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Abstract

We consider using untrained neural networks to solve
the reconstruction problem of snapshot compressive imag-
ing (SCI), which uses a two-dimensional (2D) detector to
capture a high-dimensional (usually 3D) data-cube in a
compressed manner. Various SCI systems have been built
in recent years to capture data such as high-speed videos,
hyperspectral images, and the state-of-the-art reconstruc-
tion is obtained by the deep neural networks. However,
most of these networks are trained in an end-to-end man-
ner by a large amount of corpus with sometimes simulated
ground truth, measurement pairs. In this paper, inspired
by the untrained neural networks such as deep image pri-
ors (DIP) and deep decoders, we develop a framework by
integrating DIP into the plug-and-play regime, leading to
a self-supervised network for spectral SCI reconstruction.
Extensive synthetic and real data results show that the pro-
posed algorithm without training is capable of achieving
competitive results to the training based networks. Further-
more, by integrating the proposed method with a pre-trained
deep denoising prior, we have achieved state-of-the-art re-
sults. Our code is available at https://github.com/
mengziyi64/CASSI-Self-Supervised.

1. Introduction

Recent advances in artificial intelligence and robotics

have led to high demands to capture multi-dimensional high

resolution data, such as high-speed videos, hyperspectral

images, etc. This brings unprecedented challenges to exist-

ing imaging devices. On the other hand, compressive sens-

ing (CS) [9,10] has provided us an alternative way to devise

imaging systems to capture these high-dimensional data. As

one representative technique based on CS, snapshot com-

pressive imaging (SCI) [22, 33, 49] employs the multiplex-

ing technique to impose the modulation in the optical path

and captures the 3D spectral or temporal data-cube using a

2D detector in a compressed way. An SCI system is thus
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Figure 1. Reconstructed real data of Plant (upper) and Dog ol-
factory membrane section (lower), captured by the spectral SCI

systems in [26] and [27], respectively. We show 5 out of 28 (up-

per) and 5 out of 24 (lower) spectral channels of the two scenes

and compare our proposed self-supervised method (PnP-DIP that

does not need training data) with two supervised algorithms (need

training data), respectively.

composed of a hardware encoder to capture the compressed

measurement and a software decoder to reconstruct the de-

sired 3D data-cube. In this paper, we consider the spectral

SCI system, where the pioneering work is the coded aper-

ture snapshot spectral imager (CASSI) [12, 40], in which

a physical mask and a prism are utilized to implement the

multiplexing modulation. This work focuses on the algo-

rithm design and thus the aforementioned software decoder

in SCI. Specifically, we develop a reconstruction framework

that integrates the untrained neural networks as priors [38]

into the plug-and-play (PnP) algorithms [37, 39].

1.1. Motivation

It has been over a decade since the CASSI being built in

the lab and one main bottleneck as in other CS systems was

the reconstruction algorithm, which was usually based on it-

erative optimization. These algorithms are either slow [22]
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or low quality [4]. Thanks to deep learning, both the speed

and quality have been improved significantly during the past

few years as various deep networks [16, 26, 29, 41, 42, 52]

have been built to implement the software decoder. How-

ever, there is one challenge that needs to be addressed: the
training data. It is well known that sufficient training data

are very important to the performance of the deep networks.

Unfortunately, for the hyperspectral imaging considered in

this work, very limited data are available that can be used

for training and most existing networks are still based on the

CAVE [30], ICVL [2] and KAIST [8] data. Though good

results have been obtained on synthetic and some real data,

we have noticed that for some spectra that were not existed

in the training data, these networks can not reconstruct the

desired spectral cube well. For example, the recovered re-

sults of λ -net [29] in the Bird data [19] show big errors in

the spectral accuracy due to the mismatch between the train-

ing data and the real data. The short of training data might

have limited the generalizability of existing networks.

To address this challenge, one main breakthrough of us-

ing deep learning in inverse problem is the untrained neural

networks such as the deep image prior (DIP) [38] and deep

decoder [15], which utilize the neural networks to learn the

priors from the raw measurements directly and thus does

not need any training data. Both DIP and deep decoder have

shown promising results in some image restoration results

such as image denoising, inpainting and super-resolution.

One straightforward way is to directly use these networks

in the SCI reconstruction problem; however, after exten-

sive experiments, we found it is difficult to obtain good

results in this manner. Please refer to Table 2 for a de-

tailed comparison, where we call this direct usage as the

“sole DIP”. Since the goal of the untrained neural network

is to learn a prior, in this work, we apply this prior (learn-

ing during reconstruction) into the recently advanced PnP

framework [37,39,50,54], with an optionally different kind

of prior to solve the spectral SCI reconstruction. The net-

work is optimized as the iteration in PnP going on during the

reconstruction, and thus leading to a self-supervised deep

learning framework.

