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Abstract

Point cloud registration is a fundamental problem in 3D
computer vision. Outdoor LiDAR point clouds are typically
large-scale and complexly distributed, which makes the reg-
istration challenging. In this paper, we propose an efficient
hierarchical network named HRegNet for large-scale out-
door LiDAR point cloud registration. Instead of using all
points in the point clouds, HRegNet performs registration
on hierarchically extracted keypoints and descriptors. The
overall framework combines the reliable features in deeper
layer and the precise position information in shallower lay-
ers to achieve robust and precise registration. We present
a correspondence network to generate correct and accurate
keypoints correspondences. Moreover, bilateral consensus
and neighborhood consensus are introduced for keypoints
matching and novel similarity features are designed to in-
corporate them into the correspondence network, which sig-
nificantly improves the registration performance. Besides,
the whole network is also highly efficient since only a small
number of keypoints are used for registration. Extensive ex-
periments are conducted on two large-scale outdoor LiDAR
point cloud datasets to demonstrate the high accuracy and
efficiency of the proposed HRegNet. The project website is
https://ispc-group.github.io/hregnet.

1. Introduction
Point cloud registration aims to estimate the optimal

rigid transformation between two point clouds, which is a
fundamental problem in 3D computer vision and plays an
important role in many applications such as robotics [27]
and autonomous driving [24].

Iterative Closest Point (ICP) [3] is the best-known
method to solve point cloud registration problem. However,
ICP highly relies on the initial guesses of the transformation
for iteration and can easily get stuck into local minimum
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Figure 1. Network architecture of the proposed HRegNet. The
point clouds P are hierarchically downsampled to small sets of
keypoints X and descriptors D. We perform coarse registration
in the bottom layer to leverage the reliable features for keypoints
matching and fine registration is followed to refine the transforma-
tion by exploiting the precise position information in upper layers.

due to the non-convexity of the problem. Several variants
of ICP [31, 23, 37] have been proposed to achieve global
optimal estimation, however, are typically time-consuming
for large-scale point clouds.

Recently, deep learning has achieved great success in nu-
merous 3D computer vision tasks such as 3D object detec-
tion and semantic segmentation [13]. There also emerge a
number of deep learning-based methods for point cloud reg-
istration. However, existing methods are mostly designed
for object-level point clouds [35, 1, 36, 39, 19] or indoor
point clouds [5, 14, 25, 11]. Compared to object-level or
indoor point clouds, outdoor LiDAR point clouds typically
have higher sparsity, larger spatial range and a more com-
plex and variable distribution, which makes the registration
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intractable. Consequently, existing learning-based methods
are either unreliable or time-consuming to be applied to out-
door LiDAR point cloud registration.

In this paper, we aim to provide an accurate, reliable and
efficient network for large-scale outdoor LiDAR point cloud
registration. Inspired by the success of learning-based 3D
features on LiDAR point cloud registration [18, 2, 20, 38,
7], we propose a hierarchical keypoint-based point cloud
registration network named HRegNet. The overall structure
is displayed in Fig. 1. We hierarchically downsample the
point clouds to multiple small sets of keypoints and descrip-
tors for registration. Intuitively, as the layer goes deeper, the
information of a single keypoint increases, which makes the
descriptors more reliable for keypoints matching, however,
the increasing sparsity of keypoints may also cause larger
position error of corresponding keypoints. Based on the
above consideration, the network starts with coarse regis-
tration in the bottom layer by globally matching keypoints
in descriptor space to leverage the reliable features. Then
the coarse transformation is refined by fine registration in
upper layers based on local matching in spatial neighbor-
hoods, which exploits the precise position information in
shallower layers. Besides, since only a small number of
keypoints are used for registration, the network has high ef-
ficiency and can be applied in applications requiring real-
time performance, such as autonomous driving.

