
Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction

Xiao Tang Tianyu Wang Chi-Wing Fu
The Chinese University of Hong Kong
{xtang,wangty,cwfu}@cse.cuhk.edu.hk

Abstract

3D hand-mesh reconstruction from RGB images facili-
tates many applications, including augmented reality (AR).
However, this requires not only real-time speed and accu-
rate hand pose and shape but also plausible mesh-image
alignment. While existing works already achieve promis-
ing results, meeting all three requirements is very challeng-
ing. This paper presents a novel pipeline by decoupling
the hand-mesh reconstruction task into three stages: a joint
stage to predict hand joints and segmentation; a mesh stage
to predict a rough hand mesh; and a refine stage to fine-
tune it with an offset mesh for mesh-image alignment. With
careful design in the network structure and in the loss func-
tions, we can promote high-quality finger-level mesh-image
alignment and drive the models together to deliver real-time
predictions. Extensive quantitative and qualitative results
on benchmark datasets demonstrate that the quality of our
results outperforms the state-of-the-art methods on hand-
mesh/pose precision and hand-image alignment. In the end,
we also showcase several real-time AR scenarios.

1. Introduction
3D hand-mesh reconstruction from a single monocular

view is a long-standing task in computer vision that has
great potentials for supporting and enhancing many appli-
cations, e.g., human-computer interactions, augmented re-
ality (AR), etc. By recognizing the 3D shape and pose of
the user’s hand in the AR view, we not only can augment
the appearance of the hand and attach virtual objects onto
the hand but can also enable the user to directly use his/her
hand to grab and manipulate virtual 3D objects in the AR
view. These are exciting but very challenging applications
in AR that require the support of computer vision methods.

To put a hand-mesh reconstruction method into practice
for direct hand interactions in AR, there are three require-
ments to meet. (i) The reconstruction should run in real
time to give interactive feedback. (ii) The overall pose and
shape of the reconstructed hand should match the user’s real
hand in AR. (iii) Beyond that, the reconstructed hand should

Figure 1. Comparing 3D hand meshes (top row) reconstructed
by I2L-MeshNet [32] (ECCV 2020) and by our method. Taking
these meshes to support AR interaction (bottom row), our pre-
dicted hand mesh delivers better finger-level alignment and more
natural hand occlusion with the virtual ping pong racket.

plausibly align with the user’s real hand in the image space
to improve the perceptual realism in the AR interactions.

At present, research works on hand-mesh reconstruction
can roughly be divided into two categories based on the type
of the input image, i.e., RGB or depth. Despite the catego-
rization, recent works are mostly deep-learning-based, e.g.,
a typical approach is to use a deep neural network to predict
the 2D/3D hand joint coordinates for guiding the regres-
sion of hand-mesh vertices [32] or parameters in a para-
metric hand model [60], e.g., MANO [39]. Other works
encode the image features to latent features and then use
the Graph-CNN [15] or spiral filters [27] to directly recon-
struct the hand mesh. Concerning the goal of supporting
hand interactions in AR, existing works on hand-mesh re-
construction can mainly cater requirements (i) and (ii) but
not requirement (iii), since they do not effectively utilize
the 2D cues, e.g., hand boundary, in their framework, while
aiming for speed and gesture matching. A misaligned hand
mesh may lead to obvious artifacts in the AR interactions;
see the left column in Figure 1. While some recent works try
to explore a better image-space alignment via differentiable
rendering [1, 58] for meeting requirement (iii), they tend
to struggle with requirement (i) due to the time-consuming
iterative refinement process for the hand alignment.

11698

The goal of this work is to simultaneously meet require-
ments (i)-(iii) for supporting real-time AR applications. Our
key idea is to decouple the hand-mesh reconstruction pro-
cess into three stages, especially to avoid the iterative re-
finement for hand alignment: (i) The joint stage encodes
the input image and uses a multi-task architecture to pre-
dict hand segmentation and joints. During the testing, we
only need to compute and pass image and joint features to
the next stage. (ii) The mesh stage encodes the incoming
features to quickly predict a rough 3D hand mesh with its
lightweight architecture for speed. (iii) The refine stage ex-
tracts local features via the local feature projection unit and
global features via the global feature broadcast unit for each
vertex of the mesh and then utilizes a small Graph-CNN to
predict an offset mesh to quickly align the rough mesh with
the user’s hand in the AR image space. In this decoupled de-
sign, offsets are essentially residuals; they are small vectors
that the network can readily learn to regress based on the
features gathered in the earlier stages. Besides, we utilize
differentiable rendering to promote finger-level alignment.

We conduct extensive experiments to demonstrate that
our proposed method boosts the hand-mesh reconstruction
accuracy, comparing with the state-of-the-art. Also, the re-
fine stage can efficiently produce a good image-mesh align-
ment for supporting AR applications. In the end, we further
showcase several AR scenarios to demonstrate the potential
of our method to support real-time AR interactions.

2. Related Work

3D hand-pose estimation aims to regress the 3D location
of hand joints from a monocular RGB/depth image. Recent
works are mainly deep-learning-based [61, 5, 31, 37, 56, 57,
28, 6, 9, 49, 2, 14, 22, 59, 44, 34, 17], and some [18, 47, 12]
further predicted the hand-object pose. Among them, Li et
al. [28] designed a binary selector that divides joints into
groups and learns features independently for each group
to avoid negative transfer. Cai et al. [4] trained a network
with both synthetic data and weakly-labeled real RGB im-
ages. Very recently, Transformer [48] was adopted to fur-
ther boost the hand-pose estimation precision [20, 21].