1.2. Contributions

The goal of this work is to develop a self-supervised

neural network for the spectral SCI reconstruction, which

enjoys the strong learning capability of deep networks but

does not need any training data. Specific contributions are:

• A self-supervised framework is proposed for spectral SCI

reconstruction.

• An alternating optimization algorithm is developed to

solve the joint network learning and reconstruction.

• Extensive results on both synthetic and real datasets ver-

ify the superiority of the proposed approach.

• Our proposed algorithm is robust to the Poisson noise,

which happens in real measurements.

Importantly, our model does not need any training data, but

with fine tuning on parameters for each dataset, competi-

tive results are obtained with similar quality to the recently

proposed supervised deep learning algorithms. Please refer

to Fig. 1 for two real data results captured by two differ-

ent spectral SCI systems. Furthermore, by integrating our

proposed approach with the pre-trained HSI deep denoising

prior [56], we have achieved state-of-the-art results.

1.3. Related Work

In the past decade, spectral SCI systems have been devel-

oped by various hardware designs [20, 24, 40, 46, 53]. For

the reconstruction, since the inverse problem is ill-posed,

regularizers or priors are widely used, such as the spar-

sity [11] and total variation (TV) [4]. Later, the patch-based

methods such as dictionary learning [1, 53] and Gaussian

mixture models [47], and group sparsity [43] and low-rank

models [14, 22] have been developed. The main bottleneck

of these iterative optimization-based algorithms is the low

reconstruction speed, especially for the large-scale dataset.

Another limitation is that these handcrafted priors may not

fit every data.

Inspired by the high performance of deep learning for

other inverse problems [3, 52], convolutional neural net-

works (CNN) have been used to solve the inverse problem

of spectral SCI for the sake of high speed [26,27,28,29,41].

These networks (trained in a supervised manner) have led

to better results than the optimization counterparts, given

sufficient training data and time, which usually take days

or weeks. After training, the network can output the re-

construction instantaneously and thus lead to an end-to-

end spectral SCI sampling and reconstruction system [26].

However, these networks are usually system specific. For

example, different numbers of spectral channels exist in dif-

ferent systems. Further, due to the different designs of the

mask (modulation patterns), the trained CNNs cannot be

used in other systems, while re-training a new network from

scratch would take a long time.

Therefore, efficient and effective unsupervised algo-

rithms are still highly desired as researchers are eager to

verify the system when a new hardware is built. Unfortu-

nately, the two classes of algorithms cannot fulfill this basic

requirement. Thanks to the untrained neural networks being

proposed for inverse problems [31,38], we now can develop

a new class of algorithms that enjoys the power of deep neu-
ral networks but does not require any training data.

In [55], DIP is employed as a refinement process of the

trained network for the reconstruction of a single image.

This is very different from our proposed self-supervised

method. The other related work is DeepRED [25],

where DIP is combined with Regularization by Denoising

(RED) [34] and achieved better results than DIP itself. Our
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work differentiates from DeepRED and the follow up work

regularization by artifact-removal (RARE) [21] in the fol-

lowing perspectives: i) instead of using the RED prior, we

combine DIP with implicit conventional priors, where any

existing denoiser can be used; ii) during deriving the solu-

tion of our proposed model, we utilized two fidelity terms

(‖y−Hx‖2
2 and ‖y−HTΘ(e)‖2

2 in Eq. (10)) to ensure

both priors leading to the same result, while only one fi-

delity term was used in DeepRED (only ‖y−HTΘ(e)‖2
2

in Eq. (8)) and we have experimentally shown that our pro-

posed method leads to better results; iii) we apply the pro-

posed method to the spectral SCI reconstruction of both

synthetic and real data, which is different from the tasks

considered in DeepRED. Most recently, a pre-trained hy-

perspectral images (HSI) deep denoising prior [56] has been

used in PnP for spectral SCI reconstruction. This is another

way of using neural networks.

2. Spectral SCI System
Spectral 

cube

Measurement
Coded 

aperture Disperser

Modulation Dispersion Integration
y x

Figure 2. Schematic diagrams of spectral SCI, a.k.a., coded aper-

ture snapshot spectral imaging (CASSI) system.

The underlying principle of SCI system is to encode the

high-dimensional data onto a 2D measurement. As one of

the earliest proposed SCI systems, CASSI system [40] cap-

tures the spectral image cube in a snapshot using simple

and low cost hardware. Fig. 2 shows a schematic diagram

of CASSI. The spectral image data-cube is first modulated

by a coded aperture (i.e., a fixed mask), and then the coded

data-cube is spectrally dispersed by the dispersing element,

and finally integrated across the spectral dimension to a 2D

measurement captured by the camera sensor.

