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Abstract

Vision-based Continuous Sign Language Recognition
(CSLR) aims to recognize unsegmented signs from image
streams. Overfitting is one of the most critical problems
in CSLR training, and previous works show that the itera-
tive training scheme can partially solve this problem while
also costing more training time. In this study, we revisit the
iterative training scheme in recent CSLR works and real-
ize that sufficient training of the feature extractor is critical
to solving the overfitting problem. Therefore, we propose
a Visual Alignment Constraint (VAC) to enhance the fea-
ture extractor with alignment supervision. Specifically, the
proposed VAC comprises two auxiliary losses: one focuses
on visual features only, and the other enforces prediction
alignment between the feature extractor and the alignment
module. Moreover, we propose two metrics to reflect overfit-
ting by measuring the prediction inconsistency between the
feature extractor and the alignment module. Experimental
results on two challenging CSLR datasets show that the pro-
posed VAC makes CSLR networks end-to-end trainable and
achieves competitive performance.

1. Introduction

Sign Language is a complete and natural language
that conveys information through both manual components
(hand/arm gestures) and non-manual components (facial
expressions, head movements, and body postures) [10, 37]
with its own grammar and lexicon [41]. Vision-based Con-
tinuous Sign Language Recognition (CSLR) aims to auto-
matically recognize signs from image streams, which can
bridge the communication gap between the Deaf and hear-
ing people. It also provides more non-intrusive communi-
cation channel for sign language users.

Different from speech recognition, the data collection
and annotation of sign language are costly, which poses a
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Figure 1. Overview of the proposed non-iterative CLSR approach
with the visual alignment constraint. To solve the insufficient
training of the feature extractor, the proposed VAC enhances the
generalization ability of the visual extractor by constraining the
feature space with the alignment supervision.

significant problem for recognition [2]. Therefore, most re-
cent CSLR works solve this problem in a weakly supervised
manner and adopt network architectures composed of the
feature extractor and the alignment module. The feature ex-
tractor abstracts visual information from each frame, and
the alignment module searches the possible alignments be-
tween visual features and the corresponding labeling. Dif-
ferent to those works [27, 29, 31] adopt HMMs to update
frame-wise state labels for the feature extractor, Graves et
al. [15] provide a more elegant solution so-called Connec-
tionist Temporal Classification (CTC) to align the predic-
tion and labeling by maximizing the sum of probability
of all feasible alignments, which is adopted by following
works [3, 6, 8, 9, 27, 36, 46].

Although CTC-based CSLR methods provide conve-
nience in training, previous studies [9, 39] show that end-
to-end training limits the discriminative power of the fea-
ture extractor. They leverage the iterative training scheme to
enhance the feature extractor, which significantly improves
the performance. Nevertheless, it requires an additional
fine-tuning process besides the end-to-end training and in-
creases the training time. Several recent works [6, 36] try
to accelerate this training scheme by adopting fully convo-
lutional networks and fine-grained labels.

In this study, we revisit CTC-based CSLR model at dif-
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ferent iterations and observe that only a few frames play
key roles in training. The feature extractor abstracts vi-
sual information and provides initial localizations of key
frames for the alignment module. The alignment module
further refines the recognition results from the feature ex-
tractor and learns long-term relationships with its powerful
temporal modeling ability. Due to the spike phenomenon of
CTC [14, 34], the alignment module converges much faster
than the feature extractor on CSLR datasets with limited
samples and cannot provide enough feedback to the feature
extractor. The overfitting of the alignment module leads to
insufficient training of the feature extractor and deteriorates
the generalization ability of the trained model. The iterative
training scheme tries to solve this problem by enhancing the
feature extractor with iteratively refined pseudo labels.

Based on above observations, we conclude that con-
straining the feature space is critical to efficiently train
CSLR models. To solve this problem, we propose a Visual
Alignment Constraint (VAC) to make CSLR networks end-
to-end trainable. As shown in Fig. 1, the proposed VAC
is composed of two auxiliary losses which provide extra
supervision for the feature extractor. The visual enhance-
ment loss enforces the feature extractor to make predictions
based on visual features only and the visual alignment loss
aligns the short-term visual predictions to long-term contex-
tual predictions. With the combination of the two losses, the
proposed method achieves competitive performance to the
latest methods on PHOENIX14 [28] and CSL [23] datasets.