Depth-based 3D hand-mesh reconstruction aims to cre-
ate the hand mesh from a depth image. Earlier works [45,
46, 24] often fitted a deformable hand mesh to the depth im-
age with an iterative optimization. Recently, deep learning
further helped to improve the performance. Malik et al. [30]
adopted a CNN to regress the parameters of a linear-blend
skinning model. Wan et al. [50] mapped features from a
depth image to a mesh grid then sampled the mesh grid to
recover the hand mesh. Malik et al. [29] voxelized the depth
image and applied 3D convolutions to reconstruct the hand
mesh. On the other hand, Mueller et al. [35] tracked biman-
ual hand interactions with a depth camera in real time.

RGB-based 3D hand-mesh reconstruction aims to re-
construct hand meshes using a commodity RGB cam-
era [54, 33, 13, 38, 16, 51, 11, 42, 55, 8]. One common
approach was to train a deep neural network with a paramet-
ric statistical model like MANO [39], which parameterizes
a given triangular hand mesh with pose and shape parame-
ters. Boukhayma et al. [3] regressed the MANO and view
parameters to project the predicted MANO model to image
space for supervision. Zhang et al. [58] and Baek et al. [1]
adopted a differentiable rendering approach to supervise the
training for silhouette alignment. Zhou et al. [60] first pre-
dicted the 3D coordinates of hand joints, then took the joint
predictions as prior to produce the hand mesh via an inverse
kinematics network. Moon et al. [32] introduced an image-
to-lixel network to enhance the reconstruction accuracy.

To explicitly encode mesh structure in a deep neural net-
work, Graph-CNN was widely adopted for hand-mesh re-
construction. Yet, Graph-CNN is designed for aggregating
adjacent features based on the mesh topology, so it is less
efficient for long-range features. To overcome this draw-
back, Ge et al. [15] and Choi et al. [10] proposed to regress
the hand-mesh vertices using Graph-CNN in a coarse-to-
fine manner. More recently, Kulon et al. [27] applied spiral
filters for neighbourhood selection. Spurr et al. [43] pro-
posed biomechanical constraints with weak supervision to
effectively leverage additional 2D annotated images.

Existing works on hand-mesh reconstruction mostly fo-
cus on improving the precision of gesture prediction with-
out efficiently utilizing 2D cues from the image. So these
works are subpar for the hand-image alignment, which is,
in fact, crucial for AR applications. In this work, we pro-
pose to decouple the hand-mesh estimation reconstruction,
such that each stage can focus on a specific task for effec-
tive network learning and lightweight architecture. In this
way, our approach can efficiently produce good-quality 3D
hand meshes that align with the user’s hand in the AR view,
while delivering real-time performance.

3. Method
Figure 2 shows our three-stage framework for recon-

structing the hand mesh from an input RGB photo:

(i) The joint stage encodes the input image and predicts
a hand segmentation mask and hand joints J .

(ii) The mesh stage encodes features from the previous
stage, including joint feature Fj from the joint decoder
and shallow image feature Fl from the image encoder,
and then predicts rough hand mesh Mr.

(iii) The refine stage aggregates the projected local and
global features from the previous stages with the ver-
tices in the rough mesh, then adopts a Graph-CNN
(GCN) to regress offset mesh ∆M for producing the
final hand mesh Mf = Mr +∆M .

11699

Figure 2. Our proposed framework. From the input image with the user’s hand, the joint stage first extracts feature map FI and sends
it to two decoders, one for hand segmentation and the other for generating joint feature Fj and predicting the hand-joint locations J .
Subsequently, the mesh stage fuses Fj and the shallow image feature Fl from the joint stage for predicting rough hand mesh Mr . Lastly,
we aggregate image feature Fl from the joint stage with the shallow layers of the joint encoder and global feature Fg from the mesh stage,
and passes the combined feature and the rough mesh to the graph convolutional layers (GCN) in the refine stage to regress offset mesh ∆M
and produce the final hand mesh Mf = Mr +∆M . The scissor icon means the corresponding branch can be cut off during the testing.

Each stage in our framework has a clear goal, so they can
better focus on learning the associated features, e.g., joint
stage for the overall hand shape and joints, mesh stage for
the rough hand mesh, and refine stage for learning to regress
the offset vectors to align the rough mesh with the user’s
hand in the image space. Also, the network model in each
stage can be kept small and compact for achieving real-time
performance. Next, we present the three stages in detail.

3.1. Joint Stage

Given the input image, the joint stage first encodes it us-
ing a feature extractor and then feeds the encoded feature
FI into two branches: one to predict the hand joints and the
other to predict the hand segmentation. For the hand-joint
branch, we use a feature decoder to generate the joint fea-
ture map Fj and then regress the hand-joint locations, i.e.,
3D coordinates of the 21 joints of a hand (denoted as J),
from Fj and FI via multiple dilated convolutional layers
and soft-argmax [7], following a similar strategy as [32]:

!
"

#

Jx = soft-argmax(Conv1D(avg
x(Fj))),

Jy = soft-argmax(Conv1D(avg
y(Fj))),

Jz = Conv1D(Φ(avg
x,y(FI))),

(1)

where subscripts x and y in J denote the image space and z
denotes depth; Conv1D denotes 1D convolution; Φ denotes
a block, which consists of a fully connection layer, 1D batch
normalization, and reshape function that rearranges the fea-
ture vector from RC to Rc′×d; C is the channel size of fea-
ture vector; d is the size of avgx(Fl); and c′ = C/d.

Considering that we need a plausible alignment between
the reconstructed hand mesh and the user’s hand in the im-
age space, we thus harass shallow features from the image

encoder to better capture the fine details of the hand, espe-
cially at the boundaries. Hence, we introduce another pre-
diction head in the joint stage for the hand segmentation
(see Figure 2), in which we use a U-Net [40] to process the
encoded feature map and predict the hand segmentation.