Although the keypoints in the bottom layer have reliable
features, possible error of descriptors may lead to a con-
siderable number of mismatches. To improve the robust-
ness and accuracy of registration, we present a learning-
based correspondence network to generate corresponding
keypoints and reject unreliable correspondences. Here we
introduce two important concepts for keypoints matching,
namely bilateral consensus and neighborhood consensus.
Bilateral consensus, as illustrated in Fig. 2(a), means that
a pair of corresponding keypoints should be the nearest
neighbor in descriptor space of each other from both sides.
As shown in Fig. 2(b), neighborhood consensus indicates
that the neighboring keypoints of two corresponding key-
points should also have high similarity. Notably, bilateral
consensus and neighborhood consensus have been success-
fully applied in many cases (e.g., estimate image dense cor-
respondences [30]). To effectively incorporate them into
the learning-based registration pipeline, we design novel
similarity features based on bi-directional similarity of de-
scriptors and an attention-based neighbor encoding module,
which significantly improves the registration performance.

To evaluate the proposed HRegNet, extensive experi-
ments are performed on two large-scale outdoor LiDAR
point cloud datasets, namely KITTI odometry dataset [10]
and NuScenes dataset [4]. The results demonstrate that the
proposed method significantly outperforms existing meth-
ods in terms of both accuracy and efficiency.

✓ 

 
(a) Bilateral consensus. (b) Neighborhood consensus.

Figure 2. (a) Bilateral consensus: Two corresponding keypoints
should be the nearest neighbor in descriptor space of each other.
(b) Neighborhood consensus: Spatial neighborhoods of two corre-
sponding keypoints should also be similar.

In summarize, our main contributions are as follows:

• We propose a novel point cloud registration network
named HRegNet, which achieves state-of-the-art per-
formance with high computational efficiency.

• The hierarchical paradigm well combines the strengths
of keypoints and descriptors in shallower and deeper
layers to achieve precise and robust registration.

• We design novel similarity features, which effectively
incorporate bilateral consensus and neighborhood con-
sensus into the registration pipeline and significantly
improve the registration performance.

2. Related works
We briefly review the related works in two aspects: clas-

sical and learning-based point cloud registration methods.

Classical point cloud registration: Iterative closest point
(ICP) [3] is the best-known algorithm for point cloud regis-
tration, which iteratively finds the closest point and updates
the transformation by solving a least square problem. How-
ever, ICP is a local registration algorithm and can easily get
stuck into local minimum. Several variants [31, 23, 37] aim
to break the limitation of ICP. Go-ICP [37] uses a Branch-
and-Bound (BnB) algorithm to search a global optimal so-
lution. Several methods also try to extract features from
point clouds for registration [9, 32, 33, 34, 15]. For exam-
ple, Fast Point Feature Histogram (FPFH) [32] builds an
oriented histogram using pairwise geometric properties. A
comprehensive review of handcrafted features in 3D point
clouds can be found in [12]. After feature extraction, RAN-
dom SAmple Consensus (RANSAC) [8] is commonly used
for robust feature matching by randomly sampling small
subsets of correspondences and then finding optimal cor-
respondences for registration.

Learning-based point cloud registration: PointNetLK
is a pioneering work of learning-based point cloud regis-
tration [1]. It performs registration by combines Point-
Net [28] and Lucas & Kanade algorithm [22] into a sin-
gle trainable recurrent deep neural network. Deep Clos-
est Point (DCP) [35] is a well-known learning-based point
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cloud registration network. It uses a transformer network
to predict soft matching between point clouds and provides
a differentiable Singular Value Decomposition (SVD) layer
to calculate transformation. IDAM [19] utilizes an itera-
tive distance-aware similarity matrix convolution module
for pairwise points matching. However, the above meth-
ods are basically designed for object-level point clouds and
not applicable to complex large-scale LiDAR point clouds.

Recently, there emerge several learning-based methods
for indoor point cloud registration. 3DRegNet [25] pro-
poses to use deep network to directly regress the transfor-
mation. Feature-metric registration [14] aims to solve the
registration problem from a different perspective. It per-
forms registration by minimizing a feature-metric projec-
tion error without correspondences rather than minimizing
commonly used geometric error. Gojcic et al. mainly focus
on the registration of multiview 3D point clouds [11]. Deep
Global Registration (DGR) [5] proposes to use a learning-
based feature named Fully Convolutional Geometric Fea-
tures (FCGF) [7] to perform registration. A 6D convolu-
tional network [6] is adopted to predict a likelihood for
each correspondence. DGR achieves state-of-the-art per-
formance in indoor point cloud registration. DeepVCP [21]
is a method designed for LiDAR point cloud registration. It
proposes to use virtual points to construct correspondences.
However, the keypoints matching in DeepVCP is performed
only in local 3D coordinate space, which makes the method
can be basically applied to local registration problem.