To better understand the performance gains, we present
two metrics named Word Deterioration Rate (WDR) and
Word Amelioration Rate (WAR) to evaluate the contribu-
tions of the feature extractor and the alignment module,
which can also be used as indicators of overfitting. Compar-
ing to the iterative training procedure, experimental results
show that the proposed method can obtain a more powerful
feature extractor and make better use of visual features.

The major contributions are summarized as follows:

• Revisiting the iterative training scheme in CSLR and
showing that the overfitting of the alignment module
leads to insufficient training of the feature extractor.

• Proposing a visual alignment constraint to make the
network end-to-end trainable by enhancing the feature
extractor and aligning visual and contextual features.

• Presenting two metrics to evaluate the contributions of
the feature extractor and the alignment module, which
verifies the effectiveness of the proposed method.

2. Related Work
2.1. Continuous Sign Language Recognition

Sign Language Recognition (SLR) methods can be
roughly categorized into isolated SLR [25, 32, 33] and con-

tinuous SLR [9, 27]. Different to isolated SLR, most CSLR
approaches model sequence recognition in a weakly su-
pervised manner: only sentence-level labeling is provided.
Some early CSLR methods [12, 18, 37] adopt a divide-and-
conquer paradigm that splits sign video into several subunits
with HMM-based recognition systems to work with limited
data. Hand-crafted features [11, 28, 43] are carefully se-
lected to provide better visual information.

The recent successes of CNNs in computer vision [20,
42, 44] provide powerful tools for visual features represen-
tation. However, CNNs need frame-wise annotations con-
trary to the weakly supervised nature of CSLR. To solve this
problem, Koller et al. [29] propose an iterative expectation-
maximization approach by adding a hand shape classifier to
the GMM-HMM model as an intermediate task to provide
frame-level supervision. A few studies extend this work by
proposing CNN+LSTM+HMM framework [30], incorpo-
rating more clues [27] and improving the iterative alignment
approach [31]. This iterative CNN-LSTM-HMM setup pro-
vides robust visual features that are adopted by many recent
works [4, 7].

Although the CNN-LSTM-HMM hybrid approaches
achieve great results, they still need HMMs to provide
frame-wise labels. Graves et al. [15] propose the CTC loss
to maximize probabilities of all feasible alignments, which
is widely used in many sequence problems [17, 16]. Several
recent works [3, 8] use CTC loss to achieve the end-to-end
training of CSLR. However, some works [8, 9, 39] find that
such an end-to-end approach cannot train feature extractor
properly and bring the iterative training back in use. Until
very recently, some works [6, 36] try to solve this prob-
lem in an end-to-end way. Cheng et al. [6] propose a gloss
feature enhancement module to learn better visual features.
Niu and Mak [36] propose a multiple states approach and
several operations to alleviate the overfitting problem. In
this work, we try to explore the nature of iterative training
and propose a more efficient method to train CSLR models.

2.2. Auxiliary Learning

Different from the conventional Multi-Task Learning [5],
which aims to improve the generalization of all tasks, aux-
iliary learning chooses proper auxiliary tasks to assist in
the generalization of the primary task. One straightforward
way is to combine multiple tasks at the output stage. Fol-
low this idea, Kim et al. [26] use CTC to speed up the
training process and provide a monotonic alignment con-
straint. Pu et al. [39] propose an iteratively alignment
network that jointly optimizes the CTC decoder and the
LSTM decoder, additionally with a soft-DTW alignment
constraint. Goyal et al. [13] propose an auxiliary loss to al-
leviate the posterior collapsing phenomenon in autoregres-
sive decoder [1]. Another idea is to use different super-
vision at different stages. Sanabria et al. [40] use several
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Figure 2. The proposed framework consists of three components: a feature extractor, an alignment module, and an auxiliary classifier
Fa. The feature extractor first takes image sequence to abstract frame-wise features, and then applies 1D-CNN to extract the local visual
information with ∆t temporal receptive field. The outputs of 1D-CNN noted as visual features are sent to the alignment model and
the auxiliary classifier. Two auxiliary losses are adopted during training: the visual enhancement loss (LV E) aligns visual features and
the target sequence, and the visual alignment loss (LV A) aligns short-term visual predictions and long-term context predictions through
knowledge distillation.

lower-level tasks, such as phoneme recognition, to constrain
intermediate representations for speech recognition. In this
study, we adopt the auxiliary learning strategy to provide
the visual alignment constraint for the feature extractor.

