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Abstract

Although having achieved great success in medical im-
age segmentation, deep convolutional neural networks usu-
ally require a large dataset with manual annotations for
training and are difficult to generalize to unseen classes.
Few-shot learning has the potential to address these chal-
lenges by learning new classes from only a few labeled ex-
amples. In this work, we propose a new framework for
few-shot medical image segmentation based on prototypical
networks. Our innovation lies in the design of two key mod-
ules: 1) a context relation encoder (CRE) that uses corre-
lation to capture local relation features between foreground
and background regions; and 2) a recurrent mask refine-
ment module that repeatedly uses the CRE and a prototypi-
cal network to recapture the change of context relationship
and refine the segmentation mask iteratively. Experiments
on two abdomen CT datasets and an abdomen MRI dataset
show the proposed method obtains substantial improvement
over the state-of-the-art methods by an average of 16.32%,
8.45% and 6.24% in terms of DSC, respectively. Code is
publicly available .

1. Introduction

Medical image segmentation is a fundamental task in
medical image analysis. It is used in many clinical ap-
plications, including disease diagnosis, treatment planning
and treatment delivery. Segmentation of anatomical struc-
tures or lesions is usually done manually by experienced
doctors, which is often tedious and labor-intensive. With
the recent use of deep convolutional neural networks, au-
tomated segmentation tools using computer programs can
achieve near human accuracy on multiple tasks with very
short processing time. However, in order to achieve good
performance, these systems are usually trained in a fully
supervised fashion with large amounts of annotated data.
Acquiring a dataset with abundant manual labels is often

"https://github.com/uci-cbcl/RP-Net

very expensive and time-consuming as it requires experts
with many years’ clinical experience. Moreover, the differ-
ences in image acquisition protocols among different med-
ical equipment and institutes pose great challenges to the
generalization ability of the learning based systems.

Few-shot learning has been proposed as one of the po-
tential solutions to addressing these challenges in the low
data regime [43, 46, 56, 8, 22]. The main few-shot image
segmentation approach forms the problem as meta learn-
ing [9, 10, 16] and uses supervised learning to train few-
shot learning models. A few-shot learning model is trained
to extract class-specific features from the set of support
images with annotations, and then perform segmentation
on the query images by using distilled knowledge from
the support images. During test time, by extracting fea-
tures from a set of new support images (unseen classes),
the model is able to segment novel classes. Many few-
shot learning methods have been proposed and achieved
great performance on natural image segmentation tasks
[33, 39, 6, 41, 59, 67, 66, 62, 17]. However, applying few-
shot learning models for medical image segmentation is still
in early stages [31, 36].

Few-shot segmentation in medical images is different
than that in natural images. Many approaches are based
on prototypical networks [43], and often apply masked av-
erage pooling [6, 59, 67] to extract class prototypes from
feature maps within the foreground mask. This step usu-
ally assumes the masked region contains sufficient features
to distinguish different classes, especially foreground and
background. However, this may not always be true in med-
ical images. Distinct local appearances and context infor-
mation are more critical in determining the boundary for
foreground and background. A clear boundary to separate
regions of interest from the background is of critical impor-
tance in medical image segmentation. Moreover, the back-
ground is usually large and spatially inhomogeneous while
the foreground is small and homogeneous [30], and there
exists the abundance of tissues that share very similar ap-
pearance to each other, all of which add ambiguity to define
the foreground and background regions. To address this is-
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sue, we encourage the network to explicitly model the con-
text relationship between foreground and background pix-
els, especially pixels around the boundary.

In this work, we introduce a new network framework
for few shot medical image segmentation using prototypical
network (RP-Net: Recurrent Prototypical Networks). First,
we propose a context relation encoder (CRE) on top of the
extracted features, to explicitly model the relation between
foreground and background feature maps. The relationships
between foreground and background regions are more im-
portant in defining the boundary of the regions of interest in
medical image segmentation. To force the model to distill
and utilize the local context relation information, CRE uses
correlation to capture the differences in the foreground and
background regions. Pixel features are augmented with the
context relation features. The explicit extraction of the con-
text relationship poses a strong constraint to the features the
model would learn and forces it to focus on the boundary of
the region of interest. A prototypical network is followed to
produce predicted masks using these augmented features.