3. Methodology

Given source and target point clouds PS , P T ∈ RN×3,
HRegNet aims to predict the optimal rotation matrix R̂ and
translation vector t̂ from source to target point clouds in a
coarse-to-fine manner. As shown in Fig. 1, here we adopt
a 3-layer implementation. Given a point cloud P , we uti-
lize 3 cascaded feature extraction modules to hierarchically
downsample the point clouds to multiple small sets of key-
points Xl ∈ RMl×3, descriptors Dl ∈ RMl×Cl and also
saliency uncertainties Σl ∈ RMl , where l = {1, 2, 3} repre-
sents the layer number, Ml is the number of keypoints and
Cl is the channel of descriptors. To exploit reliable features
of keypoints in the bottom layer, coarse registration is per-
formed by globally matching keypoints in descriptor space
to estimate a coarse transformation R3, t3, which is fur-
ther applied to transform the keypoints in upper layer. After
that, we adopt fine registration in layer l = 2 to refine the
coarse transformation. We assume that the coarse transfor-
mation can basically align the point clouds, thus, keypoints
matching in fine registration is performed locally in spatial
neighborhoods. Finally, another fine registration is applied
in the top layer to obtain the final estimation R̂, t̂.

3.1. Feature extraction

The input of each feature extraction module is the key-
points (or the original point cloud), saliency uncertainties,
descriptors and also features of keypoints in previous layer.
We firstly adopt Weighted Farthest Point Sampling (WFPS)
[42, 29] to select a set of candidate keypoints. After that,
k-nearest-neighbor (kNN) search is performed to construct
clusters centered on the candidate keypoints and a Shared
Multi-layer Perceptron (Shared-MLP) [28] is followed to
refine the location of candidate keypoints by predicting at-
tentive weight for each neighboring point in the cluster.
Saliency uncertainty is also predicted by applying another
Shared-MLP to the cluster. Besides, a descriptor network is
designed to extract descriptor from the cluster for each key-
point. Since the feature extraction module is not the main
focus of this paper, the detailed network structure is pro-
vided in our supplementary material.

3.2. Coarse registration

After the keypoints and descriptors are extracted by the
feature extraction module, the key problem then is how
to find correct correspondences between source and target
keypoints. The most commonly used method to match two
sets of keypoints is nearest neighbor (NN) search in descrip-
tor space. Although the descriptors in the bottom layer are
relatively more reliable, they are not perfect. Thus, the sim-
ple NN search-based approach may result in a considerable
number of mismatches due to possible errors of descriptors,
which will cause a large registration error. To address the
above problem, in this paper, we adopt a learning-based cor-
respondence network to match two sets of keypoints in the
bottom layer l = 3 to perform coarse registration.

3.2.1 Correspondence network

To simplify the formulation, the subscripts l indicating layer
number are omitted in this section and we denote the source
and target keypoints and descriptors as XS , XT ∈ RM×3

and DS , DT ∈ RM×C , respectively. As shown in Fig. 3,
for a source keypoint xS , we firstly perform k-nearest-
neighbor (kNN) search in descriptor space to find K can-
didate corresponding keypoints in XT . The K neighboring
candidate keypoints {xT

1 , · · · , xT
K} and the center keypoint

xS form a cluster. The features of the cluster consist of
three parts: geometric features FG, descriptor features FD

and similarity features FS . FG is the concatenation of co-
ordinates of the center and neighboring keypoints. Besides,
the relative coordinates and distances between neighboring
and center keypoints are calculated as additional geometric
features. FD consists of the descriptors of center and neigh-
boring keypoints. In addition, the saliency uncertainties of
keypoints are also included in FD. FS is introduced to in-
corporate bilateral consensus and neighborhood consensus
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Figure 3. Architecture of correspondence network in coarse regis-
tration. The input is the kNN cluster of a source keypoint xS and
the features consist of geometric features FG, descriptor features
FD and similarity features FS . The output is the corresponding
keypoint x̃T and the confidence score c.

and will be described in detail in Section 3.2.2 below.
The cluster features are firstly passed into a 3-layer