3.2. Mesh Stage

In the mesh stage, we first fuse joint feature Fj and shal-
low image feature Fl from the joint stage through a joint en-
coder; see again Figure 2. Note that we choose Fj instead
of J as input, since the predicted joints J may not be highly
accurate, so it may misguide the reconstruction. Also, com-
bining shallow feature Fl helps preserve the image features.
The fused feature is then sent to an encoder unit to produce
global mesh feature Fg . After that, we regress the 3D co-
ordinates of the vertices in hand mesh Mr from Fg through
multiple dilated convolutional layers and soft-argmax.

Since the rough mesh is restored from a low-resolution
(1/64×1/64 of the original) global feature, in which most
local features have lost due to the dilated kernels, so the
result is mostly smooth and undersampled at boundaries.
So, the rough mesh may not well align with the user’s hand
in the input image. Yet, this stage can quickly generate a
rough hand mesh in 3D that captures the overall hand shape,
while the refine stage can fine-tune the mesh by regressing
per-vertex offset vectors that are small and easy to learn.

3.3. Refine Stage

The bottom right of Figure 2 illustrates how we resid-
ually refine the rough mesh Mr predicted by the previous
mesh stage. Inspired by [25, 26, 52], we design the local
feature projection unit and the global feature broadcast unit

11700

Figure 3. Through a 3D-to-2D projection from the 3D hand mesh
to the 2D image space, we can extract high-resolution image fea-
tures in the image feature space with a bilinear interpolation and
collect image features for each vertex in the rough hand mesh.

to further extract local and global features from the input
image and previous encoder layers, respectively.

Local feature projection unit. To produce a fine hand
mesh that aligns with the real hand in input image, we are
inspired by [25] to design the local feature projection unit to
extract a single local feature vector per vertex in the rough
mesh based on the previous shallow layers and input image.

Similiar to [52], we first project each mesh vertex to the
2D image space of the input image (equivalently, the spa-
tial domain of feature maps) via a 3D-to-2D projection, as
illustrated in Figure 3. Then, we perform a bilinear inter-
polation around each projected vertex on the feature maps
to extract associated feature vectors. Here, the local feature
projection unit collects features from the input image, the
first layer of the image encoder, and also the first layer of
the joint encoder; see the light blue arrows in Figure 2.

Global feature broadcast unit. The local features help
us to address the fine details but they are insufficient. It
is because they do not provide (global) information about
the overall mesh structure. Concerning this, we introduce
the global feature broadcast unit that broadcasts the mesh’s
global feature to every mesh vertex. Here, inspired by [26],
we take deep feature Fg from the joint encoder in the mesh
stage, apply a global average pooling over it to obtain a sin-
gle 1-D vector, and reduce its channel dimension by 1/4 us-
ing a fully connected layer. After that, we attach this global
feature vector to every vertex of the rough mesh; see the
light purple arrow from Fg in Figure 2.

Graph-CNN. After collecting the local features from the
local feature projection unit and global features from the
global feature broadcast unit, we concatenate all the fea-
tures at each vertex in the mesh and then send the concate-
nated mesh feature to our Graph-CNN. From a high-level
perspective, the Graph-CNN aims to estimate one 3D offset
vector for each mesh vertex based on its input 3D coordi-
nates, as well as the collected local and global features, for
aligning the rough mesh to the hand in the image. This pro-
cessing is done by propagating features over the hand mesh
topology. For the graph convolution layers, we adopt the

Figure 4. An illustration of our Graph-CNN network, whose in-
put is the concatenated mesh feature (see Figure 2). This network
starts with a GINConvBlock, followed by three GINResBlocks
and another GINConvBlock, to produce the offset mesh ∆M .

formulation of Graph Isomorphism Network (GIN) convo-
lution from [53], which is defined as:

x′
i = MLPs(xi +

$

j∈N (i)

xj), (2)

where xi is the feature of the i-th node in the graph (equiv-
alently the i-th vertex in the rough mesh); x′

i is the updated
feature of the node; N (i) is an index set of the neighbor-
ing nodes of the i-th node; and MLPs denotes a series of
multi-layer perceptrons. The framework of the Graph-CNN
is illustrated in Figure 4. The network starts with a GIN-
ConvBlock, which contains a GIN convolution layer with
ReLU and 1D batch normalization. After that, the network
employs three GINResBlocks [26], each with two GINCon-
vBlocks and an identity connection, followed by a GINCon-
vBlock, to generate the offset mesh ∆M .

3.4. Training & Inference

We denote a dataset as {Ii, Si, J i
gt,M

i
gt}Ni=1, where N

is the total number of samples in the dataset; Ii is the i-th
input image; Si is the associated binary mask of the hand;
and J i

gt and M i
gt are the associated annotated 3D joint and

mesh coordinates of the hand, respectively. Note that the
3D joint coordinates can also be calculated from the mesh
using a pre-defined regression matrix G, e.g., J i

gt = GM i
gt.

We adopt an L1 loss to formulate both the mesh loss
Lmesh and joint loss Ljoint to supervise the predictions of
mesh and joint in our three-stage framework:

Lmesh = || M i
gt −M i

r || + || M i
gt −M i

f ||, (3)

Ljoint = || J i
gt − J i || + || J i

gt −GM i
r ||

+ || J i
gt −GM i

f ||,
(4)

Besides, inspired by [52], we adopt the normal loss Lnorm
for preserving the surface normals and the edge-length loss
Ledge to penalize flying vertices:

Lnorm =
$

f∈Mi
gt

$

e∈f

|| 〈!er, nf
gt〉 ||

+
$

f∈Mi
gt

$

e∈f

|| 〈 !ef , nf
gt〉 ||

(5)

11701

and Ledge =
$

f∈Mi
gt

$

e∈f

|| | !ef | − | !egt| ||

+
$

f∈Mi
gt

$

e∈f

|| |!er| − | !egt| ||,
(6)

where f denotes a triangle face; e denotes an edge of the
triangle; !egt, !er, and !ef denote the edge vector on f that
comes from M i

gt, M
i
r, and M i

f , respectively; and nf
gt de-

notes the surface normal of f based on M i
gt.