Second, we propose a recurrent mask refinement mod-
ule that iteratively refines the segmentation using CRE and
prototypical networks. This design draws inspiration from
recent works [53, 32, 18] that employ iterative refinement.
More importantly, the prediction mask modifies the mask
in the previous step, which results in updated local context
relationship. The recurrent module serves the purpose to re-
capture the updated context relationship and recompute its
context relationship based on new prediction. Starting from
the segmentation mask from the previous step, the model
uses the refined prediction mask in the previous step to com-
pute new context features using CRE, and then feeds it to
the same prototypical network. The weights of the module
are shared among multiple iterations so it is fully recurrent.
This recurrent module facilitates the learning and forces the
model to learn to gradually refine the segmentation.

Our contributions are summarized as:

- A context relation encoder (CRE) that uses correlation
between foreground and background to enhance context re-
lationship features around the object boundary.

- A new framework for few-shot medical image segmen-
tation that iteratively refines the prediction mask through a
recurrent module that uses CRE and prototypical networks.

- We conducted experiments on two abdomen CT
datasets and one abdomen MRI dataset. Experiments show
that the proposed framework outperforms the SOTA few-
shot framework for medical image segmentation by an av-
erage of 16.32% on ABD-110 dataset [49], 8.45% on MIC-
CAIlS5 Multi-Atlas Abdomen Labeling challenge dataset
[23] and 6.24% on ISBI 2019 Combined Healthy Abdomi-
nal Organ Segmentation Challenge [21] in terms of DSC.

2. Related work
2.1. Medical image segmentation

In recent years, deep learning has brought significant
progress to the field of medical image analysis [40], such
as computer-aided diagnosis [38, 48, 50, 52], image reg-
istration [2, 1, 14], reconstruction [64, 7, 63], and etc. In
terms of medical image segmentation, the development of
the deep convolutional neural networks has lead to vari-
ous successful applications, including segmentation of tis-
sue [44, 58, 28], anatomical structures [47, 3, 55, 70, 11, 5,
45,4,25,51] and lesions [12, 69, 57, 24, 37, 61]. One of the
most famous and widely used network architecture is U-Net
[34]. U-Net uses lateral connection to fuse features from en-
coders and decoders. Many its variants were proposed, with
different focus on their designs. V-Net [26] extends the use
of U-Net to 3D volume data. Attention U-Net [29] proposes
to use gated mechanism to filter features. nnUNet [19] com-
bines different U-Net like network architectures and auto-
matically configure the optimal setting for different tasks,
which is the best out of box U-Net. These SOTA methods
require abundant manual annotations for their specific tasks
to achieve good performance. They are designed to fully
utilize the power of annotated dataset, and is limited when
segmenting novel classes.

2.2. Few-shot learning

Few-shot learning can be categorized into three main fo-
cuses: data, model and algorithm [60]. One main stream
of few-shot segmentation in natural image that focuses on
the model is prototypical networks [43]. Prototypical net-
work uses the idea of meta learning [9, 10, 16] and applies
averaged mask pooling to pool class-specific features from
the support set, which is called prototypes. Then, segmen-
tation for the query image is done by computing the cosine
distance with each class prototype . PANet [59] further im-
proves upon this idea by proposing a prototype alignment
network to better utilize the support set, by also predicting
on support images using query images as support set.

