {fi}Ni=1, fi ∈ R1×w×h×c (w, h,
and c denote width, height, and channel, respectively).

Then, we divide F into small- and large-scale RoI fea-
tures depending on their estimated RoI height. Let FL =
{fLi

}NL
i=1, fLi

∈ R1×w×h×c denote NL large-scale RoI fea-
tures (HL ≤ height) and FS = {fSi

}NS
i=1, fSi

∈ R1×w×h×c

denote NS small-scale RoI features (1 ≤ height < HL).
Note that, N = NS+NL. The goal is to recall a large-scale
pedestrian feature via the Large-scale Pedestrian Recalling
(LPR) Memory, when a small-scale pedestrian feature is
given. Therefore, FS is passed through the LPR Memory
to encode FM

S . Next, FM
S is concatenated with FS , and an

1 × 1 convolution is conducted in order to generate the re-
fined small-scale RoI features FR

S . Finally, the head network
takes FR

S and FL to perform the classification and localiza-
tion. Note that, the head network is same as [36, 46].

Moreover, we devise a large-scale pedestrian exemplar
set E = {E1, . . . , EK} to memorize the information of the
large-scale pedestrian in the LPR Memory. E is composed
of K large-scale pedestrian images which are cropped from
the training images, and each large-scale pedestrian sam-

ple in E has a larger height than HL based on its ground-
truth bounding box annotation. Therefore, we could en-
code well-aligned large-scale pedestrian exemplar features
FE = {fEi

}NE
i=1, fEi

∈ R1×w×h×c. Note that, during the
training time, we randomly sample NE large-scale pedes-
trian exemplars among the K number of exemplars at ev-
ery iteration. By using E, we can train the LPR Memory
to memorize and recall the appearance of the large-scale
pedestrian. More details are explained in the following sub-
sections.

3.2. LPR Memory

Figure 3 shows the structure of the LPR Memory. We
define M = {MK ,MV } as key-value memory, and each of
them contains L slot pairs (MK ,MV ∈ RL×whc). The prin-
ciple of the LPR Memory is to learn the controller that can
dynamically access the relevant information (i.e. large-scale
pedestrian) given the small-scale pedestrian input features.

In detail, the i-th small-scale RoI feature fSi
is flattened

to form a vector f̂Si
∈ R1×whc. Then, the cosine similarity

between f̂Si and each slot of MK is measured to obtain the
similarity vector si = {si1, . . . , siL} ∈ R1×L. The j-th
element of si is calculated as follows:

sij =
f̂Si

· M ⊤
Kj

||̂fSi
||2 ||MKj

||
2

. (1)

With the similarity vector si, we obtain the addressing vec-
tor ai = {ai1, . . . , aiL} ∈ R1×L by normalizing si via the
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Figure 3. The key-value structure of the LPR Memory. Given f̂Si , the key memory MK calculates similarity to control the amount of
relevant information of the value memory MV . Based on the addressing vector ai, f̂MSi

is obtained by a weight summation with MV .

softmax. The j-th element of ai is represented as:

aij =
esij∑L
j=1 e

sij
. (2)

The addressing vector ai plays a role in determining how
much to read the relevant slots of MV in order to retrieve the
stored information of the large-scale pedestrian. Therefore,
the output feature of the LPR Memory f̂MSi

∈ R1×whc is
generated by aggregating MV by using ai, which can be
represented as follows:

f̂MSi
=

L∑
j=1

aij · MVj
. (3)

To the next, f̂MSi
is reshaped to form fMSi

∈ R1×w×h×c. Fi-
nally, fMSi

is concatenated with fSi
, and 1× 1 convolution is

performed to generate the i-th refined small-scale RoI fea-
ture fRSi

∈ R1×w×h×c.
The LPR Memory aims to refine the small-scale pedes-

trian features by recalling the visual appearance of the large-
scale pedestrian which is well-distinguished from the back-
ground. To this end, we present a large-scale embedding
learning to train the LPR Memory to memorize and recall
the large-scale pedestrian appearance. It is described in the
following subsections.