Recalling Fig. 2, let X0 ∈ R
nx×ny×nλ denote the spatio-

spectral data-cube to be captured, which is first modulated

by the mask M ∈ R
nx×ny , i.e., for m = 1, . . . ,nλ , we have

X ′(:, :,m) =X(:, :,m)�M , (1)

where X ′ ∈R
nx×ny×nλ is the modulated cube, � represents

the element-wise multiplication and X(:, :,m) denotes the

m-th channel in the spectral cube of X . After passing the

disperser, the modulated cube X ′ is tilted, i.e., each spectral

channel is shifted spatially on the dispersion direction (y-

axis in Fig. 2). Let X ′′ ∈R
nx×(ny+nλ−1)×nλ denote the tilted

cube, and we have X ′′(u,v,m) =X ′(x,y+d(λm −λc),m),
where (u,v) indicates the coordinate system on the detector

plane, λm is the wavelength at m-th channel and λc denotes

the center-wavelength that does not shift direction after dis-

perser. Then, d(λm−λc) signifies the spatial shifting for the

m-th spectral channel.

Finally, the 2D compressed measurement on the sensor

plane y(u,v) is acquired by the integration on the designed

wavelength range [λmin,λmax], and thus can be expressed by

Y = ∑nλ
m=1X

′′(:, :,m)+Z. (2)

In other words, Y ∈ R
nx×(ny+nλ−1) is a compressed image

which is formed by a function of the desired information

corrupted by the measurement noise Z ∈ R
nx×(ny+nλ−1).

We further give the vectorized formulation of this pro-

cess. Let vec(·) denote the matrix vectorization opera-

tion, i.e., concatenating columns into one vector. Then, we

define y = vec(Y ), z = vec(Z) ∈ R
nx(ny+nλ−1) and x =

[x�
1 , . . . ,x

�
nλ
]�, where, for m = 1, . . . ,nλ , xm = vec(X(:, :

,m)). In addition, we define the sensing matrix as

H =
[
D1, . . . ,Dnλ

] ∈ R
nx(ny+nλ−1)×nxnynλ , (3)

where Dm =

⎡
⎣

0(1)
Am

0(2)

⎤
⎦ ∈ R

nx(ny+nλ−1)×nxny with Am =

Diag(vec(M)) ∈ R
nxny×nxny being a diagonal matrix with

vec(M) as its diagonal elements, and 0(1) ∈ R
(m−1)×nxny ,

0(2) ∈R
(nλ−m)×nxny are zero matrices. As such, we then can

rewrite the matrix formulation of (2) as

y =Hx+z. (4)

This model is similar to CS. However, due to the special

structure of the sensing matrix H , most theories developed

for CS cannot fit in this application. It has been proven that

the signal can still be recovered even when nλ > 1 [17].

After capturing the measurement, the following task is

given y (captured by the camera) and H (calibrated based

on pre-designed hardware), solving x.

3. Methods
To recover the images from (4), optimization algorithms

usually employ a regularization term, or a prior, to confine

the solution to the desired signal space. Let R(x) denote

the regularization term (prior) to be used, the reconstruction

target is formulated as

x̂= argminx
1
2‖y−Hx‖2

2 +λR(x) . (5)

In the literature, different priors have been used for spec-

tral SCI including TV [4], sparsity [11] and low-rank mod-

els [22]. However, these are all hand-crafted priors which

might not fit all the experimental data. On the other hand,

recent researches have shown that deep neural networks

are capable to learn complicated structures in the data, and

more specifically, from the corrupted measurement itself.
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3.1. Deep Image Prior (DIP)

Starting from (5), but removing the regularization term

R(x), deep image prior [38] assumes that the desired sig-

nal x is the output of a neural network, TΘ(e), where e is

a random vector and Θ is the network’s parameters to be

learned. Thereby, DIP suggests to solve

minΘ ‖y−HTΘ(e)‖2
2, (6)

and the desired reconstruction will be x̂= TΘ(e). Note the

key difference between DIP and other existing deep neural

networks is that here Θ is specific for each measurement

y. In fact, Θ is learned from y. By contrast, existing su-

pervised networks learned the network parameters from the

training data and are then fixed during testing (inference).

In DIP, the training of Θ itself is the reconstruction pro-

cess of x. This procedure is thus unsupervised in the sense

that no ground truth is used during the learning (meanwhile

reconstruction). Over-fitting is avoided due to the implicit

regularization imposed by the network and early stopping.