3. Revisiting the Iterative Training in CSLR

The CSLR aims to predict the corresponding gloss la-
bel sequence l = (l1, · · · , lN ) based on a sequence of T
frames X = (x1, · · · ,xT ). The feature extractor plays
an important role in CSLR, which extracts visual features
V = (v1, · · · ,vT ′) from image sequences. As shown in
Fig. 2, we choose 2D-CNN to extract frame-wise features
and 1D-CNN to extract local posture and motion informa-
tion from neighboring frames as previous works did [9, 48].
The gloss-wise features are fed into a two-layer BiLSTM
and the primary classifier Fp to combine long-term relation-
ships and provide the predicted logits Z = (z1, · · · , zT ′).
CTC loss is adopted to provide supervision by aligning the
predictions and sequence labelings.

3.1. The Spike Phenomenon of CTC

The Connectionist Temporal Classification [15] is de-
signed for end-to-end temporal classification tasks with un-
segmented data. To provide more effective supervision,
CTC introduces a ‘blank’ to represent unlabeled data (such
as movement epenthesis or non-gesture segments in CSLR)
and solves the alignment problem with dynamic program-
ming. The blank class and gloss vocabulary G build the
final extended gloss vocabulary G′ = G ∪ {blank}.

CTC defines a many-to-one function B : G′T → G≤T

to align label sequence referred to as path π ∈ G′T

and labeling l ∈ G≤T by sequentially removing the re-
peated labels and the blanks from the path. For example,

B(-aaa--aabbb-) = B(-a-ab-) = aab. With the help of this
function, CTC can provide supervision for parameters θ of
the feature extractor and the alignment module by summing
the probabilities of all feasible paths:

LCTC = − log p(l|X; θ)

= − log
( ∑

π∈B−1(l)

p(π|X; θ)
)
. (1)

The conditional probability p(π|X) can be calculated ac-
cording to the conditional independence assumption:

p(π|X) =

T ′∏
t=1

p(πt|X; θ), (2)

where the probabilities are calculated by applying softmax
fuction to the the network output logits: Pθ = softmax(Z).

As mentioned above, CTC aligns the path and the label-
ing by introducing a blank class and removing the repeat
labels. When optimizing network with CTC, predictions
tend to form a series of spike responses [15, 34]. The main
reason for this is that predicting a blank label is a much
safer choice for CTC when the network cannot confidently
distinguish gloss boundaries. For example, both B(aaab)
and B(a--b) are corresponding to the same labeling, but
B(abab) will bring larger loss even if there is only one
mistake. Therefore, the CTC loss mainly focuses on key
frames, and the final predictions are composed of a few non-
blank key frames and many high-confidence blank frames.

3.2. Visualization of LSTM Gates

Long Short-Term Memory [22] is widely used in se-
quence modeling, which excellently models long-term de-
pendencies. The core component of LSTM is its memory
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Figure 3. Visualization of the gate values, the l2 norm of features and the final prediction of a training sample among different iterations.

design: the input and forget gates control information from
current inputs and the past memory to the current memory.
The output gate controls what is expected to output from the
current memory. The total update mechanism is as follows
( ⊙ denotes the Hadamard product):

it = σ(Uivt +Wiht−1 + bi),

ft = σ(Ufvt +Wfht−1 + bf ),

ot = σ(Uovt +Woht−1 + bo),

c̃t = σ(Ucvt +Wcht−1 + bc),

ct = ft ⊙ ct−1 + it ⊙ c̃t,

ht = ot ⊙ tanh(ct).

(3)

Here the it, ft and ot are corresponding to input, for-
get and output gates, respectively, the vector ht and ct are
hidden and cell states. where U· and W· are the input-to-
hidden and hidden-to-hidden weight matrices, and b· are
bias vectors. Element-wise sigmoid is reprensented by σ.