Next, we adopt the standard cross-entropy loss to super-
vise the hand segmentation:

Lsil = −
H×W$

j

yj log pj , (7)

where H ×W denotes the size of Si; yj denotes pixel j of
Si; and pj denotes the prediction result of pixel j.

Lastly, we employ a differentiable renderer to render the
predicted final hand mesh Mf in the image space to super-
vise the alignment through the render loss Lrender. Different
from [58, 1] that use a binary silhouette mask in the su-
pervision, we paint fingers of the ground-truth hand mesh
with different colors and supervise the prediction by color
matching to promote finger-level recognition. As the col-
ors in the painted image indicate the occlusion relationship
between the fingers and palm, “render” can further improve
the joint prediction accuracy as well. Formally, we have

Lrender =
1

HR ×WR

HR×WR$

j

|| R(M i
f)

j −R(M i
gt)

j ||2,

(8)
where R denotes the differentiable renderer; HR × WR
denotes the output resolution of R; and R(M i

f)
j and

R(M i
gt)

j denotes the color of pixel j in R(M i
f) and in

R(M i
gt), respectively.

Our overall loss is L = Lmesh + λjLjoint + λnLnormal +
λeLedge+λsLsil+λrLrender, where we empirically set λj =
λn = λe = 1, λs = 10, and λr = 0.1.

During the inference time, we can cut off the hand seg-
mentation branch and the hand joints prediction in the joint
stage to save computing time, without lowering the perfor-
mance; see the scissor icons in Figure 2.

4. Experiment & Results
4.1. Experimental Settings

Datasets. (i) FreiHAND [62] contains 32,560 real train-
ing samples and 3,960 real test samples, all annotated with
the MANO model. We use FreiHAND for both training
and testing. Note that we randomly selected 2,000 sam-
ples from the training set for alignment evaluation and em-
ployed the rest for training. (ii) ObMan [18] has 141,550

Table 1. Quantitative comparisons between our method and state-
of-the-arts on the FreiHAND dataset. ↓ means the lower the better;
↑ means the higher the better; and * means the method requires 2D
joint annotations as input. The unit of ME and PE is 10mm.

Methods venue ME ↓ PE ↓ F@5mm ↑ F@15mm ↑ FPS
Mean shape [62] ICCV2019 1.64 1.71 0.376 0.873 -
MANO fit [62] ICCV2019 1.37 1.37 0.439 0.892 -

Hasson et al. [18] ICCV2019 1.33 1.33 0.429 0.907 20
Boukh. et al. [3] CVPR2019 1.32 3.50 0.427 0.894 10

ExPose [11] ECCV2020 1.22 1.18 0.484 0.918 -
MANO CNN [62] ICCV2019 1.09 1.10 0.516 0.934 -
Kulon et al. [27] CVPR2020 0.86 0.84 0.614 0.966 60

I2L-MeshNet [32] ECCV2020 0.76 0.74 0.681 0.973 33.3
Pose2Mesh* [10] ECCV2020 0.76 0.74 0.683 0.973 22

Our w/o ObMan [18] 0.71 0.71 0.706 0.977 39.1
Our w/ ObMan [18] 0.67 0.67 0.724 0.981 39.1

synthetic training samples rendered with the MANO model.
We also train our network on ObMan to further boost its
performance. (iii) EgoDexter [36] has 1,485 real samples
captured in an egocentric view; we use it only for testing.

Evaluation metrics. For quantitative evaluation, we fol-
low the evaluation metrics in the FreiHAND online compe-
tition. (i) Mesh/pose error (ME/PE) measures the Euclidean
distances between the predicted and ground-truth mesh ver-
tices and joint coordinates. (ii) Mesh/Pose AUC reports the
area under the curve of the percentage of correct key points
(PCK) curve in different error threshold ranges. (iii) F-
scores measures the harmonic mean of the recall and preci-
sion between the predicted and ground-truth vertices; here,
we follow existing works to use F@5mm and F@15mm.

To evaluate image-space alignment, we compare the pro-
jected hand-mesh silhouette with the ground truth on two
common segmentation metrics: (i) Mean Intersection over
Union (mIoU), which measures the overlap regions and (ii)
Hausdoff distance (HD), which is the maximum distance of
a set to the nearest point in another set, so it is more sensi-
tive at boundaries. We report 95% HD in the evaluation.

Implementation details. We used ResNet-50 [19] pre-
trained on ImageNet [41] as the joint/mesh encoders. Our
network was trained using the Adam optimizer on two
Nvidia RTX Titan GPUs with a batch size of 32 per GPU for
25 epochs and an initial learning rate of 1e−4 (decay rate of
0.1 per 10 epochs). We resized the input image to 256×256
and augmented the data with random scaling, rotation, and
color jittering. Our network runs at 39.1 frames per sec. on
Nvidia RTX 2080 Ti, after we cut off the hand segmenta-
tion and joint prediction branches in joint stage. Our code
is released at https://wbstx.github.io/handar.

4.2. Comparison with State-of-the-art Methods

We follow existing works [62, 18, 3, 11, 27, 32, 10]
to quantitatively compare our method with state-of-the-art
methods on the FreiHAND test set. Since the ground truths

11702

Figure 5. The mesh/pose AUC comparison with the state-of-the-art methods. From left to right, the first and second plots present the
mesh and pose AUC results on the FreiHAND dataset, respectively, whereas the third plot presents the pose AUC result on the EgoDexter
dataset. The fourth plot presents the speed-accuracy plot of 3D hand-mesh reconstruction on the FreiHAND test-set, in which we obtain
the inference time by testing all methods on Nvidia RTX2080Ti-GPU. Our method achieves the best performance, while being real-time.