DIP indeed achieved good recovery results in some im-

age restoration tasks such as image denoising, inpainting

and super-resolution. However, for the challenging case of

SCI considered here, directly applying DIP usually cannot

give us good results since it is too ill-posed. For exam-

ple, since the third (spectral) dimension of the data-cube is

smashed into the single 2D measurement, using the DIP it-

self cannot recover the spectral information of the data-cube

though sometimes, it can provide good spatially visual im-

ages. By contrast, traditional priors such as TV can usually

lead to a good spectral recovery but losing some spatial de-

tails. Therefore, in this work, we propose to use DIP as a

“prior” and by incorporating it with other traditional priors,

we arrive at a “self-supervised” framework for SCI recon-

struction. On one hand, these two priors will compete with

each other during reconstruction; on the other hand, they

are also complementary with each other. In other words,

they will drag each other to avoid the other one sticking to

a local minimum.

3.2. Proposed Joint Framework

As mentioned above, we impose two priors, DIP + R(x),
on the spectral data-cube to be reconstructed. This leads to

the following formulation.

(x̂,Θ̂) = argminx,Θ
1
2‖y−Hx‖2

2 +λR(x), s.t. x= TΘ(e).
(7)

As mentioned in [25], though it looks simpler to only opti-

mize Θ in (7), it is almost impossible to solve it directly. By

introducing an auxiliary variable b ∈ R
nxnynλ and a balance

parameter μ , we aim to minimize

minx,Θ
1
2‖y−HTΘ(e)‖2

2 +λR(x)+μ‖x−TΘ(e)−b‖2
2.

(8)

Using the alternating direction method of multipliers

(ADMM) [5], the solution can be derived by splitting it into

three subproblems. Similar derivations can be found in [25].

We show the derivation details in the supplementary mate-

rials (SM) and compare this with our proposed approach

derived as follows in Table 2.

Due to the two priors being used in Eq. (7), we find in the

experiments that since we only enforce the results of DIP,

thus TΘ(e) close to the measurement y, which is the only

available input to the algorithm, is not capable of merging

the wellness of both priors. Therefore, in the following, we

propose to minimize

min
x,Θ

1

2
‖y−Hx‖2

2 +λR(x)+
ρ
2
‖y−HTΘ(e)‖2

2,

s.t. x= TΘ(e).

(9)

In order to solve (9), similarly, we introduce an auxiliary

variable b∈R
nnλ and the balance parameter μ and now aim

to minimize

(x̂,Θ̂, b̂) = arg min
x,Θ,b

1
2‖y−Hx‖2

2 +λR(x)− μ
2 ‖b‖2

2

+ ρ
2 ‖y−HTΘ(e)‖2

2 +
μ
2 ‖x−TΘ(e)−b‖2

2.
(10)

We solve (10) iteratively composed of the following sub-

problems. In the derivation below, we use the superscript k
to denote the iteration number and for simplicity, we discard

this index in some subproblems such as Θ and x.

1) Θ-subproblem: Given x and b, we aim to solve Θ by

Θ̂= argminΘ
ρ
2 ‖y−HTΘ(e)‖2

2 +
μ
2 ‖x−TΘ(e)−b‖2

2,
(11)

which shares the similar spirit to the optimization done in

DIP using back-propagation, modified by a proximity reg-

ularization that forces TΘ(e) to be close to x− b. This

proximity term provides an additional stabilizing effect to

the DIP minimization. For instance, in the U-net being used

in our implementation, in the loss function, instead of only

minimizing the first term in (11) as in the DIP, we hereby

used both terms as the loss function. This learned TΘ(e) is

thus playing the role of two-fold: i) denoising x−b, and ii)

minimizing the measurement loss y−HTΘ(e). μ and ρ
in (11) are parameters to balance these two terms.

2) x-subproblem: we aim to solve

x̂= argminx
1
2‖y−Hx‖2

2 +λR(x)+ μ
2 ‖x−TΘ(e)−b‖2

2.

Due to the three coupled terms and the implicit formulation

of R(x), we apply ADMM again here by introducing u,v.

