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Abstract

Growing at a fast pace, modern autonomous systems will
soon be deployed at scale, opening up the possibility for
cooperative multi-agent systems. Sharing information and
distributing workloads allow autonomous agents to better
perform tasks and increase computation efficiency. How-
ever, shared information can be modified to execute adver-
sarial attacks on deep learning models that are widely em-
ployed in modern systems. Thus, we aim to study the robust-
ness of such systems and focus on exploring adversarial at-
tacks in a novel multi-agent setting where communication is
done through sharing learned intermediate representations
of neural networks. We observe that an indistinguishable
adversarial message can severely degrade performance, but
becomes weaker as the number of benign agents increases.
Furthermore, we show that black-box transfer attacks are
more difficult in this setting when compared to directly per-
turbing the inputs, as it is necessary to align the distribution
of learned representations with domain adaptation. Our
work studies robustness at the neural network level to con-
tribute an additional layer of fault tolerance to modern se-
curity protocols for more secure multi-agent systems.

1. Introduction
With rapid improvements of modern autonomous sys-

tems, it is only a matter of time until they are deployed at
scale, opening up the possibility of cooperative multi-agent
systems. Individual agents can benefit greatly from shared
information to better perform their tasks [26, 59]. For ex-
ample, by aggregating sensory information from multiple
viewpoints, a fleet of vehicles can perceive the world more
clearly, providing significant safety benefits [52]. More-
over, in a network of connected devices, distributed pro-
cessing across multiple agents can improve computation ef-

*Equal contribution.
Work done while all authors were at UberATG.

ficiency [18]. While cooperative multi-agent systems are
promising, relying on communication between agents can
pose security threats as shared information can be malicious
or unreliable [54, 3, 37].

Meanwhile, modern autonomous systems typically rely
on deep neural networks known to be vulnerable to adver-
sarial attacks. Such attacks craft small and imperceivable
perturbations to drastically change a neural network’s be-
havior and induce false outputs [48, 21, 8, 30]. Even if an at-
tacker has the freedom to send any message, such small per-
turbations may be the most dangerous as they are indistin-
guishable from their benign counterparts, making corrupted
messages difficult to detect while still highly malicious.

While modern cyber security algorithms provide ade-
quate protection against communication breaches, adversar-
ial robustness of multi-agent deep learning models has yet
to be studied. Meanwhile, when it comes to safety-critical
applications like self-driving, additional layers of redun-
dancy and improved security are always welcome. Thus,
by studying adversarial robustness, we can enhance modern
security protocols by introducing an additional layer of fault
tolerance at the neural network level.

Adversarial attacks have been studied extensively but ex-
isting approaches mostly consider attacks on input domains
like images [48, 21], point clouds [7, 50], and text [44, 14].
On the other hand, multi-agent systems often distribute
computation across different devices and transmit inter-
mediate representations instead of input sensory informa-
tion [52, 18]. Specifically, when deep learning inference is
distributed across different devices, agents will communi-
cate by transmitting feature maps, which are activations of
intermediate neural network layers. Such learned commu-
nication has been shown to be superior due to transmitting
compact but expressive messages [52] as well as efficiently
distributing computation [18].

In this paper, we investigate adversarial attacks in this
novel multi-agent setting where perturbations are applied
to learned intermediate representations. An illustration is
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Figure 1. Overview of a multi-agent setting with one malicious agent (red). Here the malicious agent attempts to sabotage a victim agent
by sending an adversarial message. The adversarial message is indistinguishable from the original, making the attack difficult to detect.

shown in Figure 1. We conduct experiments and showcase
vulnerabilities in two highly practical settings: multi-view
perception from images in a fleet of drones and multi-view
perception from LiDAR in a fleet of self-driving vehicles
(SDVs). By leveraging information from multiple view-
points, these multi-agent systems are able to significantly
outperform those that do not exploit communication.