Shared-MLP to generate a feature map F̃ = {f1, · · · , fK}.
A max-pool layer and a Softmax function are further ap-
plied to predict an attentive weight wT

k for each candidate
keypoint xT

k . The estimated corresponding keypoint of xS

can be represented as the weighted sum of the candidate
keypoints. Besides, an attentive feature F̄ of the cluster is
calculated as the weighted sum of F̃ . F̄ is further fed into a
MLP with a Sigmoid function to predict a confidence score
c for this correspondence. Then the confidence score is nor-
malized by c̃i = ci/

∑M
j=1 cj . As we claimed before, us-

ing simple NN search can cause a considerable number of
mismatches due to the error of descriptors. Intuitively, the
proposed attention-based formulation aims to implicitly as-
sign higher weights to the correct candidate corresponding
keypoints. The learning-based paradigm incorporates the
geometric features, descriptors and also bilateral consen-
sus and neighborhood consensus to generate accurate cor-
respondences and reject unreliable correspondences using
the predicted confidence score c̃. Given the corresponding
keypoints and confidence scores, the optimal transformation
R∗, t∗ can be calculated as

R∗, t∗ = argmin
R,t

M∑
i

c̃i
∥∥RxS

i + t− x̃T
i

∥∥
2

(1)

where xS
i and x̃T

i are corresponding keypoints, c̃i is confi-
dence score and ∥·∥2 denotes L2 norm. Eq. 1 can be closed-
form solved using weighted Kabsch algorithm [16], which
has also been derived in detail in [11].

3.2.2 Similarity features

Bilateral consensus: Based on the kNN search, we can
only ensure that the searched K candidate keypoints in XT

are most similar with the keypoint xS . However, this sin-
gle directional operation can not guarantee the reverse best
similarity of the matching. Intuitively, a correct correspon-
dence should satisfy bilateral consensus, which means that
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Figure 4. Illustration of similarity matrix. Given source and target
keypoints, we calculate the cosine similarity of the descriptors to
form S ∈ RM×M . The neighbor encoding module is adopted to
gather neighborhood information and the similarity matrix SN is
calculated based on the neighbor-aware descriptors DS

N , DT
N .

if xT
j is the nearest neighbor (in descriptor space) in XT of

xS
i , then xS

i should be the nearest neighbor in XS of xT
j .

Based on the above consideration, we introduce novel
similarity features to take bilateral consensus into consider-
ation. As shown in the top row of Fig. 4, for each keypoint
xS
i , we calculate the cosine similarity of the descriptor dSi

with descriptors of all keypoints in XT . Consequently, we
can obtain a M × M similarity matrix and an entry sij of
the similarity matrix S ∈ RM×M can be calculated as

sij =
⟨dSi , dTj ⟩∥∥dSi ∥∥2 ∥∥dTj ∥∥2 (2)

where ⟨·, ·⟩ and ∥·∥2 denote inner product and L2 norm.
After that, we normalize the similarity matrix in two di-

rections to generate two different similarity matrixes Sf

(forward matrix) and Sb (backward matrix) as

sfij =
sij

maxm sim
, sbij =

sij
maxm smj

(3)

Then, the similarity features of the cluster are the con-
catenation of corresponding similarity scores of the can-
didate keypoints with the center keypoint in forward and
backward similarity matrix Sf and Sb. Take a pair of candi-
date corresponding keypoints {xS

i , x
T
j } as an example, then

the similarity features of this correspondence can be repre-
sented as [sfij , s

b
ij ]. The similarity features implicitly model

bilateral consensus. If xT
j is the most similar keypoint of

xS
i among all keypoints in XT , then sfij = 1. Then, if xS

i

is also the most similar keypoint in XS of xT
j , sbij will also

be equal to 1, otherwise sbij < 1 because the best similarity
score will not fall in sij in this case. Thus, sfij and sbij will
both be equal to 1 only if the correspondence between xS

i

and xT
j satisfies bilateral consensus.