Previous works [8, 9, 39] adopt iterative training to en-
hance the visual extractor. To explore how iterative train-
ing works and how LSTM makes predictions in CSLR, we
begin by visualizing the averaged gate values of the last
forward-direction LSTM and the network predictions at dif-
ferent iterations in Fig. 3. For the predictions, we only vi-
sualize non-blank classes that occur in the labeling. We can
make some observations from the comparison of line charts:

1) The gate values and the predictions have positive cor-
relations on the training set, and they reach the local maxi-
mum on similar frame subsets.

2) The correlations appear to be weakened as the itera-
tion progresses, especially for the input and output gates,
which become larger and smoother.

The above two observations are quite puzzling, as three
gates are expected to play different roles in information

flow. As shown in Equ. 3, three gates take the same in-
puts and have independent parameters. Therefore, we pin-
point the problem to the magnitude of input features and
further visualize the l2 norms of the activations before the
first and the second BiLSTM layers, which are referred to
as the gloss and sequence norms in Fig. 3.

3.3. A Magnitude Hypothesis

Fig. 3 presents an interesting observation that the l2
norms of gloss and sequence features have similar ten-
dencies with gates values and final predictions. Besides,
the magnitudes variances of both gloss and sequence be-
come smaller as the iteration progresses. Several recent pa-
pers [35, 45] found that well-separated features tend to have
larger magnitudes, and we hypothesize the magnitudes vari-
ances are relevant to the importance of frames:

The l2 norms of the features are effect indicators that
reflect frame importance: the optimization algorithm will
decrease the magnitudes of activations when suppressing
the non-key frames due to the spike phenomenon of CTC.

With the above hypothesis, it is clear that frames with
larger magnitudes in Fig. 3 play key roles compared to
their neighbors. We further interpret the learning process
of CTC-based CSLR model into two stages: 1) the feature
extractor provides visual and initial localization information
for the alignment module, and 2) the BiLSTM layers refine
the localization and learn long-term relationships among
key frames. Such a learning scheme can make efficient use
of the data and accelerate the training process.

However, current CSLR datasets contain less data than
other sequence learning tasks [17, 19], which means the
BiLSTM layers can easily overfit the whole training set with
partial visual information and other frames are decreasingly
involved in the training progress. Although the network can
achieve stable convergence, the power of feature extractor
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is not sufficiently explored. Therefore, the feature extractor
cannot provide robust visual features during inference and
deteriorate the generalization performance.

Based on these analyses, we attribute the success of it-
erative training to the reduction of the overfitting problem.
With pseudo labels generated by the alignment module, the
fine-tuning stage can enhance the feature extractor to make
it generalize better. Although the pseudo labels can relieve
the overfitting problem in some sense, it is still not enough.
Therefore, we propose the visual alignment constraint on
the visual feature space, which enforces the feature extrac-
tor to make predictions on its own and adopts the distillation
loss to align both visual and contextual spike responses.

4. Visual Alignment Constraint
As mentioned above, the BiLSTM layers can easily over-

fit the training set with partial visual information. In this
paper, we propose the Visual Alignment Constraint (VAC)
to enhance the feature extractor with more alignment su-
pervision. The proposed VAC is implemented by two sim-
ple auxiliary losses: the Visual Enhancement (VE) loss and
the Visual Alignment (VA) loss. Besides, we propose two
new evaluation metrics, Word Deterioration Rate (WDR)
and Word Amelioration Rate (WAR), to evaluate the contri-
butions of the feature extractor and the alignment module.