3.3. Large-scale Embedding Learning

3.3.1 Large-scale Pedestrian Memorizing Loss

As mentioned in 3.1, in order to enable MV to memorize
and recall the large-scale pedestrian information, we devise
a large-scale pedestrian exemplar set E = {E1, . . . , EK},
which consists of K number of the cropped large-scale
pedestrian images in the training set. Note that, the size
of exemplar images is set by Ei ∈ R32w×32h×3, because
the output feature map FEk

is down-sized to 1/32.
During the training phase, among the large-scale pedes-

trian exemplar set, NE large-scale pedestrian exemplars are
randomly sampled. The backbone network encodes the NE

exemplar images to generate FE . And then, it is flattened

F̂E = {̂fEi
}NE
i=1, f̂Ei

∈ R1×whc to measure the cosine sim-
ilarity with MV . Similar with Eq. (1), similarity between
f̂Ei and each slot of MV is measured:

sEij
=

f̂Ei
· M ⊤

Vj

||̂fEi ||2 ||MVj ||2
, (4)

where sEi
= {sEi1

, . . . , sEiL
} ∈ R1×L. sEi

is normalized
by the softmax to obtain aEi

= {aEi1
, . . . , aEiL

} ∈ R1×L,
similar with Eq. (2). The output feature f̂MV

SEi
∈ R1×whc is

obtained, which is represented as:

f̂MV

SEi
=

L∑
j=1

aEij · MVj . (5)

Finally, f̂MV

SEi
is reshaped into fMV

SEi
∈ R1×w×h×c.

In order to guarantee that MV can memorize the large-
scale pedestrian information, we propose a large-scale
pedestrian memorizing loss LM

Mem to guide fMV

SEi
to resem-

ble fEi . It is represented as follows:

LM
Mem =

1

NE

NE∑
i=1

∥∥∥fMV

SEi
− fEi

∥∥∥2
2
. (6)

Due to the E and LM
Mem, the information of the large-scale

pedestrian can be embedded to MV .

3.3.2 Large-scale Pedestrian Recalling Loss

For the proposed framework to recall large-scale pedestrian,
we guide the pedestrian features of FR

S to be similar with FE

in the feature space. Also, since the pedestrian features of
FL might not contain well-aligned pedestrians, they are also
guided to resemble FE . So that, the proposed framework
can perform more robust large-scale pedestrian detection.

In specific, N number of FR
S and FL are fed into the head

network, as shown in Figure 2, to estimate the latent fea-
tures LR

S ∈ RNS×D and LL ∈ RNL×D, where D denotes
the dimension of the latent features. Total N latent features
are LTot = [LR

S ;LL] ∈ RN×D. In addition, the head net-
work takes FE to encode LE ∈ RNE×D.
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Figure 4. Explanation of the large-scale pedestrian recalling loss.
The loss aims to guide the small- and large-scale pedestrian fea-
tures to be similar with the large-scale pedestrian exemplar fea-
tures. In this example, NE = 3, NSP = 3, and NLP = 2.

With these latent features, as shown in Figure 4, we first
measure the similarity relation between LE and LTot, that
is, CE = LE L⊤

Tot ∈ RNE×N . Then, we average CE along
the column direction, and then, normalize it via the softmax
to obtain Mavg

E ∈ R1×N . Each element of Mavg
E indicates

that the probability of how LE is similar with LTot which
includes the pedestrian and background features. Ideally,
the pedestrian latent feature would be similar with LE and
have a high probability, and vice versa to the background.

After that, we also measure the similarity relations by
using the pedestrian features of LR

S and LL. Suppose the
numbers of the pedestrian features in each LR

S and LL are
NSP

and NLP
, so that, the pedestrian features of LR

S and
LL can be represented by LR

SP
∈ RNSP

×D and LLP
∈

RNLP
×D, respectively. Then, we could acquire two simi-

larity relations (1) CSP
= LR

SP
L⊤
Tot ∈ RNSP

×N and (2)
CLP

= LLP
L⊤
Tot ∈ RNLP

×N . We normalize each CSP

and CLP
via the softmax along the row direction to obtain

MSP
∈ RNSP

×N and MLP
∈ RNLP

×N .
Finally, we exploit the KL divergence DKL(·) to mea-

sure and minimize the dissimilarity between two probability
distributions, so that, it could guide the pedestrian features
to be similar with the large-scale pedestrian exemplar fea-
tures. It is named large-scale pedestrian recalling loss LM