Neighborhood consensus: In addition to bilateral consen-
sus, neighborhood consensus is also important for good cor-
respondence, which means that the neighboring keypoints
of two corresponding keypoints should have similar fea-
tures. To exploit neighborhood consensus, we propose an
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attention-based neighbor encoding module to gather the in-
formation of neighboring keypoints to generate neighbor-
aware descriptors. Take a keypoint xS in XS as an exam-
ple, we firstly perform kNN spatially to search K neighbor-
ing keypoints in XS to form a cluster. The features of the
cluster consist of the descriptors of neighboring keypoints,
relative coordinates and relative distances from neighbor-
ing to center keypoints. The cluster features are input into
a Shared-MLP to generate a feature map. After that, a
max-pool layer and a Softmax function are followed to pre-
dict attentive weights for each neighboring keypoint. The
neighbor-aware descriptor dSN of xS can be calculated as
the weighted sum of the neighboring descriptors. Thus,
the similarity of neighbor-aware descriptors can encode the
similarity of neighboring keypoints. As shown in the bot-
tom row of Fig. 4, using the neighbor-aware descriptors DS

N

and DT
N , we generate a neighbor-aware similarity matrix

SN ∈ RM×M through the similar method described before.
Finally, the similarity features FS consist of two parts,

namely FO
S and FN

S , where FO
S denotes the similarity fea-

tures from original similarity matrix S and FN
S denotes

that from the neighbor-aware similarity matrix SN . Conse-
quently, the introduction of similarity features FS is able to
simultaneously incorporate bilateral consensus and neigh-
borhood consensus into the registration pipeline implicitly.

3.3. Fine registration

After applying coarse registration in layer l = 3, we
obtain the coarse transformation R3, t3. Fine registration
is applied in upper layers to reduce the registration error
caused by the sparsity of the keypoints in deeper layers.

Take the middle layer l = 2 as an example, we firstly
transform the source keypoints using the coarse transforma-
tion R3, t3. We assume that the coarse registration can pro-
vide a correct but not accurate enough estimation. Thus, the
corresponding target keypoint x̃T of a source keypoint xS

should be spatially close to xS after the coarse transforma-
tion. Based on the above assumption, for a source keypoint
xS , we perform kNN search locally in its spatial neighbor-
hoods rather than in descriptor space to find K candidate
corresponding keypoints to construct a cluster. Different
from coarse registration, the features of cluster in fine reg-
istration only include geometric features FG and descriptor
features FD. The similarity features are dropped here due
to the computational complexity for a larger number of key-
points in upper layers. We then apply a similar correspon-
dence network on the cluster to generate keypoints corre-
spondences and confidence scores. Weighted Kabsch algo-
rithm is followed to calculate the transformation ∆R2,∆t2.
Then the transformation R2, t2 after the fine registration
in layer l = 2 can be calculated as R2 = ∆R2R3, t2 =
∆R2t3+∆t2. Similarly, another fine registration is applied
in the top layer l = 1 based on the coarse transformation

R2, t2 to get the final registration result R̂, t̂.
To summarize, the hierarchical structure leverages robust

features in bottom layer and accurate position information
in upper layers to achieve reliable and precise registration.

3.4. Loss function

The loss function L = Ltrans+αLrot, where Ltrans and
Lrot are translation and rotation loss, respectively. Given
estimated and ground truth transformation R̂, t̂ and R, t,
Ltrans and Lrot can be calculated as

Ltrans =
∥∥t− t̂

∥∥
2

(4)

Lrot =
∥∥∥R̂TR− I

∥∥∥
2

(5)

where I denotes identity matrix.