Figure 6. Visual comparisons between our method and state-of-
the-arts. The input images (left column) are from the FreiHAND
dataset [62]. Comparing the other three columns, we can see that
our method predicts better hand meshes that match the gestures in
input images with high-quality finger-level alignment.

of the test set are not accessible, the evaluation is con-
ducted by submitting our test results to the online server.
Table 1 and the left two plots of Figure 5 report the re-
sults, showing that our method outperforms others for all
the aforementioned metrics. Further, Figure 6 shows vi-
sual comparisons on three test images in the dataset. For
each input image, the first row shows the hand-image align-
ment by each method and the second row shows the pre-
dicted hand meshes. Please note that the code of Kulon et

al. [27] has not been released and Pose2Mesh [10] requires
2D joints annotations as input, we omit them in the compar-
ison. Comparing the results, we can see that other methods
may fail to predict correct gestures or not able to well align
the hand meshes in the image space. Our method is able
to predict more accurate hand poses and shapes, and well
aligns the hand meshes with the hands in images. More
comparisons can be found in the supplemental material.

Next, we evaluate on an unseen dataset (not used in train-
ing), which is EgoDexter [36], to compare the generality
of our method with several existing pose estimation meth-
ods [23, 3, 60, 16, 54]. Following [60], we use the centroids
of the finger tips as roots to align the prediction and the
ground truth. The third plot in Figure 5 shows the AUC
result. Note that, since Zhou et al. [60] did not provide
their pose PCK curve on EgoDexter, we only report their
AUC. On the other hand, [32] did not test their performance
on the EgoDexter dataset, so we do not report it in the fig-
ure. From the plot, we can see that our method achieves the
highest pose AUC value, comparing with all the other meth-
ods, demonstrating its generality and potential for practical
usage. Please check Figure 7 for more qualitative results
from EgoDexter and FreiHAND. Also, we report the speed-
accuracy comparison in the fourth plot shown in Figure 5.
As we can see from this plot and also from Table 1, our
method beats all recent methods on mesh prediction quality
and also achieves real-time performance.

4.3. Comparison of Alignment

To further evaluate the alignment quality, we render the
predicted hand mesh to produce a silhouette mask and com-
pare it with the ground-truth silhouette using the aforemen-
tioned metrics. Here, we compare our method with I2L-
MeshNet [32], which achieves state-of-the-art performance
on the FreiHAND dataset without requiring 2D joint an-
notations. Since there are no ground-truth masks for the
FreiHAND test set, we randomly select 2,000 images from

11703

Figure 7. More qualitative results on test images in the EgoDexter dataset (left) and in the FreiHAND dataset (right).

Figure 8. The alignment evaluation is conducted on two levels. For
hand-level alignment, we evaluate only the silhouette of the whole
hand between the prediction and ground truth. For finger-level
alignment, we evaluate individual fingers and palm. Finger-level
alignment is more demanding than hand-level alignment.

Table 2. Quantitative alignment comparisons between our method
and I2L-MeshNet [32]. ↓ means the lower the better and ↑ means
the higher the better. Note that we report the average HD for the
fingers and palm in the evaluation of finger-level alignment.

Methods Hand-level Finger-level
mIoU ↑ HD ↓ mIoU ↑ HD ↓

I2L-MeshNet [32] 92.08 6.17 71.07 8.42
Our w/o ObMan [18] 92.86 4.91 77.08 7.06
Our w/ ObMan [18] 92.95 4.70 77.33 6.82

the training set for validation and evaluate the hand-image
alignment with resolution 224×224 on two levels: (i) hand-
level alignment, in which we only evaluate the binary sil-
houette of the hand; and (ii) finger-level alignment, in which
we evaluate the alignment for each finger and the palm.
Note that finger-level alignment is more demanding than
hand-level alignment; see Figure 8 for illustrations.

Table 2 shows the quantitative comparison result, from
which we can see that our method outperforms I2LMesh-
Net [32] with a much higher mIoU and smaller HD values,
which reveals a much better overall image-mesh alignment
and also the accuracy at the boundaries.

Figure 9. Ablation study on our decoupled design.

4.4. Ablation Study

Effects of decoupled design. To evaluate our decoupled
design, we conducted an ablation study by simplifying our
pipeline for the following two cases: (i) remove the joint
stage and directly predict hand segmentation in the mesh
stage; and (ii) remove the refine stage and treat Mr as the
final hand mesh. The ablation results are reported in the top
two rows of Table 3. We can observe obvious performance
drop when removing any one of the two stages, showing
the effectiveness of each stage and their contributions to the
whole framework for better performance. Note that we con-
ducted three runs and reported the average for each ablation
case. Please see Figure 9 for visual comparison.

Effects of refinement unit & loss terms. Further, we
evaluate the contributions of various units in the refine
stage and in the losses for the following cases: (i) remove
the local projection unit; (ii) remove the global broadcast
unit; (iii) directly regress final mesh vertices by the Graph-
CNN instead of offset vectors; (iv) remove the segmentation
branch and Lsil; and (v) remove Lrender. Table 3 reports the
ablation results, in which we also conducted three runs and
reported the average for each ablation case. Clearly, our full

11704

Figure 10. We showcase four example AR interaction scenarios to demonstrate our method’s applicability (from left to right): (i) a virtual
paper band around the user’s hand, (ii) a virtual try-on with a ring (note the plausible hand occlusions with the virtual objects); (iii) we
may splash virtual water on the user’s hand and run a physical simulation, and (iv) the user can directly grab and manipulate a virtual
walkie-talkie, and press a button on it. Please watch full videos of these scenarios in https://wbstx.github.io/handar.