We show, however, that perturbed transmissions which
are indistinguishable from the original can severely degrade
the performance of receivers particularly as the ratio of ma-
licious to benign agents increases. With only a single at-
tacker, as the number of benign agents increase, attacks be-
come significantly weaker as aggregating more messages
decreases the influence of malicious messages. When mul-
tiple attackers are present, they can coordinate and jointly
optimize their perturbations to strengthen the attack. In
terms of defense, when the threat model is known, adver-
sarial training is highly effective, and adversarially trained
models can defend against perturbations almost perfectly
and even slightly enhance performance on natural exam-
ples. Without knowledge of the threat model, we can
still achieve reasonable adversarial robustness by designing
more robust message aggregation modules.

We then move on to more practical attacks in a black box
setting where the model is unknown to the adversary. Since
query-based black box attacks need to excessively query a
target model that is often unaccessible, we focus on query-
free transfer attacks that are more feasible in practice. How-
ever, transfer attacks are much more difficult to execute at
the feature-level than on input domains. In particular, since
perturbation domains are model dependent, vanilla transfer
attacks are ineffective because two neural networks with the
same functionality can have very different intermediate rep-
resentations. Here, we find that training the surrogate model
with domain adaptation is key to aligning the distribution of
intermediate features and achieve much better transferabil-

ity. To further enhance the practicality of attacks, we pro-
pose to exploit the temporal consistency of sensory infor-
mation processed by modern autonomous systems. When
frames of sensory information are collected milliseconds
apart, we can exploit the redundancy in adjacent frames to
create efficient, low-budget attacks in an online manner.

2. Related Work
Multi-Agent Deep Learning Systems: Multi-agent and
distributed systems are widely employed in real-world ap-
plications to improve computation efficiency [27, 17, 2],
collaboration [52, 59, 18, 41, 42], and safety [38, 35]. Re-
cently, autonomous systems have improved greatly with the
help of neural networks. New directions have opened up
in cooperative multi-agent deep learning systems e.g., fed-
erated learning [27, 2]. Although multi-agent communi-
cation introduces a multitude of benefits, communication
channels are vulnerable to security breaches, as commu-
nication channels can be attacked [34, 45], encryption al-
gorithms can be broken [46], and agents can be compro-
mised [5, 61]. Thus, imperfect communication channels
may be used to execute adversarial attacks which are es-
pecially effective against deep learning systems. While ro-
bustness has been studied in the context of federated learn-
ing [20, 1, 56, 19], the threat models are different as dataset
poisoning and model poisoning are typically used. To the
best of our knowledge, few works study adversarial robust-
ness on multi-agent deep learning systems during inference.

Adversarial Attacks: Adversarial attacks were first dis-
covered in the context of image classification [48], where
a small imperceivable perturbation can drastically change a
neural network’s behaviour and induce false outputs. Such
attacks were then extended to various applications such
as semantic segmentation [57] and reinforcement learn-
ing [24]. There are two main settings for adversarial at-
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Figure 2. Attacking object detection proposals: False positives are created by changing the class of background proposals and false
negatives are created by changing the class of the original proposals.

tacks - white box and black box. In a white box set-
ting [48, 21, 30], the attacker has full access to the tar-
get neural network weights and adversarial examples can
be generated using gradient-based optimization to maxi-
mize the network’s error. In contrast, black box attacks are
conducted without knowledge of the target neural network
weights and therefore without any gradient computation.
In this case, attackers can leverage real world knowledge
to inject adversaries that resemble common real world ob-
jects [47, 36]. However, if the attacker is able to query the
target model, the literature proposes several different strate-
gies to perform query-based attacks [4, 12, 6, 10]. How-
ever, query-based attacks are infeasible for some applica-
tions as they typically require prohibitively large amounts
of queries and computation. Apart from query-based at-
tacks, a more practical but more challenging alternative is
to conduct transfer attacks [39, 58, 16] which do not require
querying the target model. In this setting, the attacker trains
a surrogate model that imitates the target model. By doing
so, the hope is that perturbations generated for the surrogate
model will transfer to the target model.

Perturbations In Feature Space: While most works in
the literature focus on input domains like images, some
prior works have considered perturbations on intermediate
representations within neural networks. Specifically, [25]
estimated the projection of adversarial gradients on a se-
lected subspace to reduce the queries to a target model.
[40, 44, 14] proposed to generate adversarial perturbation in
word embeddings for finding adversarial but semantically-
close substitution words. [55, 60] showed that training on
adversarial embeddings could improve the robustness of
Transformer-based models for NLP tasks.