4. Experiments
4.1. Experiment settings

Datasets: We perform extensive experiments on two large-
scale outdoor LiDAR point cloud datasets, namely KITTI
odometry dataset [10] and NuScenes dataset [4]. KITTI
dataset consists of 11 sequences (00 to 10) with ground truth
vehicle poses and we use Sequence 00 to 05 for training, 06
to 07 for validation and 08 to 10 for testing. We use the
current frame with the 10th frame after that to form a pair
of point clouds. To reduce the noise of ground truth vehicle
poses, we perform Iterative Closest Point (ICP) algorithm in
Open3D library [41] to refine the noisy relative transforma-
tion between two point clouds. NuScenes dataset includes
1000 scenes, among which 850 scenes are used for training
and validation and 150 scenes for testing. We use the first
700 scenes in the 850 scenes to train the network and the
other 150 scenes for validation. NuScenes dataset only pro-
vides the ground truth poses of the given samples and the
time interval between two consecutive point cloud samples
is about 0.5s. We use the current point cloud sample with
the second sample after it as a pair of point clouds.
Implementation details: In the pre-processing, we firstly
voxelize the input point clouds and the voxel size is set
to 0.3m. After that, we randomly sample 16384 points
from the point clouds in KITTI dataset and 8192 points in
NuScenes dataset. The network is implemented using Py-
Torch [26] and we use Adam [17] as the optimizer. The
learning rate is initially set to 0.001 and decreases by 50%
every 10 epochs. The hyperparameter α in the loss func-
tion L is set to 1.8 for KITTI dataset and 2.0 for NuScenes
dataset. When training the network, we firstly pre-train the
feature extraction module and then train the whole network
based on the pre-trained features. The whole network is
trained on an NVIDIA RTX 3090 GPU. The details of pre-
training and the network architecture are described in the
supplementary material.
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Figure 5. Qualitative visualization of the proposed point cloud registration method. We display 3 samples of point cloud registration here.
The first row displays the correspondences between source and target keypoints in coarse registration with confidence score c̃ > 0.005 and
the second row displays the correspondences with confidence score c̃ > 0.0005. The green lines and red lines represent inlier and outlier
correspondences, respectively. The bottom row shows the aligned two point clouds and we zoom in an area for better visualization.

Baseline methods: We compare the performance of the
proposed HRegNet with both classical and learning-based
methods. All of the methods are tested on an Intel i9-
10920X CPU and an NVIDIA RTX 3090 GPU.

Classical methods: We evaluate the performance of point
to point ICP (ICP (P2Point)), point to plane ICP (ICP
(P2Plane)) [3], RANSAC [8], and Fast Global Registration
(FGR) [40]. All of the classical methods are implemented
using Open3D library [41]. For RANSAC and FGR, we ex-
tract Fast Point Feature Histograms (FPFH) [32] from 0.3m-
voxel-downsampled point clouds. The maximum iteration
number of RANSAC is set to 2e61.

Learning-based methods: We choose 4 representative
learning-based methods to compare with the proposed
HRegNet2. (1) Deep Closest Point (DCP) [35]: DCP is
a pioneering work for learning-based point cloud registra-
tion. For the pre-processing of point clouds, 4096 points are
randomly sampled from 0.3m-voxel-downsampled point
clouds for both datasets. (2) IDAM [19]: IDAM is one
of the state-of-the-art object-level point cloud registration
methods. The pre-processing is the same as that for DCP.
(3) Feature-metric Registration (FMR) [14]: FMR has been
evaluated for both object-level and indoor point cloud reg-
istration. The pre-processing of point clouds is the same as
that in our methods. (4) Deep Global Registration (DGR)
[5]: DGR achieves state-of-the-art performance in indoor

1We have tried more iterations, however, the accuracy will not be obvi-
ously improved while the computational time will increase significantly.

2We also try to compare our method with DeepVCP[21], however, the
source code has not been released by the author and the self-implemented
version does not provide reasonable results.

point cloud registration. The point clouds are voxelized
with 0.3m voxel size. All the learning-based baseline meth-
ods are retrained on both datasets for better performance.

4.2. Evaluation

Qualitative visualization: We display several qualitative
samples of point cloud registration in Fig. 5. Correspond-
ing keypoints in coarse registration with confidence scores
c̃ > 0.005 and c̃ > 0.0005 are displayed in the first and
second row respectively. Two corresponding keypoints are
considered as an inlier if the relative position error (after
applying the ground truth relative transformation) less than
a distance threshold ϵd = 1m. The green and red lines rep-
resent inlier and outlier correspondences, respectively. Ac-
cording to the results, the correspondences with larger con-
fidence score (c̃ > 0.005) are basically all inliers and sev-
eral mismatches start to appear when reducing the thresh-
old of c̃ to 0.0005. The qualitative results show that the
correspondence network can generate accurate and correct
correspondence of keypoints and the predicted confidence
score can effectively reject unreliable correspondences. The
third row of Fig. 5 displays the two aligned point clouds,
which demonstrates that the network can precisely predict
the transformation. More qualitative results are displayed in
our supplementary material.

Quantitative evaluation: We adopt relative translation
error (RTE) and relative rotation error (RRE) to evaluate the
registration performance. RTE can be calculated as Eq. 4
and RRE can be represented as arccos(Tr(R̂TR− 1)/2),
where R̂ and R are the estimated and ground truth rotation
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Figure 6. Registration recall with different RRE and RTE thresholds on KITTI dataset and NuScenes dataset.