Table 3. Comparing the performance of our full pipeline (bottom-
most) with various ablation cases. For each case in the experiment,
we conducted three runs and reported the average.

Models Mesh AUC ↑ Pose AUC ↑ mIoU↑ HD↓
w/o joint stage 0.858±0 0.860±0 92.42±0.10 5.12±0.08
w/o refine stage 0.860±0 0.861±0 92.05±0.04 5.93±0.07

w/o local 0.860±5e−4 0.862±5e−4 92.55±0.05 5.34±0.04
w/o global 0.862±5e−4 0.864±5e−4 92.63±0.04 5.01±0.07
w/o offset 0.782±2e−3 0.858±3e−3 88.01±0.10 7.97±0.11
w/o Lsil 0.862±5e−4 0.864±5e−4 92.50±0.08 5.19±0.08

w/o Lrender 0.863±0 0.865±0 92.80±0.02 4.97±0.04
Full 0.866±5e−4 0.868±5e−4 92.95±0.04 4.70±0.02

pipeline performs the best for all metrics, and removing any
component reduces the overall performance, showing that
each component contributes to improve the final result. Par-
ticularly, note that our method has a large performance drop
when using the Graph-CNN to directly regress the mesh
vertices instead of offset vectors. The reason behind is that
our Graph-CNN is designed to regress small values, which
are relatively easy to learn for this small Graph-CNN.

4.5. Applications

Our method can support direct hand interactions with 3D
virtual objects in AR. Figures 1 and 10 show various in-
teraction scenarios. With the reconstructed hand mesh that
plausibly aligns with the user’s hand in the input image, we
can (i) resolve the occlusion between the virtual objects and
the user’s hand (see the first two examples in the figure);
(ii) interact with a physical simulation, e.g., water, in the
3D AR space (see the third example); and (iii) directly grab
and manipulate a virtual object, say by pressing on a but-
ton in the virtual walkie-talkie (see the last example in the
figure). The associated full videos that were lively captured
can be found in the supplemental material.

5. Conclusion & Future Work

This paper presents a new framework for 3D hand-mesh
reconstruction by decoupling the task into three stages: the
joint stage predicts the 3D coordinates of hand joints and
the hand segmentation mask; the mesh stage estimates a
rough 3D hand mesh; and the refine stage collects local and
global features from previous layers and learns to regress
per-vertex offset vectors to help align the rough mesh to the
hand image with finger-level alignment. Experimental re-
sults demonstrate that our method outperforms the state-of-
the-art methods for both the hand mesh/pose precision and
mesh-image alignment. Also, our method is fast and can
run in real-time on commodity graphics hardware.

In the future, we plan to explore methods to produce
high-resolution (fine-grained) hand-mesh predictions that
better match the smooth boundaries of the real hand. Also,
we would like to explore the possibility of designing an
adaptive refine stage that focuses more on aligning bound-
ary vertices to improve the overall efficiency, while further
cutting off the computation. Lastly, we plan also to explore
the deployment of our method on mobile devices.

Acknowledgments. We thank anonymous reviewers for
the valuable comments. This work is supported by the Re-
search Grants Council of the Hong Kong Special Adminis-
trative Region (Project No. CUHK 14206320).

References
[1] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim. Push-

ing the envelope for RGB-based dense 3D hand pose estima-
tion via neural rendering. In CVPR, pages 1067–1076, 2019.

[2] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim.
Weakly-supervised domain adaptation via GAN and mesh

11705

model for estimating 3D hand poses interacting objects. In
CVPR, pages 6121–6131, 2020.

[3] Adnane Boukhayma, Rodrigo de Bem, and Philip H.S. Torr.
3D hand shape and pose from images in the wild. In CVPR,
pages 10843–10852, 2019.

[4] Yujun Cai, Liuhao Ge, Jianfei Cai, Nadia Magnenat-
Thalmann, and Junsong Yuan. 3D hand pose estimation us-
ing synthetic data and weakly labeled RGB images. IEEE
PAMI, 2020. to appear.

[5] Yujun Cai, Liuhao Ge, Jianfei Cai, and Junsong Yuan.
Weakly-supervised 3D hand pose estimation from monoc-
ular RGB images. In ECCV, pages 666–682, 2018.

[6] Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham,
Junsong Yuan, and Nadia Magnenat Thalmann. Exploit-
ing spatial-temporal relationships for 3D pose estimation via
graph convolutional networks. In ICCV, pages 2272–2281,
2019.

[7] Olivier Chapelle and Mingrui Wu. Gradient descent opti-
mization of smoothed information retrieval metrics. Infor-
mation Retrieval, pages 216–235, 2010.

[8] Xingyu Chen, Yufeng Liu, Chongyang Ma, Jianlong Chang,
Huayan Wang, Tian Chen, Xiaoyan Guo, Pengfei Wan, and
Wen Zheng. Camera-space hand mesh recovery via seman-
tic aggregation and adaptive 2D-1D registration. In CVPR,
pages 13274–13283, 2021.

[9] Yujin Chen, Zhigang Tu, Liuhao Ge, Dejun Zhang, Ruizhi
Chen, and Junsong Yuan. SO-HandNet: Self-organizing
network for 3D hand pose estimation with semi-supervised
learning. In ICCV, pages 6961–6970, 2019.

[10] Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee.
Pose2Mesh: Graph convolutional network for 3D human
pose and mesh recovery from a 2D human pose. In ECCV,
pages 769–787, 2020.

[11] Vasileios Choutas, Georgios Pavlakos, Timo Bolkart, Dim-
itrios Tzionas, and Michael J. Black. Monocular expressive
body regression through body-driven attention. In ECCV,
pages 20–40, 2020.