3. Attacks On Multi-Agent Communication
This section first introduces the multi-agent framework

in which agents leverage information from multiple view-

points by transmitting intermediate feature maps. We then
present our method for generating adversarial perturbations
in this setting. Moving on to more practical settings, we
consider black box transfer attacks and find that it is nec-
essary to align the distribution of intermediate representa-
tions. Here, training a surrogate model with domain adapta-
tion can create transferable perturbations. Finally, we show
efficient online attacks by exploiting the temporal consis-
tency of sensory inputs collected at high frequency.

3.1. Multi-Agent Communication

We consider a setting where multiple agents cooperate to
better perform their tasks by sharing observations from dif-
ferent viewpoints encoded via a learned intermediate rep-
resentation. Adopting prior work [52], we assume a ho-
mogeneous set of agents using the same neural network.
Then, each agent i processes sensor input xi to obtain an
intermediate representation mi = F (xi). The interme-
diate feature map is then broadcasted to other agents in
the scene. Upon receiving messages, agent j will aggre-
gate and process all incoming messages to generate output
Zj = G(m1, . . . ,mN ), where N is the number of agents.
Suppose that an attacker agent i targets a victim agent j.
Here, the attacker attempts to send an indistinguishable ad-
versarial message m

′

i = mi + δ to maximize the error in
Z

′

j = G(m1, . . .mi + δ,mN ). The perturbation δ is con-
strained by ‖δ‖p ≤ ε to ensure that the malicious message
is subtle and difficult to detect. An overview of the multi-
agent setting is shown in Figure 1.

In this paper, we specifically focus on object detection
as it is a challenging task where aggregating information
from multiple viewpoints is particularly helpful. In addi-
tion, many downstream robotics tasks depend on detection
and thus a strong attack can jeopardize the performance of
the full system. In this case, output Z is a set of M bound-
ing box proposals z(1), . . . , z(M) at different spatial loca-
tions. Each proposal consists of class scores zσ0

, . . . , zσk
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Figure 3. Our proposed transfer attack which incorporates domain adaptation when training the surrogate model. During training, the
discriminator forces F ′ to produce intermediate representations similar to F . As a result, G′ can generate perturbations that transfer to G.

and bounding box parameters describing the spatial loca-
tion and dimensions of the bounding box. Here classes
0, . . . , k − 1 are the object classes and k denotes the back-
ground class where no objects are detected.

When performing detection, models try to output the cor-
rect object class k and maximize the ratio of intersection
over union (IOU) of the proposed and ground truth bound-
ing boxes. In a post processing step, proposals with high
confidence are selected and overlapping bounding boxes are
filtered with non-maximum suppression (NMS) to ideally
produce a single estimate per ground truth object.

3.2. Adversarial Perturbation Generation

We first introduce our loss objective for generating ad-
versarial perturbations against object detection. To generate
false outputs, we aim to confuse the proposal class. For
detected objects, we suppress the score of the correct class
to generate false negatives. For background classes, false
positives are created by pushing up the score of an object
class. In addition, we also aim to minimize the intersection-
over-union (IoU) of the bounding box proposals to fur-
ther degrade performance by producing poorly localized ob-
jects. We define the adversarial loss of the perturbed output
z′ with respect to an unperturbed output z instead of the
ground truth, as it may not always be available to the at-
tacker. For each proposal z, let u = argmaxi{zσi

|i =
0 . . .m} be the highest confidence class. Given the origi-
nal object proposal z and the proposal after perturbation z′,
our loss function tries to push z′ away from z:

`adv(z
′, z) =


− log(1− z′σu

) · IoU(z′, z) if u 6= k and zσu
> τ+,

−λ · z′γσv
log(1− z′σv

) if u = k and zσu
> τ−,

0 otherwise

(1)

An illustration of the attack objective is shown in Figure 2.
When u 6= k and the original prediction is not a back-
ground class, we apply an untargetted loss to reduce the
likelihood of the intended class. When the intended pre-

diction is the background class k, we specifically target a
non-background class v to generate a false positive. We
simply choose v to be the class with the highest confidence
that is not the background class. The IoU operator denotes
the intersection over union of two proposals, λ is a weight-
ing coefficient, and τ−, τ+ filter out proposals that are not
confident enough. We provide more analysis and ablations
to justify our loss function design in our experiments.