4.1. Loss Design of VAC

VE Loss. To enhance the feature extractor, we proposed to
add an auxiliary classifier Fa on visual features V to get the
auxiliary logits Z̃ = (z̃1, · · · , z̃′

T ) = Fa(V ) and propose
the VE loss that directly provides supervision for the feature
extractor. This auxiliary loss enforces the feature extractor
to make predictions based on local visual information only.
Compared to previous gloss-wise supervision that needs to
generate pseudo labels, we propose to add a CTC loss on
the auxiliary classifier as the VE loss, which is compatible
with the primary CTC loss and flexible to network designs.
The VE loss only provides supervision for parameters θv of
the feature extractor and the auxiliary classifier:

LV E = Lv
CTC = − log p(l|X; θv). (4)

VA Loss. Because the VE loss lacks contextual informa-
tion and is independent of the primary loss, which may lead
to misalignment between two classifiers, we further pro-
pose the VA loss. The VA loss is implemented as a knowl-
edge distillation loss [21], which regards the entire network
and the visual feature extractor as the teacher and student
models, respectively. A high temperature τ is adopted to
“soften” probability distribution from spike responses. The
distillation process is formulated as:

LV A = KL
(

softmax(
Z

τ
), softmax(

Z̃

τ
)
)
. (5)

In summary, to achieve the visual alignment goal, the VE
loss enforces the feature extractor to provide more robust
visual features for the alignment module, while the VA loss
aligns the predictions of two classifiers by providing long-
term supervision for the visual extractor. With the help of
both losses, the feature extractor obtains more supervision
which is compatible with the alignment module. The final
objective function is composed of the primary CTC loss, the
visual enhancement loss, and the visual alignment loss:

L = LCTC + LV E + αLV A. (6)

4.2. Prediction Inconsistency Measurement

Word Error Rate (WER) is a widely-used metric to
evaluate the performance of recognition algorithms in
CSLR [28]. It is also referred to as the length normalized
edit distance, which first aligns the recognized sequence
with the reference sentence and then counts the number of
operations, including substitution (sub), deletion (del), and
insertion (ins), to transfer from the reference to the recog-
nized sequence: WER = (#sub + #del + #ins) / #reference.

As shown in Fig. 4, both of the auxiliary and the primary
recognized sentences (HYPa and HYPp) have the same
WER 22.22% (HYPa has two deletion errors, and HYPp

has two insertion errors). The primary classifier corrects the
misrecognized results of the auxiliary classifier but makes
new mistakes, which can not be measured by WER. There-
fore, we firstly align sentence triplet (REF∗,HYP∗

a,HYP∗
p)

and then calculate WDR and WAR: WDR measures the ra-
tio that is correctly recognized by the auxiliary classifier
but misrecognized by the primary classifier (two ‘SUED’ in
HYP∗

p), and WAR does in the opposite direction (‘MEHR’
and ‘KALT’ in HYP∗

p). With the proposed metrics, we can
connect the WER∗1 performance of two classifiers by:

WER∗
p = WER∗

a + WDR − WAR. (7)

REF𝑝: __ON__ HEUTE NACHT MEHR SCHNEE NORD ****  SUEDOST  **** ABER KALT

HYP𝑝: __ON__ HEUTE NACHT MEHR SCHNEE NORD SUED SUEDOST SUED ABER KALT

REF𝑎: __ON__ HEUTE NACHT MEHR SCHNEE NORD SUEDOST ABER KALT
HYP𝑎: __ON__ HEUTE NACHT  **** SCHNEE NORD SUEDOST ABER ****

REF∗: __ON__ HEUTE NACHT MEHR SCHNEE NORD ****  SUEDOST  **** ABER KALT
HYP𝑎

∗: __ON__ HEUTE NACHT  **** SCHNEE NORD ****  SUEDOST **** ABER ****
HYP𝑝

∗: __ON__ HEUTE NACHT MEHR SCHNEE NORD SUED SUEDOST SUED ABER KALT

WER𝑝 = WER𝑎 = Τ2 9 ≈ 22.2%

WAR = Τ2 9 ≈ 22.2% WDR = Τ2 9 ≈ 22.2%

Figure 4. Alignment results of the proposed metrics. We high-
light wrong recognized glosses and the alignment results of the
auxiliary classifier and the primary classifier .

In Equ. 7, the final result WER∗
p come from three as-

pects: how well the visual extractor performs (related to
WER∗

a), how much visual information is not fully utilized

1The adopted alignment approach leads to a little performance degra-
dation than the general WER.
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Table 1. Ablation results (WER, %) of iterative training and BN.