This leads to minimize

minx,u
1
2‖y−Hx‖2

2 +λR(u)+ μ
2 ‖x−TΘ(e)−b‖2

2

s. t. u= x. (12)

2625



Eq. (12) is re-formulated as

minx,u
1
2‖y−Hx‖2

2 +λR(u)+ μ
2 ‖x−TΘ(e)−b‖2

2

+ η
2 ‖x−u−v‖2

2 − η
2 ‖v‖2

2. (13)

This is solved by the following sub-problems:

2.1) x-subproblem:

x̂= argminx
1
2‖y−Hx‖2

2 +
μ
2 ‖x−TΘ(e)−b‖2

2

+ η
2 ‖x−u−v‖2

2.
(14)

This is a quadratic form and due to the special structure

of H , it has a closed-form solution x̂= (H�H+μI+
ηI)−1[H�y + μ(TΘ(e) + b) + η(u+ v)]. Recalling

H in Eq. (3), we can observe that HH� is a diagonal

matrix. Using the the matrix inversion lemma (Wood-

bury matrix identity) [13]: (H�H+μI+ηI)−1 = (μ+
η)−1 − (μ + η)−1H�(I + (μ + η)HH�)−1H(μ +
η)−1, the solution of x̂ can be obtained efficiently by

c
def
= (μ(TΘ(e)+b)+η(u+v))/(μ +η),

x̂= c+H�(y−Hc)� (Diag(HH�)+μ +η), (15)

where Diag( ) extracts the diagonal elements of the en-

sued matrix and � denotes the element-wise division.

2.2) u-subproblem: û = argminu η‖x−u−v‖2
2 +λR(u).

This is a denoising problem and depending on the selec-

tion of R, we have
û= Dσ (x−v), (16)

where σ is the estimated noise level depending on λ/η .

2.3) v is updated by
vk+1 = vk+1 − (xk −uk), (17)

where k denotes the iteration number.

3) b is updated by
bk+1 = bk − (xk −TΘk(e)). (18)

We change the orders of updating parameters from x,

u, v, to Θ and lastly b in our experiments and the entire

algorithm is exhibited in Algorithm 1.

Note that if we set λ = 0, this means only the DIP is

used in our proposed algorithm (this also leads to η = 0).

However, this is different from directly using DIP in the SCI

problem due to the two �2 fidelity terms in Eq. (9), which

connects the closed-form projection of x and DIP and then

initiates the iterations. This will avoid the local minimum

that DIP usually sticks in. In our derivation, we did not

impose the explicit priors of R(x) such as the TV or sparsity

with the following considerations:

• In real data captured by the CASSI systems, usually

a TV based algorithm can lead to a good initialization,

which can be used a warm starting point of CNN based

algorithms and also our proposed algorithm. This has also

been used in previous algorithms [22, 56].

• When a deep hyperspectral images denoiser is

trained [56], we can use it jointly with our pro-

posed approach. This will boost up the results and in

fact, by integrating our proposed approach with the HSI

deep denoising prior trained in [56], we can obtain the

state-of-the-art result, which is of higher quality than

either one alone (DIP or PnP-HSI).

Algorithm 1 Self-supervised algorithm for spectral SCI

Require: H , y.

1: Initial Θ,b,u,v and μ,η .

2: while Not Converge do
3: Update x by Eq. (15).

4: Update u by denoiser by Eq. (16).

5: Update v by Eq. (17).

6: Update Θ by DIP with two loss terms in Eq. (11).

7: Update b by Eq. (18).

8: end while

4. Results
In this section, we validate the proposed self-supervised

algorithm PnP-DIP and the boosted version of PnP-DIP-

HSI on synthetic datasets and real data, and compare them

with other iterative algorithms and supervised deep learning

methods for spectral SCI reconstruction.

4.1. Results on Synthetic Data

Implementation Details. For the implementation of DIP,

we use U-net [35] as the self-supervised neural network.

We discarded the skip connections in the U-net as suggested

in the DIP paper [38]. The network input e is a random

vector with the same size as the signal x to be recovered,

and we keep the vector fixed in each ADMM iteration for a

fixed task (corresponding to one compressed measurement).

Early stopping is used to avoid the over-fitting. Specifically,

we use early stopping earlier in the first few ADMM it-

erations, and then increase the DIP iterations gradually in

the later ADMM iterations. This is reasonable due to the

improvement of the image quality as the increase of the

ADMM iterations (outer-loop in Algorithm 1). Note that

the network parameter Θ is set to zero after the DIP pro-

cess in each ADMM iteration; this means Θ is re-trained

from beginning in each iteration. This avoids the local min-

imum that DIP stuck in the last iteration. For the loss func-

tion of DIP (11), the balance parameter ρ and μ is set to

ρ/μ = 0.1, i.e., we use a smaller weight for the measure-

ment loss y−HTΘ(e). This ensures the stabilization of

the DIP minimization. We use Adam [18] as the optimizer

and the learning rate is set to be 0.001.

For the CASSI reconstruction, following Algorithm 1,

we propose two methods, PnP-DIP and PnP-DIP-HSI. As

mentioned before, PnP-DIP only employs DIP as the prior,

i.e., we set λ ,η = 0. Other parameters are initialized by
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Table 1. PSNR in dB and SSIM reconstructed by different algorithms on 10 synthetic data.