Following prior work [50], it is necessary to minimize
the adversarial loss over all proposals. Thus, the optimal
perturbation under an ε - `p bound is

δ? = argmin
‖δ‖p≤ε

M∑
m=1

`adv(z
′(m), z(m)). (2)

Our work considers an infinity norm p =∞ and we min-
imize this loss across all proposals using projected gradient
descent (PGD) [31], clipping δ to be within [−ε, ε].

3.3. Transfer Attack

We also consider transfer attacks as they are the most
practical. White box attacks assume access to the victim
model’s weights which is difficult to obtain in practice. On
the other hand, query-based optimization is too expensive to
execute in real time as state-of-the-art methods still require
thousands of queries [13, 11] on CIFAR-10. Instead, when
we do not have access to the weights of the victim model
G, we can imitate it with a surrogate model G′ such that
perturbations generated by the surrogate model can transfer
to the target model.

One major challenge for transfer attacks in our setting
is that perturbations are generated on intermediate feature
maps. Our experiments show that vanilla transfer attacks
are almost completely ineffective as two networks with the
same functionality do not necessarily have the same inter-
mediate representations. When training F and G, there
is no direct supervision on the intermediate features m =
F (x). Therefore, even with the same architecture, dataset,
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Figure 4. Two multi-agent datasets we use. On the left are images of ShapeNet objects taken from different view points. On the right are
LiDAR sweeps by different vehicles in the same scene.

and training schedule, a surrogate F ′ may produce mes-
sages m′ with very different distribution from m. As an ex-
ample, a permutation of feature channels carries the same
information but results in a different distribution. In gen-
eral, different random seeds, network initializations or non-
deterministic GPU operations can result in different inter-
mediate representations. It follows that if m′ does not faith-
fully replicate m, we cannot expect G′ to imitate G.

Thus, to execute transfer attacks, we must have access
to samples of the intermediate feature maps. Specifically,
we consider a scenario where the attacker can spy on the
victim’s communication channel to obtain transmitted mes-
sages. However, since sensory information is not transmit-
ted, the attacker does not have access to pairs of input x
and intermediate representation m to directly supervise the
surrogate F ′ via distillation. Thus, we propose to use Ad-
versarial Discriminative Domain Adaptation (ADDA) [51]
to align the distribution of m and m′ without explicit input-
feature pairs. An overview is shown in Figure 3.

In the original training pipeline, F ′ and G′ would be
trained to minimize task loss

Ltask(z, y, b) =
{
− log(zσy )− IoU(z, b) if y 6= k,

− log(zσy ) if y = k,
(3)

where b is a ground truth bounding box and y is its class.
The task loss maximizes the log likelihood of the correct
class and the IoU between the proposal box and the ground
truth box. In addition, we encourage domain adaptation by
introducing a discriminator D to distinguish between real
messagesm and surrogate messagesm′. The three modules
F ′, G′, and D can be optimized using the following min-
max criterion:

min
F ′ G′

max
D
Ltask(x) + β

[
logD(F (x)) + log(1−D(F ′(x)))]

(4)

where β is a weighting coefficient and we use binary cross
entropy loss to supervise the discriminator. During training,

we adopt spectral normalization [33] in the discriminator
and the two-time update rule [22] for stability.

3.4. Online Attack

In modern applications of autonomous systems, consec-
utive frames of sensory information are typically collected
only milliseconds apart. Thus, there is a large amount of
redundancy between consecutive frames which can be ex-
ploited to achieve more efficient adversarial attacks. Fol-
lowing previous work [53] in images, we propose to exploit
this redundancy by using the perturbation from the previous
time step as initialization for the current time step.