In few-shot medical image segmentation, most works fo-
cus on generating new training data to enlarge the training
set given only a few labels [68, 27, 31, 65]. However, this
still requires retraining the model when a new class needs to
be segmented. More recently, a few works focus on design-
ing network architecture that does not require retraining the
model. Squeeze and excite [36] first proposes a few-shot
learning architecture specifically designed for medical im-
age segmentation. They propose to use squeeze and excite
modules to fuse information from support image on to query
image to guide the segmentation arm. [30] proposes local
prototypes to enrich the representation of class prototypes
and a self-supervised training strategy using super pixels.
Likewise, we focus on few-shot medical image segmenta-
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Figure 1. RP-Net consists of three main components: (1) A feature encoder that extracts features from both support and query images; (2)
A context relation encoder (CRE) that use correlation to enhance the local context relationship features; (3) A recurrent mask refinement
module that iteratively uses CRE and a prototypical network to recaptures the change of local context features and refines the mask.

tion without retraining the model, and we propose a new
framework that uses CRE and recurrent mask refinement
module to better capture local feature and shape differences
around foreground object boundary.

3. Method

We first describe the formal definition of few-shot medi-
cal image segmentation. Next, we introduce the architecture
of RP-Net, especially the context relation encoder (CRE)
and recurrent mask refinement module.

3.1. Problem definition

In few-shot medical image segmentation task, the model
is trained using images and a set of semantic labels Cy,
drawn from a training dataset D;,.. During inference, the
model segments a new set of semantic classes C. from test
images Dy, given a few labeled examples of C;.. Note
that Cy,. N Cye = (. For example, the model is trained
using semantic labels C;, = {liver, left and right kidney}
and during testing time the model needs to segment new se-
mantic classes Cy. = {spleen}. Let N be the number of
semantic classes in C., and K be the number of examples
for each semantic class in C}.. The few-shot learning prob-
lem is also referred to as N-way K-shot learning. In medical
image segmentation, most works usually consider 1-way 1-
shot learning [36, 30].

To achieve the goal of segmenting unseen classes in in-
ference time, an episodic training strategy is used widely
[59, 30, 36]. To simulate the situation in testing time where
only K examples for each class are provided, the episodic
training schema randomly draws each training example in
the form of a support and query data pair [(xs, ys), (Xq, ¥4)]
from D,,.. The model is trained to distill knowledge about a
semantic class from the support set (x5, ys) and then apply
this knowledge to segment query set x,. In inference time,
only the K support images x, and their corresponding la-
bels y are given, and the model performs segmentation on
query images X,.

3.2. Proposed method

We now introduce RP-Net for few-shot learning in med-
ical images. For the rest of this section, we consider a 1-
way K-shot learning problem. The architecture of RP-Net
is shown in Figure 1. Our approach consists of three steps:
1) extracting image features, 2) enhancing context relation
features using CRE, 3) iteratively applying CRE and proto-
typical network to refine the segmentation mask. All stages
are differentiable and can be trained end-to-end.

3.2.1 Feature extraction

The input to the network is a set of K support images x5 €
RHXWx1 and a query image x, € R >*W*1 padded to the
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same height H and width W. The support and query images
are first aligned globally using affine transformation, which
is a common step in many medical image tasks.

The model first uses the same feature encoder fy to ex-
tract support features F, € R *W'%Z and query features
F, € RH "XW'XZ respectively. H' and W’ are the height
and width of the feature map, and Z is the number of fea-
ture channels. An adapted version of the U-Net backbone
was used as the feature encoder fy. Instead of upsam-
pling the feature maps to the original resolution as imple-
mented in the original U-Net, we remove the last two up-
sampling blocks in the U-Net to save GPU memory and
computation. This results in the resolution of the sup-
port and query features being 1/4 of the image resolution
(H' = H/4,W' =W/4).

3.2.2 Context relation encoder (CRE)

In medical image segmentation, the local context features
are important to determine the boundary of foreground and
background. To strengthen and emphasize these features,
we propose the context relation encoder to enhance context
features and force the model to focus on the shape and con-
text of the region of interest rather than pixels themselves.