Rec

and can be represented as follows:

LM
Rec =

1

NSP

NSP∑
i=1

DKL(Mavg
E ||MSPi

)︸ ︷︷ ︸
small-scale to exemplar

+
1

NLP

NLP∑
i=1

DKL(Mavg
E ||MLPi

)︸ ︷︷ ︸
large-scale to exemplar

,

(7)

where MSPi
,MLPi

∈ R1×N . Due to LM
Rec, FR

SP
and FR

LP

can be closed to FE in the feature space. Therefore, the pro-
posed framework can perform robust pedestrian detection at

various scales.

3.4. Total Loss Function

The total loss function is represented as follows:

LOD = LRPN + LCLS + LLOC ,

LTotal = LOD + λ1LM
Mem + λ2LM

Rec,
(8)

where LOD includes the loss function of RPN, and the clas-
sification and localization loss functions of the head net-
work, which are same with the two-stage object detectors
[36, 46, 48]. λ1 and λ2 are balancing hyper-parameters to
modulate LM

Mem and LM
Rec.

4. Experiments
4.1. Datasets

To evaluate the proposed method, we use two public
datasets: KAIST Multispectral Pedestrian Detection
Dataset [22] (we denote it as KAIST dataset for simplicity)
and CVC-14 [16]. Two datasets include visible and
thermal modal images. Therefore, we can perform various
experiments using both modalities.

KAIST Dataset. KAIST dataset [22] was collected in a
driving environment of various scenes including day and
night conditions. It consists of 95,328 visible-thermal
image pairs with 103,128 annotations and 1,182 unique
pedestrians with an image resolution 512×640. Follow-
ing [22], we evaluate the test set with 2,252 images.

CVC-14. Similar to the KAIST dataset, visible-thermal im-
age pairs of CVC-14 [16] were also captured in the driving
environments. It is also divided into day and night condi-
tions. For CVC-14, we use 7,085 training and 1,433 test
images with 471×640 image resolution.

4.2. Implementation Details

We build our base detection framework based on Faster
R-CNN [46] with VGG16 backbone network [47]. Note
that, in ablation studies, we extend the base detection frame-
work to Feature Pyramid Network (FPN) [36] with ResNet
backbone network [19] to investigate the effect of the LPR
Memory with different base detection framework.

All experiments are conducted based on Pytorch [44].
Every base detection framework is trained with stochastic
gradient descent (SGD) which is synchronized over 8 TI-
TAN XP GPUs, holding 1 image per GPU (total 8 images
per mini-batch). We train the base detection framework for
4 epochs with 0.008 learning rate. The number of RoIs is
N = 256. We use the number of slots in the LPR Memory
L = 100 as the default. The number of the randomly se-
lected large-scale pedestrian exemplar set is NE = 32. In
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Method Scale

Near Medium Far All
SAN [29] (ECCV’18) 5.33 31.19 61.40 25.41

Noh et al. [39] (ICCV’19) 4.87 30.28 59.18 24.08
TC Det [25] (ECCV’20) 3.22 34.75 76.94 27.11
SML [53] (ACMMM’20) 13.24 26.65 58.62 22.51

CUA Loss [27] (TCSVT’20) 5.67 29.43 58.55 23.39
Baseline 8.74 31.72 65.87 26.70

Proposed Method 4.15 25.13 51.40 19.16
Table 1. Detection results (MR) of three pedestrian scales with the
thermal modality on KAIST dataset [22].

addition, we use λ1, λ2 = 1 and HL = 115 in our experi-
ments.

4.3. Evaluation on KAIST Dataset

We first conduct experiments on KAIST dataset [22].
As an evaluation metric, we adopt a miss rate (MR) aver-
aged over the false positive per image (FPPI) with the range
of [10−2, 100], following [11]. The lower MR denotes
the better detection performance. We measure the perfor-
mance using ‘All’ condition [22]. Moreover, we compare
the performance of the proposed method with the state-of-
the-art methods in the various pedestrian scales. The scale
of pedestrians in the KAIST dataset [22] is categorized into
‘Far’ (small) (1 ≤ height < 45), ‘Medium’ (45 ≤ height <
115), and ‘Near’ (large) (115 ≤ height).