Iterations w/o BN w/ BN
Dev Test Dev Test

1 32.7 33.0 27.2 28.0
2 28.9 29.8 25.5 26.3
3 28.3 28.9 24.7 26.2

None 30.4 32.1 25.4 26.6

(related to WDR) and how many predictions are made by
contextual information only (related to WAR). More details
are given in the supplementary material.

5. Experiments
5.1. Experimental Setup

Datasets. We evaluate the proposed method on two
widely used datasets: RWTH-PHOENIX-Weather-2014
(PHOENIX14) [28] and Chinese Sign Language (CSL)
dataset [23]. All ablations are performed on PHOENIX14.

The PHOENIX14 dataset is a widely used CSLR dataset
recorded from the German TV weather forecasts and per-
formed by nine hearing SL interpreters. It contains 6841
sentences with 1295 different glosses. The dataset is split
into 5672 training sentences, 540 development (Dev) sen-
tences, and 629 test sentences for the multi-signer setup.

The CSL dataset is collected under laboratory conditions
with 100 sign language sentences with a vocabulary size
of 178. Fifty signers perform each sentence five times (in
25000 videos with 100+ hours). We follow the previous
setting [6] and split the dataset into training and test sets
according to the ratio of 8:2.
Implementation Details. ResNet18 [20] is picked as the
frame-wise feature extraction in considering its efficiency
on the PHOENIX14 dataset. For the CSL dataset, we adopt
VGG11 [42] as the backbone to reduce side effects of in-
consistent statistics under the signer-independent setting.
The gloss-wise temporal layer and two BiLSTM layers with
2×512 dimensional hidden states are adopted as the default
setting. The weight α for LV A is set to 25 and its temper-
ature τ is set to 8 by default. We train all the models for
80 epochs for PHOENIX14 and 20 epochs for CSL with a
mini-batch size of 2. Adam optimizer is used with an initial
learning rate of 10−4, divided by five after 40 and 60 epochs
for PHOENIX14 and 10 and 15 for CSL. For iterative train-
ing, we reduce the learning rate by a factor of five after each
iteration. All frames are resized to 256x256, and the train-
ing set is augmented with random crop (224x224), horizon-
tal flip (50%), and random temporal scaling (±20%).

5.2. Quantitative Results

Ablation on iterative training and BN. Batch Normaliza-
tion (BN) [24] is a widely-used tool to accelerate the train-
ing of deep networks by normalizing the activations. Al-

Table 2. Ablation results (WER, %) of Learning Rate (LR) ratios
(LR of the feature extractor / LR of the alignment model).

LR Ratio 0.1 0.5 1 2 10
Dev 25.0 25.6 25.4 26.9 34.8
Test 25.6 26.5 26.6 27.5 35.1

Table 3. Ablation results (WER,%) of VAC design.
LCTC LV E LV A Dev Test

Baseline ✓ 25.4 26.6
Baseline+VE ✓ ✓ 23.3 23.8
Baseline+VA ✓ ✓ 24.5 25.1
Baseline+VAC ✓ ✓ ✓ 21.2 22.3

though we adopt a small batch size, BN significantly im-
proves the performance. As shown in Table 1, adding a
BN layer after each temporal convolution layer brings 5.5%,
3.4%, and 3.6% performance gains at each iteration on the
Dev set, which indicates the existence of insufficient train-
ing of the feature extractor. We can also observe that adopt-
ing iterative training can lead to noticeable performance
gains compared to non-iterative training.
Ablation on learning pace. A natural idea to solve the in-
sufficient training problem is adjusting the learning paces
of the feature extractor and the alignment module. In Ta-
ble 2, we compare results under different learning rate ra-
tios. Adopting a smaller learning rate for the feature extrac-
tor leads to comparable results with iterative training, which
suggests the existence of insufficient training. However, it
is hard to find an optimal learning setting. We adopt a non-
iterative model with BN layers and the normal 1:1 learning
rate ratio as our baseline.
Ablation on VAC. Ablations on VAC are presented in Ta-
ble 3. Constraining visual features with LV E and LV A im-
proves the recognition results (2.1% and 0.9% on Dev set),
which verifies the need to strengthen supervision on the fea-
ture extractor. It is also worth noting that although adopting
the LV A only leads to smaller gains than the LV E only,
adopting both losses can achieve further improvement. It
suggests that aligning two spike responses provides more
effective supervision than adopting independent supervi-
sion or distillation only.
Obeservations about the overfitting problem. Fig. 6 vi-
sualizes performance comparison with different evaluation
metrics and we can draw some interesting observations
about overfitting. First, the primary classifier can reach
much lower WER on the training set than the auxiliary
classifier in Fig. 6(a), which reflects its powerful tempo-
ral modeling ability. Second, there exists a significant per-
formance gap between the training and Dev sets on WDR,
which indicates that the BiLSTM layers do not fully incor-
porate the visual information although it successfully over-
fits the training set. Third, the actual performance gap is
much larger than WER shows (∆WER∗). For example, the
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Figure 5. Qualitative comparison among different settings with examples from training (the upper) and Dev (the lower) sets of PHOENIX14.
Wrong recognized glosses (except del) are marked in red. The primary classifier and auxiliary classifier outputs are marked as (P) and (A).