CRE takes the extracted features F' (we drop subscript
q and s for convenience) and foreground mask m as in-
put and outputs augmented features Fo.. = fere(F,m) €
RE*W'%Z 1 is the mask of the foreground class from
the support image (y), or the proposed foreground mask
of a query image. Features of foreground and background
are first extracted by masking F using the mask m: Fy =
¢;(F ©m) and F, = ¢(F © (1 —m)). ¢; and ¢y, de-
note 3 x 3 convolution. Next, a correlation computation
is applied to acquire the context relation features between
foreground and background feature vectors at each spatial
location (x,y) of Fy and (x — 4,2 — j) of F with offset ¢
and j:

T,Y,8,5) __ (z,y,2) @ (z—i,2—j,2)
C@y J)_ZFf y F! j "

Instead of computing correlation between every pair of pix-
els on Fy and Fy, we limit the maximum displacement d
for comparison at each location (x,y). Given a maximum
displacement d, we only compute correlation C(*¥:%:7) in
a neighborhood of size 2d + 1 by limiting the range of
(4,7). As a result, the context relation feature C is of size
H' x W' x (2d + 1)%2. C@®¥) effectively captures infor-
mation of how a background pixel is related to foreground
when it is close to the object boundary. Finally, we concate-
nate C and F ¢ along channel dimension and apply a 1 x 1
convolution to fuse foreground features and context relation
features to obtain F,.. d is set to 5 based on empirical re-
sults (see Table 2 for details).

Compared to directly computing correlation between
feature maps, separating feature map into foreground and
background features is important. Correlation calculated
this way is sparse and has only non-zero values around the
boundary, which captures the shape of the object and clearly
differentiate a pixel from the background. Correlation cal-
culated between full feature maps is not able to achieve this
because it does not have the sense of boundary of the region.

3.2.3 Prototypical networks

Following [30, 59], we use a relative simple method for cal-
culating the prototypes, averaging feature vectors within the
mask and across support images. Given the enhanced im-
age features of support set F,.. s, we first compute the pro-
totype of class ¢ via masked average pooling:

1 K Zz,yF(k"%y) (k,z,y,c)

cre,s Ys
Pe = 7> Z kz,y.c
K — Z%y yg 1 T,Y5C)

where (xz,y) is the index of pixels on the feature map,
(z,y, c) indexes the spatial locations of the binary mask of
class c and K is the number of support images.

Segmentation is done using a non-parametric metric
learning method. Prototypical network calculates the dis-
tance between the query feature vector and the computed
prototypes P = {p.|c € C'}. A softmax over the distances
is applied to produce a probabilistic output over all classes.
Formally, for each pixel at location (z,y) of query feature
map F,.. 4, we have:

2

My, = C0S(Fepe g, P),and
exp(—ad(Fi7, pe))

Spep exp(—ad(FEy, p;))

3)
where the distance function d is a commonly used cosine
distance and « is a scaling factor for this distance function
to work best with the softmax function. « is set to 20 [59].
The class prediction can be obtained by:

cos(Fere,q, P)(I’y*c) =

m®Y) = arg max mgﬁﬁ,c) @)

3.2.4 Recurrent mask refinement

Since the mask m used to compute context relation features
would change every time the network makes a prediction,
we propose a recurrent mask refinement module to recap-
ture this change and compute new context relation features
based on the previous prediction.

The recurrent mask refinement module estimates a se-
quence of mask predictions {mj, mg, ..., m, } from an ini-
tial mask which is the union of all support masks: my =
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Ufil y.. At each iteration t, it produces a new segmenta-
tion mask m; based on m;_;. The design of this archi-
tecture mimics the steps of an optimization algorithm. For
this purpose, all the weights in the recurrent module are
shared across multiple iterations. The model is trained to
learn to modify the mask gradually so that the final output
mask m,, converges to an optimum solution. Note that, in
this work the my is initialized using the average of support
masks since images are affine aligned, but it is also possible
to better initialize mg using other methods.

This recurrent mask refinement module takes in support
features F, query features F;, and the mask m,_ in previ-
ous step, uses CRE to enhance query features, and applies
prototypical network to output a segmentation mask my.