We conduct the experiments with two cases: thermal and
visible modal image inputs. Note that, the baseline is the
Faster R-CNN [46]. First, we measure the performance on
thermal-based pedestrian detection. We compare our frame-
work with the previous methods that aim to solve the small-
scale issue [27,29,39,53]. We re-implement all these meth-
ods and obtain the results. Table 1 shows the results of three
pedestrian scales (i.e. ‘Near’, ‘Medium’, and ‘Far’). The
proposed method outperforms the previous methods both in
the smaller scale (i.e. ‘Medium’ and ‘Far’). Since the LPR
Memory can recall the visual appearance of the large-scale
pedestrian from the small-scale pedestrians, our framework
shows improved performances. Moreover, we compare our
method with the state-of-the-art thermal-based pedestrian
detection methods. We also compare the performance in
day and night conditions (i.e. ‘Day’ and ‘Night’) [22]. As
seen in Table 2, our method is superior to the previous meth-
ods. According to [22], the ratio of the small-scale pedes-
trians (i.e. ‘Medium’ and ‘Far’) is 86.33%. Therefore, the
performance improvement of our method is noticeable.

Second, we conduct the experiments with a visible
modal image input. We also compare with the previous
methods that aim to solve the small-scale issue [27, 29,
39, 53]. It is shown in Table 3. The experimental results
on the visible modality also outperform the previous meth-
ods [27, 29, 39, 53]. These results corroborate the effective-
ness of the proposed LPR Memory.

Method All Day Night
TPIHOG [1] (Sensors’17) N/A N/A 57.38
SSD300 [20] (SPIE’20) 69.81 N/A N/A

Saliency Map [17] (ICIP’19) N/A 30.40 21.00
Domain Adapotor [17] (ICIP’19) 46.30 53.37 31.63

Bottom-up [24] (ICIAP’19) 35.20 40.00 20.50
TC Thermal [25] (ECCV’20) 28.53 36.59 11.03

TC Det [25] (ECCV’20) 27.11 34.81 10.31
Kieu et al. [26] (ICPR’20) 25.62 31.86 12.92

Proposed Method 19.16 24.70 8.26

Table 2. Comparison of detection results (MR) using the thermal
modality on KAIST dataset [22].

Method Scale

Near Medium Far All
SAN [29] (ECCV’18) 15.39 35.31 73.51 29.62

Noh et al. [39] (ICCV’19) 7.39 34.53 72.09 28.78
SML [53] (ACMMM’20) 5.97 35.65 74.45 28.15

CUA Loss [27] (TCSVT’20) 11.86 34.21 73.18 27.81
Baseline 7.62 38.70 77.82 30.66

Proposed Method 5.35 32.09 68.92 25.16

Table 3. Detection results (MR) of three pedestrian scales with the
visible modality on KAIST dataset [22].

Method Scale

Near Medium Far All
Baseline 5.83 28.57 72.83 27.42

Proposed Method 4.44 23.07 64.98 23.00

Table 4. Detection results (MR) of three scale pedestrians with the
thermal modality on CVC-14 [16].

4.4. Evaluation on CVC-14

For CVC-14 [16], we follow the same settings with
KAIST dataset, except for the scale threshold. We set the
height threshold as 60 for ‘Far’ (small) scale, because the
overall size of the objects is relatively larger than those of
KAIST dataset [22] (More details are in the supplementary
materials). The evaluation results are shown in Table 4.
The results show that our method with the LPR Memory
outperforms the baseline (i.e. Faster R-CNN) especially in
‘Medium’ and ‘Far’ conditions.

4.5. Ablation Study

In this subsection, we conduct various ablation studies
to investigate the effect of (1) the large-scale embedding
learning, (2) the memory slot number (L) variation, and
(3) the extension of the base detection framework. Every
ablation study is conducted on KAIST dataset with the
thermal modality [22].