[12] Bardia Doosti, Shujon Naha, Majid Mirbagheri, and David J.
Crandall. HOPE-Net: A graph-based model for hand-object
pose estimation. In CVPR, pages 6608–6617, 2020.

[13] Zhipeng Fan, Jun Liu, and Yao Wang. Adaptive computa-
tionally efficient network for monocular 3D hand pose esti-
mation. In ECCV, pages 127–144, 2020.

[14] Linpu Fang, Xingyan Liu, Li Liu, Hang Xu, and Wenxiong
Kang. JGR-P2O: Joint graph reasoning based pixel-to-offset
prediction network for 3D hand pose estimation from a sin-
gle depth image. In ECCV, pages 120–137, 2020.

[15] Liuhao Ge, Zhou Ren, Yuncheng Li, Zehao Xue, Yingying
Wang, Jianfei Cai, and Junsong Yuan. 3D hand shape and
pose estimation from a single RGB image. In CVPR, pages
10833–10842, 2019.

[16] Shangchen Han, Beibei Liu, Randi Cabezas, Christopher D
Twigg, Peizhao Zhang, Jeff Petkau, Tsz-Ho Yu, Chun-Jung
Tai, Muzaffer Akbay, Zheng Wang, et al. MEgATrack:
monochrome egocentric articulated hand-tracking for vir-
tual reality. ACM Transactions on Graphics (SIGGRAPH),
39(4):87:1–87:13, 2020.

[17] Yana Hasson, Bugra Tekin, Federica Bogo, Ivan Laptev,
Marc Pollefeys, and Cordelia Schmid. Leveraging photomet-
ric consistency over time for sparsely supervised hand-object
reconstruction. In CVPR, pages 571–580, 2020.

[18] Yana Hasson, Gul Varol, Dimitrios Tzionas, Igor Kale-
vatykh, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning joint reconstruction of hands and manipulated ob-
jects. In ICCV, pages 11807–11816, 2019.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016.

[20] Yihui He, Rui Yan, Katerina Fragkiadaki, and Shoou-I Yu.
Epipolar transformers. In CVPR, pages 7779–7788, 2020.

[21] Lin Huang, Jianchao Tan, Ji Liu, and Junsong Yuan. Hand-
Transformer: Non-autoregressive structured modeling for
3D hand pose estimation. In ECCV, pages 17–33, 2020.

[22] Weiting Huang, Pengfei Ren, Jingyu Wang, Qi Qi, and
Haifeng Sun. AWR: Adaptive weighting regression for 3D
hand pose estimation. In AAAI, pages 11061–11068, 2020.

[23] Umar Iqbal, Pavlo Molchanov, Thomas Breuel Juergen Gall,
and Jan Kautz. Hand pose estimation via latent 2.5D
heatmap regression. In ECCV, pages 118–134, 2018.

[24] Sameh Khamis, Jonathan Taylor, Jamie Shotton, Cem Ke-
skin, Shahram Izadi, and Andrew Fitzgibbon. Learning an
efficient model of hand shape variation from depth images.
In CVPR, pages 2540–2548, 2015.

[25] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. PointRend: Image segmentation as rendering. In
CVPR, pages 9799–9808, 2020.

[26] Nikos Kolotouros, Georgios Pavlakos, and Kostas Dani-
ilidis. Convolutional mesh regression for single-image hu-
man shape reconstruction. In CVPR, pages 4501–4510,
2019.

[27] Dominik Kulon, Riza Alp Guler, Iasonas Kokkinos, Michael
Bronstein, and Stefanos Zafeiriou. Weakly-supervised mesh-
convolutional hand reconstruction in the wild. In CVPR,
pages 4990–5000, 2020.

[28] Shile Li and Dongheui Lee. Point-to-pose voting based hand
pose estimation using residual permutation equivariant layer.
In CVPR, pages 11927–11936, 2019.

[29] Jameel Malik, Ibrahim Abdelaziz, Ahmed Elhayek, Soshi
Shimada, Sk Aziz Ali, Vladislav Golyanik, Christian
Theobalt, and Didier Stricker. HandVoxNet: Deep voxel-
based network for 3D hand shape and pose estimation from
a single depth map. In CVPR, pages 7113–7122, 2020.

[30] Jameel Malik, Ahmed Elhayek, Fabrizio Nunnari, Kiran
Varanasi, Kiarash Tamaddon, Alexis Heloir, and Didier
Stricker. DeepHPS: End-to-end estimation of 3D hand pose
and shape by learning from synthetic depth. In 3DV, pages
110–119, 2018.

[31] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee.
V2V-PoseNet: Voxel-to-voxel prediction network for accu-
rate 3D hand and human pose estimation from a single depth
map. In CVPR, pages 5079–5088, 2018.

[32] Gyeongsik Moon and Kyoung Mu Lee. I2L-MeshNet:
Image-to-lixel prediction network for accurate 3D human
pose and mesh estimation from a single RGB image. In
ECCV, pages 752–768, 2020.

11706

[33] Gyeongsik Moon, Takaaki Shiratori, and Kyoung Mu
Lee. DeepHandMesh: A weakly-supervised deep encoder-
decoder framework for high-fidelity hand mesh modeling. In
ECCV, pages 440–455, 2020.

[34] Franziska Mueller, Florian Bernard, Oleksandr Sotny-
chenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, and
Christian Theobalt. GANerated hands for real-time 3D hand
tracking from monocular RGB. In CVPR, pages 49–59,
2018.

[35] Franziska Mueller, Micah Davis, Florian Bernard, Olek-
sandr Sotnychenko, Mickeal Verschoor, Miguel A Otaduy,
Dan Casas, and Christian Theobalt. Real-time pose and
shape reconstruction of two interacting hands with a sin-
gle depth camera. ACM Transactions on Graphics (SIG-
GRAPH), 38(4):49:1–49:13, 2019.