Msoftt = COS(fcre(qu msoft,tfl)a P) (5)

We apply 4 iterations of the recurrent mask refinement
module during training to save memory and computation
cost. In inference time, we apply 10 iterations. We show in
Figure 2 the performance at each iteration during inference
time and 10 iterations are sufficient to obtain a stable result.
The final prediction is obtained by upsampling m,, to the
same resolution of the x, using bilinear interpolation.

3.2.5 Loss function

We supervise our network using dice loss and cross entropy
between the final predicted mask m, ¢ , and ground truth
segmentation mask y:

Lseg = 6Ldice 4+ Lee
2 e m(7¢) yém.,c)

Ld‘ =1- ¢ soft,n _
Sigemicfont Lige¥i7?©
: bdse (4,4,¢)

b = _HWC Zy‘(l 7 log(msoft,n)

2,],€

where (3 is a constant controlling the strength of the two
loss terms and is set to 1. Note that the use of the sum of
dice loss and cross entropy is widely used in medical image
segmentation tasks, such as [20].

4. Experiment
4.1. Setup

Dataset We conducted experiments using two abdomen
CT datasets and one MRI dataset:

- ABD-1101s an abdomen dataset from [49] that contains
110 3D CT images from patients with various abdomen tu-
mors and these CT scans were taken during the treatment
planning stage.

- ABD-30 is an abdomen dataset from the MICCAI 2015
Multi-Atlas Abdomen Labeling challenge [23]. It contains
30 3D abdominal CT scans (ABD-30) from patients with
various pathologies and has variations in intensity distribu-
tions between scans.

- ABD-MR is a MRI dataset from ISBI 2019 Combined
Healthy Abdominal Organ Segmentation Challenge [21]. It
contains 20 3D T2-SPIR MRI scans.

We perform the same 5-fold cross validation and con-
sider only 1-way 1-shot learning, following the same proto-
col as previous work setting 2 [30]. Liver, spleen and left
and right kidney are used as semantic classes. Within each
fold, one organ is considered as unseen semantic class for
testing while the rest are used for training. Moreover, to re-
duce the variance by choosing only one support image dur-
ing inference, following [59], for each query image in the
test set we randomly sample one support image from the
test set, repeat this process for 5 times and the final result is
obtained by averaging the 5 runs.

Evaluation metric We use the same evaluation metric
Sgrensen—Dice coefficient (DSC) as in previous work [30,
36]. DSC measures the overlap of the prediction mask m
and ground truth mask g, and is defined as:

DSC(m.g) = 2 &l @
m + [g]

Implmentation details All images are resampled to
have the same zy-plane spacing of 1.25mm x 1.25mm. For
segmenting 3D volume data, we follow the same protocol
used in [30, 36] by dividing the support and query images
into 12 chunks and segmenting all slices in the query chunk
by using the center slice in the corresponding chunk of the
support image. During training, a pair of support and query
images and their labels are both cropped to have a fixed size
of 256 x 256 around the image center. Support and query
images are aligned online using affine transformation before
feeding into the network. RP-Net is trained from scratch us-
ing Adam as optimizer with initial learning rate 0.0001 for
50 epochs and the learning rate is reduced by a factor of 10
every 20 epochs. We also add the alignment loss to train
RP-Net as in [59].