Effect of Large-scale Embedding Learning. Note that
the large-scale embedding learning contains the large-scale
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Scale

LM
Mem LM

Rec Near Medium Far All
✗ ✗ 8.74 31.72 65.87 26.70
✓ ✗ 4.52 27.86 53.99 22.88
✗ ✓ 3.47 30.63 58.09 23.16
✓ ✓ 4.15 25.13 51.40 19.16

Table 5. Ablation detection results (MR) showing the effect of
the large-scale embedding learning with the thermal modality of
KAIST dataset [22].

Scale

L slot Near Medium Far All
- 8.74 31.72 65.87 26.70

25 5.55 27.54 55.87 23.68
50 4.59 25.57 51.43 20.23

100 4.15 25.13 51.40 19.16
200 2.79 26.71 58.27 20.46

Table 6. Detection results (MR) of the proposed framework with
varying slot number L of the LPR Memory on KAIST dataset [22].

pedestrian memorizing loss LM
Mem and the large-scale

pedestrian recalling loss LM
Rec. The results are shown in

Table 5. When both loss functions are considered, perfor-
mance improvements on ‘Medium’ and ‘Far’ scales are
noticeable. The experimental results show the effectiveness
of the large-scale embedding learning for the LPR Memory.

Slot number of LPR Memory. To demonstrate the effect
of the slot number L in the LPR Memory, we modify L
by changing {25, 50, 100, 200}. As shown in Table 6,
when the slot number L is 100, the highest performance is
obtained in the medium (‘Medium’), small-scale (‘Far’)
and the overall (‘All’). Furthermore, even we change L
of the LPR Memory, the proposed method shows higher
performances than the baseline (Faster R-CNN).

Detection Framework Extension. We adopt Feature Pyra-
mid Network (FPN) [36] built upon ResNet-50 backbone
network to verify the effect of the proposed method with
different detection frameworks. It is shown in Table 7. The
experimental results verify that performance improvement
of our framework with the LPR Memory is significant in
the various pedestrian scales and the overall performance.

4.6. Visualization Results

RoI Feature Visualization. To compare the original
small-scale pedestrian RoI feature FS and the refined
small-scale pedestrian RoI feature FR

S , we perform the
visualization experiments with KAIST dataset [22], follow-
ing [54]. The visualization results are shown in Figure 5.
While FS is activated on the background region and could
not focus on the pedestrian, FR

S captures the small-scale
pedestrian properly. The visualization results also verify

Detection
Framework

LPR
Memory

Scale

Near Medium Far All
FRCNN [46]

(VGG16)
✗ 8.74 31.72 65.87 26.70
✓ 4.15 25.13 51.40 19.16

FPN [36]
(ResNet-50)

✗ 2.25 21.96 53.46 16.56
✓ 1.96 18.24 46.43 13.91

Table 7. Detection results (MR) with the different detection frame-
works on KAIST dataset [22] showing the effectiveness of the
LPR Memory.

the effectiveness of the LPR Memory.

t-SNE Visualization. We also conduct t-SNE visualiza-
tion [51] of two modalities (thermal and visible) on KAIST
test set [22]. Note that, we set the scale definition of the
small and large following [22]. As shown in Figure 6, due
to the large-scale pedestrian recalling process of the LPR
Memory, features of the small-scale pedestrian can be lo-
cated near the large-scale pedestrian features.

4.7. Discussion

Advantages of Large-scale Pedestrian Exemplar Set.
First, large-scale pedestrian exemplar set E contains
well-aligned large-scale pedestrian images. In contrast, the
large-scale pedestrian RoIs may contain not well-aligned
pedestrians. Therefore, it is reasonable to use E in order to
guide the small- and large-scale RoI features to be similar
with the pedestrian exemplar features. Second, E contains
various appearances of the large-scale pedestrian. Humans
recall the appearance of the pedestrian through various
past experiences, so that, E could be effective for training
the LPR Memory to recall the large-scale pedestrian by
providing various large-scale pedestrian appearances.

LPR Memory Visualization. Figure 7 shows how FS

is improved to the refined pedestrian feature FR
S with the

features in MV (we show top-2 high-weighted slots of
MV ). Although FS cannot focus on the pedestrian, FR

S can
be obtained with the help of the features in MV to capture
pedestrian region properly. Moreover, we observe that
cosine similarity between FR

S and FE is much higher than
that of FS and FE .