Table 1. Registration performance on KITTI dataset and NuScenes dataset.

Methods KITTI dataset NuScenes dataset

RTE (m) RRE (deg) Recall Time (ms) RTE (m) RRE (deg) Recall Time (ms)

ICP (P2Point) [3] 0.04± 0.05 0.11± 0.09 14.3% 472.2 0.25± 0.51 0.25± 0.50 18.8% 82.0
ICP (P2Plane) [3] 0.04± 0.04 0.14± 0.15 33.5% 461.7 0.15± 0.30 0.21± 0.31 36.8% 44.5
FGR [40] 0.93± 0.59 0.96± 0.81 39.4% 506.1 0.71± 0.62 1.01± 0.92 32.2% 284.6
RANSAC [8] 0.13± 0.07 0.54± 0.40 91.9% 549.6 0.21± 0.19 0.74± 0.70 60.9% 268.2

DCP [35] 1.03± 0.51 2.07± 1.19 47.3% 46.4 1.09± 0.49 2.07± 1.14 58.6% 45.5
IDAM [19] 0.66± 0.48 1.06± 0.94 70.9% 33.4 0.47± 0.41 0.79± 0.78 88.0% 32.6
FMR [14] 0.66± 0.42 1.49± 0.85 90.6% 85.5 0.60± 0.39 1.61± 0.97 92.1% 61.1
DGR [5] 0.32± 0.32 0.37± 0.30 98.7% 1496.6 0.21± 0.18 0.48± 0.43 98.4% 523.0

HRegNet 0.12± 0.13 0.29± 0.25 99.7% 106.2 0.18± 0.14 0.45± 0.30 99.9% 87.3

matrix. Registration recall is defined as the ratio of success-
ful registration. A registration is considered as successful
when the RTE and RRE are within the thresholds ϵtrans and
ϵrot. We display the registration recall with different RTE
and RRE thresholds on two datasets in Fig. 6. According
to the results, the proposed HRegNet outperforms all base-
line methods by an obvious margin on both two datasets.
Besides, for a more detailed comparison of the registration
performance, we calculate the average RRE and RTE and
display the results in Table 1. Noting that a part of failed
registrations can result in dramatically large RRE and RTE,
which can cause unreliable error metrics. Thus, the aver-
age RTE and RRE are only calculated for successful reg-
istrations and the thresholds are set as ϵtrans = 2m and
ϵrot = 5deg. The registration recall at the given threshold
is also displayed in Table 1.

According to the results, ICP algorithms (for both ICP
(P2Point) and ICP (P2Plane)) fail to generate reasonable
relative transformation in most cases due to the lack of pre-
cise initial transformation between two point clouds. FGR
performs slightly better than ICP, however, the registration
recall is still below 50%, which is unacceptable in applica-
tions. RANSAC achieves the best performance among the
classical methods thanks to the powerful outlier rejection
mechanism, however, the iterative paradigm can also result
in poor efficiency. The average RTE of RANSAC is simi-
lar to ours method, however, it is due to a number of mis-

matches are omitted in the calculation and the registration
recall of RANSAC is obviously lower than the proposed
method according to Fig. 6. Moreover, the runtime of our
method is almost 1/5 of RANSAC on KITTI dataset.

As for the learning-based methods, the recall of DCP
on KITTI and NuScenes dataset are both less than 60%
and the average RTE and RRE are also quite large. IDAM
performs better than DCP, however, the recall is still only
about 70% on KITTI dataset and the RTE and RRE are
much higher than the proposed method, which indicates the
poor applicability of the object-level point cloud registra-
tion methods to complex large-scale LiDAR point clouds.
FMR achieves a slightly faster speed than our method, how-
ever, the registration error is much higher than ours. For
example, the RTE of FMR on KITTI dataset is more than
5 times of our method. DGR achieves the best registration
performance among all the learning-based baseline meth-
ods. However, the 6D convolutional network-based outlier
rejection method is time-consuming and the voxel-based
representation of point clouds limits the precision of the
registration. The RTE of our method is almost 1/3 of that
of DGR on KITTI dataset. Moreover, our method achieves
almost 15× faster speed than DGR on KITTI dataset.