4.2. Comparison with the state-of-the-art methods

Table 1 shows the performance comparison of RP-Net
with previous work on ABD-110, ABD-30, ABD-MR re-
spectively. PANet [59] is an extended version of the widely
used prototypical network [43] designed for natural image
segmentation. PANet-init means directly using the pre-
trained VGG16 feature extraction backbone without any
finetuning on the few-shot setting. SE-Net [36] is the first
specifically designed architecture for few-shot medical im-
age segmentation. SSL-ALPNet [30] is the state-of-the-art
few-shot medical image segmentation framework that uses
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Dataset | Method | Spleen Kidney L Kidney R Liver mean |
PANet-init [59] 30.954+1.09 | 19.24+0.37 | 17.644+0.71 | 49.91+0.34 | 29.43
PANet [59] 35.89+1.75 | 40.22+1.71 | 41.544+0.82 | 52.36+0.60 | 42.50
SE-Net [36] 29.48+1.07 | 37.48+2.08 | 37.53+1.97 | 19.09+0.36 | 30.89
ABD-110 | SSL-ALPNet [30] 64.90+1.62 | 61.58+£2.53 | 64.054+2.27 | 71.83£1.81 | 65.59
Affine 50.424+091 | 53.04+1.57 | 52.025£2.17 | 66.99+1.20 | 55.62
RP-Net (Ours) 78.77+0.64 | 81.89+1.45 | 85.12+0.98 | 81.88+0.63 | 81.91
Fully supervised [49] 95.9 95.7 95.7 96.4 95.92
SE-Net [36] 0.23 32.83 1434 0.27 11.91
PANet [59] 25.59 32.34 17.37 3842 | 2942
ABD.30 | SSL-ALPNet [30] 60.25 63.34 54.82 7365 | 63.02
Affine 48.99 43.44 45.67 6893 | 5175
RP-Net (Ours) 69.85+2.34 | 70.48-2.55 | 70.00-0.89 | 79.62::0.91 | 72.48
Fully supervised [70] 96.8 95.3 92.0 97.4 95.4
SE-Net [36] 51.80 6211 6132 2743 | 50.66
PANet [59] 50.90 53.45 38.64 4226 | 4633
SSL-ALPNet [30] 67.02 73.63 78.39 73.05 73.02
ABD-MR | ) ffine 62.87 64.70 69.10 65 65.41
RP-Net (Ours) 76.35+0.66 | 81.40+2.10 | 85.78+1.12 | 73.51+1.55 | 79.26
Fully supervised [20] - - - - 94.6

Table 1. DSC comparison with other methods on ABD-110, ABD-30 and ABD-MR (unit: %).

| Experiment | Method | Spleen | Kidney L [ Kidney R | Liver | mean
Affine 50.42 53.04 52.025 66.99 | 55.62

Affine + Grabcut 57.93 64.17 64.25 65.27 | 6291

Added components Affine + Concat 56.41 52.39 54.99 70.87 | 58.66
Affine + CRE 57.73 58.05 60.62 73.53 | 62.48

Affine + Concat + Recurrent | 59.99 60.65 62.31 83.03 | 66.50

Affine + CRE + Recurrent 78.717 81.89 85.12 81.88 | 81.91

VGG16 73.57 67.49 56.81 72.04 | 67.48

Backbone Res18 72.39 79.13 81.61 80.89 | 78.50
U-Net 78.77 81.89 85.12 81.88 | 81.91

d= 78.40 81.90 82.12 83.89 | 81.58

Correlation radius d= 80.03 81.87 82.09 82.1 81.52
d=3 79.12 81.79 83.41 81.32 | 81.41

d=25 78.77 81.89 85.12 81.88 | 81.91

d=17 77.56 80.25 81.77 80.22 | 79.95

Affine 50.42 53.04 52.02 66.99 | 55.62

Initialization Demons 63.60 63.89 61.89 73.59 | 65.74
RP-Net (Affine) 78.77 81.89 85.12 81.88 | 81.91

RP-Net (Demons) 80.31 83.55 85.01 82.86 | 82.93

Table 2. Ablation study on ABD-110 (unit: %). Underlined is the final configuration used in RP-Net.

self-supervised learning and prototypical networks. Affine
is the result of the accuracy after globally aligning the sup-
port and query image using affine transformation, which
we use as an initial mask. [30] reported performance for
PANet-init, PANet, SE-Net and SSL-ALPNet on ABD-30
and ABD-MR, so these numbers are directly quoted. We
ran these algorithms using public available code to report

their performance on ABD-110.