Large-scale Pedestrian Exemplar Set in Different
Dataset. When training the LPR Memory on KAIST
dataset [22], we use the large-scale pedestrian exemplar set
E from the same KAIST dataset [22]. To see the effect of
E from the different dataset, we change E obtained from
another dataset. In detail, for training the detection frame-
work with the thermal images of KAIST dataset [22], we
use E extracted from the different dataset CVC-14 [16]. As
shown in Table 8, even we use the exemplar set E extracted
from the CVC-14 dataset, the detection performance is
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Input Image (Visible)

(b)

Input Image (Thermal)
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RoI Small-scale

Feature 𝐅𝐅𝑆𝑆

Refined Small-scale
Feature 𝐅𝐅𝑆𝑆𝑅𝑅

RoI Small-scale
Feature 𝐅𝐅𝑆𝑆

Refined Small-scale
Feature 𝐅𝐅𝑆𝑆𝑅𝑅

RoI Small-scale
Feature 𝐅𝐅𝑆𝑆

Recall

Recall

Recall

Recall

Figure 5. Feature map visualization of the small-scale RoI features FS and refined small-scale RoI features FR
S in the (a) thermal and (b)

visible images. While FS cannot focus on the small-scale pedestrians, FR
S is activated on the proper regions of the small-scale pedestrians.

: Large-scale Pedestrian
: Small-scale Pedestrian
: Background

: Large-scale Pedestrian
: Small-scale Pedestrian
: Background

(a) (b)

Thermal Modality Visible Modality

Figure 6. t-SNE visualization [51] with the (a) thermal and (b)
visible modalities. In both modalities, due to the large-scale em-
bedding learning, the refined small-scale pedestrian features be-
come distinguishable from the background features and close to
the large-scale pedestrian features.

Refined Small-scale
Feature 𝐅𝐅𝑆𝑆𝑅𝑅

Recall

RoI
(small)

Small-scale
Feature 𝐅𝐅𝑆𝑆

Top-2 High-weighting
features in 𝐌𝐌𝑉𝑉

Large-scale
Exemplar in 𝑬𝑬

0.522𝐅𝐅𝑆𝑆
(origin)

𝐅𝐅𝑆𝑆𝑅𝑅
(refined) 0.992

Cosine Similarity
Changes

Figure 7. An example of improving the small-scale pedestrian fea-
ture map with the help of the LPR memory.

improved in various pedestrian scales, and also, the overall
performance (‘All’) show better performance than the
baseline (Faster R-CNN).

Parameter Number of LPR Memory. The number of pa-
rameters of the baseline, Faster R-CNN [46], is 141.27M.
With the Faster R-CNN, the number of parameters of our
framework is increased to 146.42M incorporating the 1×1
convolution and the LPR memory (L = 100). The param-
eter number of the LPR memory is 5.02M, requiring only
3.6% overhead compared to the baseline.

Method Scale

Near Medium Far All
Baseline 8.74 31.72 65.87 26.70

Proposed Method
with E (KAIST) 4.15 25.13 51.40 19.16

Proposed Method
with E (CVC-14) 3.58 28.27 52.85 22.68

Table 8. Detection results (MR) of the proposed framework us-
ing the thermal modality (KAIST dataset [22]), with each large-
scale pedestrian exemplar set E, extracted from the same dataset
(KAIST) and different dataset (CVC-14).

5. Conclusion

In this paper, we introduce a novel pedestrian detec-
tion framework to detect small-scale pedestrians effectively,
which is aware of the context of the large-scale pedestrians.
To this end, we propose the LPR Memory with the large-
scale embedding learning to memorize the various appear-
ance of the large-scale pedestrian and to recall the relevant
large-scale pedestrian appearance of the small-scale pedes-
trian. The process of the LPR Memory is similar to the pro-
cess of how humans recognize small-scale pedestrians by
associating the previous experience. As a result, the LPR
Memory enables the detection framework to perform robust
detection on small-scale pedestrians. The quantitative and
the qualitative results demonstrate the effectiveness of the
proposed framework. We believe that our human-like mem-
ory approach can be applied to a wide range of studies in the
general object detection areas.
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