Overall, extensive experiments demonstrate that the pro-
posed HRegNet achieves state-of-the-art performance in
terms of both accuracy and efficiency.
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Figure 7. Registration recall of different output layers on KITTI
dataset. We set the range of RTE threshold as from 0 to 0.5m and
RRE threshold as from 0 to 1deg for better visualization. Layer 1:
top layer; Layer 2: middle layer; Layer 3: bottom layer.

4.3. Ablation study

We perform abundant ablation studies on KITTI dataset
to demonstrate the effectiveness of the hierarchical structure
and the introduction of the similarity features.
Hierarchical structure: To validate the effectiveness of
the hierarchical structure, we use the output transformation
R, t from layer 3 to layer 1 as the final estimation respec-
tively to evaluate the performance. The network with dif-
ferent output layers is trained separately using the same hy-
perparameters. The registration recall with different output
layers is displayed in Fig. 7. The detailed average RRE and
RTE is shown in Table 2 and the calculation settings are the
same as that in Table 1. According to the results, the average
RTE and RRE are gradually reduced with the layer-by-layer
refinement. The results in layer 2 achieve much lower rota-
tion error than layer 3. And the translation accuracy in layer
1 (i.e., the full model) is also obviously improved compared
to layer 2, which demonstrates the validity of hierarchical
refinement strategy. Noting that the registration recall with
different RRE thresholds of layer 1 is almost the same as
layer 2 and we found that further increasing the number of
layers will not result in significant improvements in regis-
tration performance, however, will deteriorate the efficiency
of the network. Considering the trade-off between accuracy
and efficiency, we choose the 3-layer implementation.
Similarity features: As we described before, the similar-
ity features FS consist of two parts, namely the original
similarity features FO

S and neighbor-aware similarity fea-
tures FN

S . To analysis the impact of the two parts on the
performance, we drop FO

S and FN
S separately and retrain

the network. The registration recall and the average RRE
and RTE of the full model and the model without FO

S , FN
S

and FS are displayed in Fig. 8 and Table 2. According
to the results, the registration recall without both similar-
ity features FS is inferior to the other cases by a signifi-
cant margin, which demonstrates the importance of the bi-
lateral consensus. The neighbor-aware similarity features
FN
S incorporate the information of neighboring keypoints

into consideration, however, may also lead to the neglect of
the own unique features of the keypoint. Thus, the origi-
nal and neighbor-aware similarity features are complemen-
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Figure 8. Registration recall with and without (w/o) similarity fea-
tures on KITTI dataset. FO

S : original similarity features. FN
S :

neighbor-aware similarity features. FS : both similarity features.

Table 2. Ablation studies on KITTI dataset.
Model RTE (m) RRE (deg) Recall Time (ms)

Full 0.12± 0.13 0.29± 0.25 99.7% 106.2

Layer 2 0.15± 0.18 0.29± 0.27 99.2% 101.4
Layer 3 0.16± 0.18 0.55± 0.45 99.7% 96.9

w/o FO
S 0.15± 0.19 0.31± 0.30 99.1% 98.6

w/o FN
S 0.14± 0.17 0.33± 0.29 99.4% 96.4

w/o FS 0.19± 0.22 0.46± 0.36 98.7% 88.0

tary to each other and the combination of the two (i.e., the
full model) outperforms other cases. Overall, the results
demonstrate that the introduction of the similarity features
significantly improves the performance.

5. Conclusion
In this paper, we provide an efficient hierarchical net-

work for large-scale outdoor LiDAR point cloud registra-
tion. The hierarchical paradigm leverages different char-
acteristics of keypoints and descriptors in deeper and shal-
lower layers by introducing coarse registration and fine reg-
istration in different layers. To construct reliable corre-
spondences between keypoints, we propose a correspon-
dence network to generate corresponding keypoints. More-
over, novel similarity features are designed to effectively
incorporate bilateral consensus and neighborhood consen-
sus into the registration pipeline. Abundant ablation studies
demonstrate the effectiveness of the hierarchical paradigm
and the introduction of similarity features. Besides, the net-
work is also highly efficient since we only use a small num-
ber of keypoints for registration. Extensive experiments on
two large-scale LiDAR point cloud datasets demonstrate the
high accuracy and efficiency of the proposed HRegNet.
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