Furthermore, we note that intermediate feature maps
capture the spatial context of sensory observations, which
change due to the agent’s egomotion. Therefore, by apply-
ing a rigid transformation on the perturbation at every time
step to account for egomotion, we can generate stronger
perturbations that are synchronized with the movement of
sensory observations relative to the agent. In this case, the
perturbations are updated as follows:

δ(t+1) ← Ht→t+1(δ
(t)) − α∇Ht→t+1(δ)Ladv(Z

′(t+1), Z(t+1)).

(5)

Here Ht→t+1 is a rigid transformation mapping the at-
tacker’s pose at time t to t + 1 and α is the step size.
By leveraging temporal consistency we can generate strong
perturbations with only one gradient update per time step,
making online attacks more feasible.

4. Experiments
4.1. Multi-Agent Settings

Multi-View ShapeNet: We conduct our attacks on multi-
view detection from images, which is a common task for
a fleets of drones. Following prior work [15], we generate
a synthetic dataset by placing 10 classes of ShapeNet [9]
objects on a table (see Figure 4). From each class, we sub-
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Figure 5. Qualitative attack examples. Top: Messages sent by an-
other agent visualized in bird’s eye view. Bottom: outputs. Pertur-
bations are very subtle but severely degrade performance.

sample 50 meshes and use a 40/10 split for training and val-
idation. In every scene, we place 4 to 8 objects and perform
collision checking to ensure objects do not overlap. Then,
we capture 128×128 RGB-D images from 2 to 7 viewpoints
sampled from the upper half of a sphere centered at the ta-
ble center with a radius of 2.0 units. This dataset consists of
50,000 training scenes and 10,000 validation scenes. When
conducting attacks, we randomly sample one of the agents
to be the adversary. Our detection model uses an architec-
ture similar to the one introduced in [15]. Specifically, we
process input RGB-D images using a U-Net [43] and then
unproject the features into 3D using the depth measures.
Features from all agents are then warped into the same co-
ordinate frame and aggregated with mean pooling. Finally,
aggregated features are processed by a 3D U-Net and a de-
tection header to generate 3D bounding box proposals.

Vehicle To Vehicle Communication: We also consider a
self-driving setting with vehicle-to-vehicle(V2V) commu-
nication. Here, we adopt the dataset used in [52], where 3D
reconstructions of logs of real world LiDAR scans are sim-
ulated from the perspectives of other vehicles in the scene
using a high-fidelity LiDAR simulator [32]. These logs
are collected by self-driving vehicles equipped with LiDAR
sensors capturing 10 frames per second (see Figure 4). The
training set consists of 46,796 subsampled frames from the
logs and we do not subsample the validation set, resulting
in 96,862 frames. In every log we select one attacker vehi-
cle and sample others to be cooperative agents with up to
7 agents in each frame unless otherwise specified. This re-
sults in a consistent assignment of attackers and V2V agents
throughout the frames. In this setting, we use the state-of-
the-art perception and motion forecasting model V2VNet
[52]. Here, LiDAR inputs are first encoded into bird’s eye
view (BEV) feature maps. Feature maps from all agents
are then warped into the ego coordinate frame and aggre-
gated with a GNN to produce BEV bounding box propos-
als. More details of the ShapeNet model and V2VNet are
provided in the supplementary material.
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Figure 6. Evaluation under no perturbation, uniform noise, transfer
attack, and white box attack. Results are grouped by the number
of agents in the scene where one agent is the attacker.

ShapeNet V2V

Clean Perturbed Clean Perturbed

Original 66.33 0.62 82.19 7.55
Adv Trained 67.29 66.00 82.60 83.44

Table 1. Results of adversarial training. Robustness increases sig-
nificantly, matching clean inference. Furthermore performance on
clean data also improves slightly.

Implementation Details: When conducting attacks, we
set ε = 0.1. For the proposed loss function, we set
λ = 0.2, τ− = 0.7, τ+ = 0.3, and γ = 1. Projected
gradient descent is done using Adam with learning rate 0.1
and we apply 15 PGD steps for ShapeNet and only 1 PGD
step for low budget online attacks in the V2V setting. The
surrogate models use the same architecture and dataset as
the victim models. When training the surrogate model, we
set β = 0.01, model learning rate 0.001, and discrimina-
tor learning rate 0.0005. For evaluation, we compute area
under the precision-recall curve of bounding boxes, where
bounding boxes are correct if they have an IoU greater than
0.7 with a ground truth box of the same class. We refer to
this metric as AP at 0.7 in the following.