Algorithms TwIST [4] ADMM-TV [48] DeSCI [22] PnP-HSI [56] DeepRED [25] TSA-Net [26]
PnP-DIP

(Proposed)
PnP-DIP-HSI

(Proposed)

Scene 1 24.62, 0.714 25.77, 0.729 27.15, 0.794 26.35, 0.712 28.27, 0.769 31.26, 0.887 31.98, 0.862 32.70, 0.898
Scene 2 20.47, 0.578 21.39, 0.589 22.26, 0.694 22.60, 0.613 21.64, 0.602 26.88, 0.855 26.57, 0.767 27.27, 0.832

Scene 3 21.12, 0.746 23.14, 0.737 26.56, 0.877 26.78, 0.786 24.42, 0.769 30.03, 0.921 30.37, 0.862 31.32, 0.920

Scene 4 34.20, 0.907 33.70, 0.834 39.00, 0.965 37.61, 0.877 37.93, 0.927 39.90, 0.964 38.71, 0.930 40.79, 0.970
Scene 5 22.13, 0.688 23.43, 0.699 24.80, 0.778 24.88, 0.721 25.04, 0.757 28.89, 0.878 29.09, 0.849 29.81, 0.903
Scene 6 22.67, 0.696 23.68, 0.648 23.55, 0.753 24.85, 0.685 26.14, 0.743 31.30, 0.895 29.85, 0.848 30.41, 0.890

Scene 7 17.57, 0.603 18.62, 0.603 20.03, 0.772 20.12, 0.648 22.62, 0.777 25.16, 0.887 27.69, 0.864 28.18, 0.913
Scene 8 22.73, 0.702 23.39, 0.631 20.29, 0.740 23.80, 0.691 23.42, 0.674 29.69, 0.887 28.96, 0.843 29.45, 0.885

Scene 9 22.60, 0.733 23.25, 0.682 23.98, 0.818 25.11, 0.687 28.35, 0.840 30.03, 0.903 33.55, 0.881 34.55, 0.932
Scene 10 23.52, 0.610 23.86, 0.559 25.94, 0.666 24.57, 0.611 25.62, 0.723 28.32, 0.848 28.05, 0.833 28.52, 0.863
Average 23.16, 0.697 24.02, 0.671 25.86, 0.785 25.67, 0.703 26.35, 0.758 30.15, 0.893 30.48, 0.854 31.30, 0.901
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Figure 3. Reconstructed synthetic data (sRGB) of Scene 9 by 8

algorithms. We show the reconstructed spectral curves on selected

regions to compare the spectral accuracy of different algorithms.

{TΘ(e) = H�y, b = 0}, and μ = 0.01, In PnP-DIP-HSI,

a trained HSI denoiser [56] is combined with the DIP in

the last few ADMM iterations to further improve the image

quality. We set η = 0.02 and initialize {uk = TΘ(e)k−1,

v = 0}, where k is the iteration number that HSI deep de-

noising prior is first inserted.

Datasets and Metric The testing datasets contain 10 scenes

used in [26] from KAIST [8] with size 256 × 256 × 28,

i.e., 28 spectral bands with each one 256 × 256 pixels.

For the fair comparisons, we use the same real mask as

in [26] to generate the measurements for recovering the syn-

thetic data. There are two-pixel shifts between the neigh-

boring spectral channels. Both Peak-Signal-to-Noise-Ratio

(PSNR) and structural similarity (SSIM) [44] are employed

to evaluate the quality of reconstructed spectral data-cube.

Comparing Methods We compare our proposed methods

(PnP-DIP and PnP-DIP-HSI) with other leading algorithms,

including three optimization algorithms, i.e., TwIST [4],

ADMM-TV [48] and DeSCI [22], a deep PnP method PnP-

HSI [56], and a state-of-the-art supervised method TSA-

Net [26], in which a set of real data are reported and

https://github.com/mengziyi64/TSA-Net

Figure 4. Reconstructed synthetic data (Scene 1 and 7) with 2

spectral channels by 3 algorithms. Zoom in for better view.

we use them in the next section. We also compare with

DeepRED [25], which used both DIP and RED priors. We

further compare with the auto-encoder approach proposed

in [8]. However, due to different spectral channel numbers,

we put the results in the supplementary materials (SM).

Table 1 lists the PSNR and SSIM on the 10 scenes re-

constructed by the aforementioned algorithms. It can be

seen that the PSNR values of our proposed method PnP-

DIP without using any training data are much higher than

other optimization algorithms, DeepRED and the PnP-HSI

recently developed in [56]. Even compared with the super-

vised method TSA-Net, the proposed PnP-DIP has a 0.33dB

improvement in PSNR. However, the SSIM of PnP-DIP is

lower than that of TSA-Net. By combining the pre-trained

HSI deep denoiser [56] with DIP, the results of PnP-DIP-

HSI show a further improvement, especially in SSIM, lead-

ing to the state-of-the-art results on both PSNR and SSIM.