First, compared to PANet, RP-Net outperforms PANet
by 39.49%, 43.06% and 21.75% on the three datasets ABD-
110, ABD-30 and ABD-MR respectively. Second, com-
pared to SE-Net, RP-Net outperforms SE-Net by 51.02%,
60.57% and 27.42% on ABD-110, ABD-30 and ABD-MR
respectively. Third, compared to the state-of-the-art method
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SSL-ALPNet, RP-Net outperforms SSL-ALPNet by an av-
erage of 16.32%, 9.46% and 6.24% on ABD-110, ABD-30
and ABD-MR respectively.

These experiments demonstrate our approach can
achieve the SOTA accuracy on medical image datasets with
different image modalities (CT and MRI). Also, we focus
on designing a new framework for few-shot medical image
segmentation, which outperforms other approaches of the
same motivation, e.g. SE-Net by a large margin. Additional
gain may be obtained by combining our method with the
self-supervised training schema proposed in SSL-ALPNet.

4.3. Ablation study

Ablation experiments are conducted using the ABD-110
dataset, because it has more data compared to the other two.
Table 2 shows the results for the following experiments.

Effect of each component To verify the contribution of
the two added components - context relation encoder and re-
current module, we conducted experiments by adding one
component at a time: 1) model trained and tested without
the CRE. To make use of the support mask which is used
in CRE, we concatenate the mask to the feature map from
backbone and apply a 3 x 3 convolution for a fair compari-
son (denoted as concat). 2) model trained without recurrent
module. Note that if we remove both CRE and recurrent
training, the model becomes the PANet [59]. Moreover,
we compare with Grabcut [35] which is an unsupervised
method that uses iterated Graphcut. Grabcut can be seen as
an unsupervised version of our algorithm.

First, we verify the effect of using CRE. Affine + Con-
cat is a naive way of integrating support masks by concate-
nating it directly to the feature maps, which outperforms
the Affine by 3.04%. Affine + CRE implements the more
sophisticated way of exploring local feature differences us-
ing CRE, which outperforms the Affine + Concat by 3.82%.
This shows the CRE better captures the local difference via
the use of correlation. However, the performance improve-
ment is still not significant and the reason is that the mask
prediction is changed each time and it lacks a mechanism
to recapture this change and recompute the new local dif-
ferences. The recurrent mask refinement module serves this
purpose and we discuss its effect in the next paragraph.

Second, we compare the performance of using the recur-
rent mask refinement module. Affine + Concat + Recurrent
means we apply the recurrent module to the concatenated
feature map, which performs 7.84% better than not using
the recurrent module (Affine + Concat). This shows that the
recurrent training indeed helps the model to find the right
mask prediction because the initial mask from support is a
very rough estimation of the location of the region of in-
terests. If we combine the two added components together
(Affine + CRE + Recurrent), we can achieve a big improve-
ment by 15.39% compared to Affine + Concat + Recurrent.

This demonstrates that the integration of recurrent module
to recapture local changes in the CRE is very important and
can greatly boost the performance.

Third, we compare with Grabcut. Our method is in some
sense similar to Grabcut - we both use an iterative update
to refine the segmentation mask. Grabcut outperforms the
baseline Affine by 7.29%, showing that iteratively refining a
mask is indeed beneficial. RP-Net (Affine + CRE + Recur-
rent) outperforms Grabcut by 19%. There are mainly three
reasons for this large improvement. First, Grabcut only
uses one image, thus only image intensity is used to sep-
arate foreground and background region. On the contrary,
RP-Net uses the support images to extract knowledge about
the relationship between the foreground and background re-
gion, and utilize this knowledge to guide the segmentation
of the new image. Second, Grabcut only refines the mask
in the probable foreground region which is a human defined
boundary and lacks the flexibility to attend other areas in
the image, as well as the ability to correct error in the sure
foreground region. RP-Net does not have these constraints
and can potentially use information from the whole image.
Third, RP-Net uses training data to train the feature extrac-
tor, while Grabcut is not a learning-based method and only
uses information directly derived from pixel intensity.