[36] Franziska Mueller, Dushyant Mehta, Oleksandr Sotny-
chenko, Srinath Sridhar, Dan Casas, and Christian Theobalt.
Real-time hand tracking under occlusion from an egocentric
RGB-D sensor. In ICCV, pages 1154–1163, 2017.

[37] Paschalis Panteleris, Iason Oikonomidis, and Antonis Argy-
ros. Using a single RGB frame for real time 3D hand pose
estimation in the wild. In WACV, pages 436–445, 2018.

[38] Neng Qian, Jiayi Wang, Franziska Mueller, Florian Bernard,
Vladislav Golyanik, and Christian Theobalt. HTML: A para-
metric hand texture model for 3D hand reconstruction and
personalization. In ECCV, pages 54–71, 2020.

[39] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and bod-
ies together. ACM Transactions on Graphics (SIGGRAPH
Asia), 36(6):245:1–245:17, 2017.

[40] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, pages 234–241, 2015.

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. ImageNet large
scale visual recognition challenge. IJCV, 115(3):211–252,
2015.

[42] Jingjing Shen, Thomas J Cashman, Qi Ye, Tim Hutton, Toby
Sharp, Federica Bogo, Andrew Fitzgibbon, and Jamie Shot-
ton. The phong surface: Efficient 3D model fitting using
lifted optimization. In ECCV, pages 687–703, 2020.

[43] Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Otmar Hilliges,
and Jan Kautz. Weakly supervised 3D hand pose estimation
via biomechanical constraints. In ECCV, pages 211–228,
2020.

[44] Adrian Spurr, Jie Song, Seonwook Park, and Otmar Hilliges.
Cross-modal deep variational hand pose estimation. In
CVPR, pages 89–98, 2018.

[45] David Joseph Tan, Thomas Cashman, Jonathan Taylor, An-
drew Fitzgibbon, Daniel Tarlow, Sameh Khamis, Shahram
Izadi, and Jamie Shotton. Fits like a glove: Rapid and re-
liable hand shape personalization. In CVPR, pages 5610–
5619, 2016.

[46] Jonathan Taylor, Richard Stebbing, Varun Ramakrishna,
Cem Keskin, Jamie Shotton, Shahram Izadi, Aaron Hertz-
mann, and Andrew Fitzgibbon. User-specific hand modeling

from monocular depth sequences. In CVPR, pages 644–651,
2014.

[47] Bugra Tekin, Federica Bogo, and Marc Pollefeys. H+O: Uni-
fied egocentric recognition of 3D hand-object poses and in-
teractions. In CVPR, pages 4511–4520, 2019.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, pages 5998–
6008, 2017.

[49] Chengde Wan, Thomas Probst, Luc Van Gool, and Angela
Yao. Self-supervised 3D hand pose estimation through train-
ing by fitting. In CVPR, pages 10853–10862, 2019.

[50] Chengde Wan, Thomas Probst, Luc Van Gool, and Angela
Yao. Dual grid net: Hand mesh vertex regression from single
depth maps. In ECCV, pages 442–459, 2020.

[51] Jiayi Wang, Franziska Mueller, Florian Bernard, Suzanne
Sorli, Oleksandr Sotnychenko, Neng Qian, Miguel A.
Otaduy, Dan Casas, and Christian Theobalt. RGB2Hands:
real-time tracking of 3D hand interactions from monocular
RGB video. ACM Transactions on Graphics (SIGGRAPH
Asia), 39(6):218:1–218:16, 2020.

[52] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2Mesh: Generating 3D mesh
models from single RGB images. In ECCV, pages 52–67,
2018.

[53] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? In ICLR, 2019.

[54] John Yang, Hyung Jin Chang, Seungeui Lee, and Nojun
Kwak. SeqHAND: RGB-sequence-based 3D hand pose and
shape estimation. In ECCV, pages 122–139, 2020.

[55] Lixin Yang, Jiasen Li, Wenqiang Xu, Yiqun Diao, and Cewu
Lu. BiHand: Recovering hand mesh with multi-stage bi-
sected hourglass networks. In BMVC, 2020.

[56] Linlin Yang, Shile Li, Dongheui Lee, and Angela Yao.
Aligning latent spaces for 3D hand pose estimation. In ICCV,
pages 2335–2343, 2019.

[57] Linlin Yang and Angela Yao. Disentangling latent hands for
image synthesis and pose estimation. In CVPR, pages 9877–
9886, 2019.

[58] Xiong Zhang, Qiang Li, Hong Mo, Wenbo Zhang, and Wen
Zheng. End-to-end hand mesh recovery from a monocular
RGB image. In ICCV, pages 2354–2364, 2019.

[59] Long Zhao, Xi Peng, Yuxiao Chen, Mubbasir Kapadia,
and Dimitris N. Metaxas. Knowledge as priors: Cross-
modal knowledge generalization for datasets without supe-
rior knowledge. In CVPR, pages 6528–6537, 2020.

[60] Yuxiao Zhou, Marc Habermann, Weipeng Xu, Ikhsanul
Habibie, Christian Theobalt, and Feng Xu. Monocular real-
time hand shape and motion capture using multi-modal data.
In CVPR, pages 5346–5355, 2020.

[61] Christian Zimmermann and Thomas Brox. Learning to esti-
mate 3D hand pose from single RGB images. In ICCV, pages
4903–4911, 2017.

[62] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan
Russell, Max Argus, and Thomas Brox. FreiHAND: A
dataset for markerless capture of hand pose and shape from
single RGB images. In ICCV, pages 813–822, 2019.

11707