ΔWER∗

(a) Results on PHOENIX14 training set.

(b) Results on PHOENIX14 Dev set.

Figure 6. Performance comparison with different metrics and set-
tings (∆WER∗ = WER∗

a−WER∗
p = WAR−WDR).

performance gap between two classifiers of Baseline on Dev
set in Fig. 6(b) is only 4.9% (=30.4%-25.5%), however, the
primary classifier makes 11.3% correct predictions based
on contextual information only (WAR) and ignores 6.5%
correct visual information (WDR). The proposed inconsis-
tent prediction metrics provide a helpful tool to understand
and evaluate the overfitting problem.
Obeservations about the performance gap. Another in-
teresting observation from Fig. 6(b) is that while the it-
erative training strengthens the visual extractor, it also in-
creases the WDR. We assume that the pseudo-label-based
approach is not well compatible with the primary CTC loss
(previous work [6] adopts a balanced ratio to reduce the ef-
fects of “blank” labels). Therefore, we adopt an additional
CTC loss as our LV E and it significantly improves both
WAR and WDR. The proposed LV A has a limited effect on
the visual extractor but it can narrow the performance gap
between two classifiers. The combined use of both auxil-

Table 4. Ablation results (WER, %) of temporal layer design. Cβ
and Pβ correspond to 1D convolutional layer and max pooling
layer with a kernel size of β, respectively.

Temporal Layers ∆t Dev / Test

Frame-wise C1 1 25.2 / 26.5
C3 3 24.4 / 25.4

Subgloss-wise C5-P2 6 24.0 / 24.3
Gloss-wise C5-P2-C5-P2 16 21.2 / 22.3

iary losses achieves better performance with a smaller ac-
tual performance gap (WDR and WAR), which verifies the
effectiveness of the proposed visual alignment constraint.
Ablation on temporal network design. Previous pseudo-
label-based methods need to carefully design the tempo-
ral receptive field, which is set to approximate the average
length of the isolated sign [6, 9]. Table 4 presents the perfor-
mance comparison with different temporal receptive fields
∆t to show the effectiveness and flexibility of the proposed
VAC. To our surprise, the frame-wise feature extractor still
achieves competitive results to other settings, and there is
a small performance differences in the temporal layer de-
sign. The VAC provides more flexible supervision for the
feature extractor and results show that it is superior to itera-
tive training sceme [9].

5.3. Qualitative Results

Results Visualization. To better understand the learning
process, we give some recognized examples in Fig. 5. The
upper sample from the training set shows that the auxiliary
classifier of the baseline does not correctly recognize some
glosses (NACHT, loc-SUEDWEST, ORT-PLUSPLUS ),
but the primary classifier can still deliver the correct result.
Although it is reasonable for the primary classifier to make
predictions based on contextual information only, the lack
of constraint on the feature space increases the risk of over-
fitting, which may lead to unpredictable predictions when
context changes during inference. With the help of the VAC,
both auxiliary and primary classifiers are sufficiently trained
and make better predictions on the training set.

The lower sample from the Dev set shows a failure case
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Table 5. Performance comparison on PHOENIX14 dataset. Results of the proposed method are based on ResNet18 and Gloss-wise
temporal layer. The entries denoted by “*” used extra clues (such as keypoints and tracked face regions).