We compare the spatial details and spectral accuracy of

the above 8 algorithms on Scene 9, with results shown in

Fig. 3. The recovered spectral images are converted to

synthetic-RGB (sRGB) via the CIE color matching func-

tion [36]. It can be seen that the optimization algorithms

suffer from the blurry on the horizontal axis, which might

be caused by the shifting effects of the disperser in the sys-
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tem. PnP-HSI is unable to fully exert its advantage due

to the less-than-perfect initialization of ADMM-TV. Com-

pared with DeepRED and TSA-Net, the results of our PnP-

DIP show sharper edges and better visual qualities. In ad-

dition, the reconstructed spectral curves of the proposed

methods have a higher correlation with the reference spec-

tra. Fig. 4 shows the comparisons of the proposed PnP-

DIP, PnP-DIP-HSI and the TSA-Net on two other scenes. It

can be observed that although TSA-Net can provide visu-

ally decent results, edge blurring and details loss appear in

some regions. PnP-DIP can recover most of spatial details,

but with some local noise. PnP-DIP-HSI is benefiting from

both the DIP and the deep denoiser, and thus can mitigate

both details loss and the noise effect.

Running Time The projection step in the PnP framework

can be updated very efficiently, and the time consuming

step is the updating of Θ by back-propagation. In our im-

plementation, the average number of the DIP inner loop is

about 900, and the outer loop is set to be 80 times, i.e., 80

ADMM iterations. In this case, the average running time

is about 1 hour on a server with i7 CPU, 64 RAM and an

Nvidia RTX3090 GPU. The running time can be saved by

running it in parallel and initializing the result by ADMM-

TV. Compared with other unsupervised (model-based) al-

gorithms, our proposed approach is much faster than DeSCI

(which needs more than 3 hours) and provides better results.

When a real-time reconstruction is desired, supervised deep

networks after training might be the right choice.

Table 2. Average PSNR and SSIM of sole DIP, PnP-DIP with sin-

gle fidelity term in (8) and the proposed PnP-DIP with double fi-

delity terms in (10).

Approach Sole DIP
PnP-DIP

(Single Fidelity)
PnP-DIP

(Double Fidelity)

PSNR/SSIM 26.99, 0.777 28.87, 0.824 30.48, 0.854

4.2. Ablation Study

In this section, we perform a comprehensive comparison

and ablation study using different modules and configura-

tions in our proposed algorithm.

DIP vs. Deep Decoder Firstly, we investigate the network

structure of TΘ(e). We compare the performance of DIP

with the deep decoder [15], which are two well-known un-

trained neural network for image restoration, with the other

parameters keeping the same in the framework. The aver-

age PSNR and SSIM of PnP-DIP (30.48dB, 0.854) are bet-

ter than the PnP framework using deep decoder (28.44dB,

0.819). Please refer to more detailed comparisons in the

SM. We analyze the reason of the performance gap and this

might be due to the following two factors. i) Deep decoder

is originally designed for image compression, thus contain-

ing much less network parameters compared with the U-net

in DIP. ii) Different from the inverse problems solved by

deep decoder in [15], which only recover a 2D or RGB im-

age, our task aims to recover a 3D spectral cube. Therefore,

more layers and parameters are needed in the deep prior

network.
Table 3. Average PSNR and SSIM of 3 methods on the 10 syn-

thetic data with different Poisson noise levels.
Noise level TSA-Net PnP-DIP PnP-DIP-HSI

No noise 30.15, 0.893 30.48, 0.854 31.30, 0.901

SNR=30dB 27.38, 0.801 28.91, 0.783 29.71, 0.860

SNR=25dB 24.15, 0.711 27.73, 0.731 28.69, 0.838

Single Fidelity vs. Dual Fidelity in DIP Hereby, we show

the results of DIP using single fidelity term in Eq. (8)

(the derivation of the solution is shown in the SM) and

the proposed dual fidelity terms (‖y −Hx‖2
2 and ‖y −

HTΘ(e)‖2
2) in Eq. (10). Meanwhile, we also compare with

the directly using DIP for spectral SCI reconstruction. The

results are summarized in Table 2. It can be seen that the

sole DIP can only achieve an average PSNR at 26.99dB,

which is 3.5dB less than our proposed method. In addition,

the single fidelity result is 1.6dB lower than our proposed

model on PSNR.