Effect of feature extraction backbone We also exper-
imented with three different feature extraction backbones -
VGG16 [42], Res18 [13] and U-Net [34]. To make sure the
output feature map is 1/4 of the original image resolution for
a fair comparison, we only kept the first two downsampling
operations in both VGG16 and Res18 backbones and the
rest of the network architecture remained the same. As seen
from Table 2, VGG16 backbone performs the worst among
the three backbones, which is 8.03% lower than Res18. U-
Net backbone outperforms Res18 backbone by an average
of 2.32% which is mainly because of the lateral connection
in U-Net that fuses both low-level and high-level features.
This demonstrates that RP-Net is compatible with different
backbones, and backbones that perform better on medical
image segmentation task, such as U-Net, would result in
similar gain when combined with RP-Net.

Effect of correlation radius We conducted experiments
with different radius d = 0, 1, 3, 5, 7 in the correlation layer,
which controls how many neighbouring pixels are included
when computing correlation. d = 0 means the correlation
computation is carried out only at a single point. Note that
even with d = 0, the model is able to use features from the
surrounding pixels because ¢ and ¢, are used to extract
foreground and background specific features. Table 2 shows
our approach is not very sensitive to the radius, and this is
likely because RP-Net is designed to focus on a small region
around the object boundary at a time, a larger context may
not necessarily bring more benefits.

Effect of number of inference iterations We show in
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Figure 2. DSC at each refinement iteration. This figure shows the
DSC performance of the proposed model per iteration. DSC of
four organs and an average is shown for two models: one w/ re-
current training (purple) and one w/o recurrent training (cyan).

Figure 2 the performance at each inference iteration from
one fold in ABD-110. Although the model is trained using 4
iterations of recurrent module, we can apply more iterations
during inference. As seen from this figure, a model without
recurrent training diverges after the 1st iteration, while a
model with recurrent training quickly converges and does
not diverge after 20 epochs. It demonstrates that with the
recurrent training, the model learns to gradually refine its
prediction and converges to a stable solution.

Effect of initialization Demons [54] is a medical im-
age registration method that uses deformable registration,
which performs 10.12% better than a simple affine trans-
formation. As shown in Figure 2, using a better initial-
ization (Demons), RP-Net achieves a 1.02% improvement.
Although better initialization improves the result, the im-
provement is small compared to that of the initialization it-
self, and our network is less sensitive to the initial mask as
long as it roughly locates the foreground region. For this
reason, we only use initialization mask from Affine trans-
formation for its simplicity. In many cases, a coarse map
or a map derived through affine registration would suffice.
Some recent registration methods (e.g., DEEDS [15] and
its extensions) that can handle large anatomical variations,
although missing details, can fit well to our method.

4.4. Qualitative result

We show in Figure 3 how the segmentation mask con-
verges to the optimum solution in multiple iterations. In
general, we can observe that RP-Net refines the initial mask
gradually, finds a better segmentation mask at each itera-
tion, and finally converges to an optimum solution. RP-Net
is able to learn to distill knowledge about the relation be-
tween the foreground and background from the support im-
age, and apply it to segment query images by comparing
local differences and modifying its prediction to conform to

Query Support Iteration 0 Iteration 1 Iteration 2 Iteration 10

Jouery GT (Spieen) Support e er 10

Figure 3. Examples of predication of RP-Net at different iterations.
Each row represents one slice of the a test scan (row 1-5 are CT
images, row 6-7 are MR images).

the shape and boundary. Moreover, RP-Net generates satis-
fying segmentation masks that have a clear boundary along
the object boundary, demonstrating the successful design of
the CRE and recurrent module.

5. Conclusion

In this work, we present a new few-shot medical image
segmentation framework that refines the segmentation mask
iteratively using a context relation encoder and a recurrent
module. The proposed model learns to incrementally refine
the segmentation mask to better align the object boundary.
Experiments on three organ segmentation datasets demon-
strate that RP-Net outperforms the previous state-of-the-art
approach by as much as 16% in terms of DSC. Moreover,
the proposed CRE and recurrent module are generic and can
also be integrated into other types of network to enhance
context relationship features.
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