Methods Backbone Iteration Dev(%) Test(%)
del/ins WER del/ins WER

SubUNet [3] CaffeNet 14.6/4.0 40.8 14.3/4.0 40.7
Staged-Opt [8] VGG-S/GoogLeNet ✓ 13.7/7.3 39.4 12.2/7.5 38.7
Align-iOpt [39] 3D-ResNet ✓ 12.6/2.6 37.1 13.0/2.5 36.7

Re-Sign [31] GoogLeNet ✓ - 27.1 - 26.8
SFL [36] ResNet18 7.9/6.5 26.2 7.5/6.3 26.8

STMC [48] VGG11 ✓ - 25.0 - -
DNF [9] GoogLeNet ✓ 7.8/3.5 23.8 7.8/3.4 24.4
FCN [6] Custom - 23.7 - 23.9

CMA [38] GoogLeNet ✓ 7.3/2.7 21.3 7.3/2.4 21.9
CNN+LSTM+HMM [27]* GoogLeNet ✓ - 26.0 - 26.0

DNF [9]* GoogLeNet ✓ 7.3/3.3 23.1 6.7/3.3 22.9
STMC [48]* VGG11 ✓ 7.7/3.4 21.1 7.4/2.6 20.7

Baseline ResNet18 8.3/3.1 25.4 8.8/3.2 26.6
Baseline+VAC ResNet18 7.9/2.5 21.2 8.4/2.6 22.3

Table 6. Performance comparison (%) on CSL dataset. The entry
denoted by “*” used extra clues (keypoints).

Methods WER
LS-HAN [23] 17.3
SubUNet [3] 11.0
SF-Net [47] 3.8

FCN [6] 3.0
STMC [48]* 2.1

Baseline 3.5
Baseline+VAC 1.6

of the alignment module. The auxiliary classifier makes the
correct predictions (HEUTE, OST and SCHON) based on
visual features only. Nevertheless, the primary classifier ne-
glects this information and gives a worse result, which is not
mentioned in the WER metric but can be identified by the
proposed metrics. More qualitative results can be found in
the supplementary material.

5.4. Comparison with the State-of-the-art.

We present the comparison results with several state-of-
the-art approaches in Table 5 and Table 6. From Table 5 we
can see that the proposed method with gloss-wise temporal
layer and VAC achieves competitive results with previous
iteration-based methods. We can also illustrate the success
of STMC [48] and CMA [38] from the overfitting perspec-
tive: the former enforces the feature extractor to extract vi-
sual information from extra supervision and the latter weak-
ens the contextual information with the data augmentation.

To examine the generalization of the proposed method,
we also evaluate it on the CSL dataset. As no official split
is given, the performance comparison among methods in
Table 6 has limited practical value. The proposed method
shows improvement than baseline and achieves better per-
formance than recent work [6] under the same setting.

5.5. Discussion

We can roughly divide recent methods into two cate-
gories from the overfitting perspective: enhancing the fea-
ture extractor [6, 9, 39, 27, 47, 48] and weakening the align-
ment module [6, 31, 36]. The proposed VAC is an attempt
to make better use of visual information, which provides a
new perspective to solve this problem. How to better use vi-
sual features with a more powerful temporal model, which
will be easier to overfit but can further improve WAR, is a
challenging problem.

6. Conclusion

Overfitting is one of the major problems in CTC-based
sign language recognition, which leads to insufficient train-
ing of the feature extractor. In this study, we propose the
visual alignment constraint to make CSLR networks end-
to-end trainable by enforcing the feature extractor to make
predictions with more alignment supervision. Two metrics
are proposed to measure the inconsistent predictions of the
feature extractor and the alignment module. Experimental
results show that the proposed VAC narrows the gap be-
tween predictions of the auxiliary and the primary classi-
fiers. The proposed metrics and relevant experiments pro-
vide a new perspective on the relationship between visual
and alignment modules, and we hope they can inspire future
studies on CSLR and other sequence classification tasks.

Our source codes and trained models are available at
https://vipl.ict.ac.cn/resources/codes
or https://github.com/ycmin95/VAC_CSLR.
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