Noise Robustness We further test the noise robustness of

the proposed methods by recovering the images from the

measurements contaminated by Poisson noise with differ-

ent signal-to-noise ratio (SNR). It is well known that Pois-

son noise is a better noise model in real systems. Table

3 compares the results of the proposed methods with TSA-

Net under the SNR of 30dB and 25dB. It can be seen that the

performance degradation of our methods is less than TSA-

Net (i.e., 2.75dB and 2.61dB for PnP-DIP and PnP-DIP-

HSI, respectively, and 6.00dB for TSA-Net at SNR=25dB).

Therefore our methods are more robust to noise than the

supervised methods.

We also noticed that different up/downsampling opera-

tions in U-net used in DIP will affect the results and more

ablation studies are presented in the SM as well as compar-

isons of different priors.

4.3. Real Data Results

We apply our proposed methods on the real data captured

by three spectral SCI systems, i.e., the most recently built

CASSI system [26], the original CASSI system [19] and

the compressive multispectral endomicroscope [27]. Note

that though the underlying principle of these systems is

the same, it is challenging to find training data of endomi-

coscopy. Thereby, our proposed self-supervised algorithm

is a perfect fit for this kind of tasks. Considering the large

scale reconstruction of the real data and the measurement

noise, we reset the process and parameters of our algorithm.

Specifically, we firstly use TV prior in the PnP framework

to obtain a result, which serves as a warm starting point for

PnP-DIP and saves the running time.

CASSI Data Set We first show the results on the datasets

captured by the CASSI system in [26]. The recovered spec-

https://github.com/mengziyi64/SMEM
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Figure 5. Reconstructed real data of CASSI datasets by different algorithms. Left: Lego plant and Strawberry with 2 out of 28 spectral

channels and spectral curves of the selected regions. Right: Object with 4 out of 33 spectral channels. Zoom in for better view.

Figure 6. Reconstructed real data of 2 scenes, Resolution target
and Red blood cell, with 2 out of 24 spectral channels and spectral

curves of the selected regions by 3 algorithms.

tral cube contains 28 spectral channels with the size of

550×550. We compare the proposed method with ADMM-

TV and TSA-Net on Strawberry and Lego plant datasets, as

shown in the left of Fig. 5. It can be observed that compared

with the TSA-Net, our reconstruction has less artifacts.

In addition, we show the recovered spectral curves corre-

sponding to the selected regions. Our proposed method pro-

vides a higher spectral accuracy compared with the other

two algorithms. The upper part of Fig. 1 shows another re-

constructed scene Plant with 5 spectral channels. We can

see that the results of the proposed self-supervised method

are visually better than the results of TSA-Net. We show the

real data (Object) with the size of 210×256×33 captured

by the original CASSI system [19] in the right of Fig. 5,

where again we can see our method recovers better spatial

details compared with ADMM-TV, TwIST and PnP-HSI.

Endomicroscopy Data Lastly, we apply the proposed

method on the endomicroscopy data [27]. This data was

captured by a compressive multispectral endomicroscopy

system, which obtains images by a fiber bundle and a spec-

tral SCI system. The captured measurements are used to re-

construct the multispectral endoscopic images with the size

of 660×660×24. We compare the proposed method (with

using HSI prior) with ADMM-TV and a trained deep neu-

ral network (DNN) [27] on two data, i.e., Resolution target
and Red blood cell, as shown in Fig. 6. It can be observed

that our reconstructed images achieve higher spatial resolu-

tion and cleaner details. The reconstructed spectra of our

method are more accurate compared with other algorithms.

Additionally, the lower part of Fig. 1 shows another recon-

structed scene Dog olfactory membrane section with 5 spec-

tral channels, where we can see the results of the proposed

supervised method has less artifacts.

5. Conclusions
We have proposed a self-supervised algorithm for the

reconstruction of spectral snapshot compressive imaging.

The proposed framework uses an untrained neural network

to learn a prior directly from the compressed measure-

ment captured by the snapshot compressive imaging sys-

tem. Therefore, the proposed algorithm does not need any

training data. We integrate this untrained deep network

based prior into the plug-and-play framework and solve it

by the alternating direction method of multipliers algorithm.

By using a different formulation from existing algorithms,

we have achieved competitive results to those of supervised

deep learning based algorithms, which need extensive train-

ing data. Furthermore, we have incorporated the proposed

framework with a recently pre-trained hyperspectral images

deep denoising network to achieve a joint reconstruction

regime. This joint algorithm has provided state-of-the-art

results on both synthetic and real datasets from different

spectral snapshot compressive imaging systems.

Regarding the future work, we believe that our proposed

self-supervised framework can also be extended to the video

SCI reconstruction [6, 7, 23, 32, 45, 51, 57].
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