4.2. Results

Attack Results: Visualizations of our attack are shown in
Figure 5 and we present quantitative results of our attack
and baselines in Figure 6. We split up the evaluation by
the number of agents in the scene and one of the agents is
always an attacker. As a baseline, we sample the perturba-
tion from U(−ε, ε) to demonstrate that the same ε bounded
uniform noise does not have any impact on detection perfor-
mance. The white box attack is especially strong when few
agents are in the scene, but becomes weaker as the number
of benign agents increase, causing the relative weight of the
adversarial features in mean pooling layers to decrease. Fi-
nally, our transfer attack with domain adaptation achieves
moderate success with few agents in the scene, but is sig-
nificantly weaker than the white box attack.
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Clean Perturbed

Agents 2 4 6 2 4 6

Mean Pool 82.09 89.25 92.43 0.90 12.93 41.77
GNN(Mean) 82.19 89.93 92.94 7.55 52.31 76.18
GNN(Median) 82.11 87.12 90.75 12.8 67.70 86.30
GNN(Soft Med) 82.19 89.67 92.49 21.53 61.37 84.99

Table 2. Choice of fusion in V2VNet affects performance and ro-
bustness. We investigate using mean pooling and using a GNN
with various aggregation methods.

Robustifying Models: To defend against our proposed at-
tack, we conduct adversarial training against the white box
adversary and show the results in Table 1. Here, we follow
the standard adversarial training set up, except perturbations
are applied to intermediate features instead of inputs. This
objective can be formulated as

min
θ

E(x,y)∼D max
‖δ‖∞<ε

φ((x, y, δ); θ) :=

Ltask (G(F (x0), . . . , F (xi) + δ, . . . , F (xN ); θ)) , (6)

where D is the natural training distribution and θ denotes
model parameters. During training, we generate a new per-
turbation δ for each training sample. In the multi-agent set-
ting, we find it easier to recover from adversarial pertur-
bations when compared to traditional single-agent attacks.
Moreover, adversarial training is able to slightly improve
performance on clean data as well, while adversarial train-
ing has been known to hurt natural performance in previous
settings [28, 49].

While adversarial training is effective in this setting, it
requires knowledge of the threat model. When the threat
model is unknown, we can still naturally boost the robust-
ness of multi-agent models with the design of the aggrega-
tion module. Specifically, we consider several alternatives
to V2VNet’s GNN fusion and present the performance un-
der attacked and clean data in Table 2. First, replacing the
entire GNN with an adaptive mean pooling layer signifi-
cantly decreases robustness. On the other hand, we swap
out the mean pooling in GNN nodes with median pooling
and find that it increases robustness at the cost of perfor-
mance on clean data with more agents, since more infor-
mation is discarded. We refer readers to the supplementary
materials for more details on implementation of the soft me-
dian pooling.

Multiple Attackers: We previously focused on settings
with one attacker, and now conduct experiments with mul-
tiple attackers in the V2V setting. In each case, we also
consider if attackers are able to cooperate. In cooperation,
attackers jointly optimize their perturbations. Without co-
operation, attackers are blind to each other and optimize

Cooperative Non-Cooperative

Agents 4 5 6 4 5 6

1 Attacker 52.31 65.00 76.18 52.31 65.00 76.18
2 Attacker 28.31 41.34 54.50 39.02 51.96 64.02
3 Attacker 12.07 22.84 35.13 24.27 38.17 51.58

Table 3. Multiple white box attackers in the V2V setting. Co-
operative attackers jointly optimize their perturbations and non-
cooperative attackers optimize without knowledge of each other.

Attackers 0 1 2 3

Train On 0 89.93 52.31 28.31 12.07
Train On 1 90.09 90.00 81.95 75.28
Train On 2 89.71 89.68 88.91 88.33
Train On 3 89.55 89.51 88.94 88.51

Table 4. Adversarial training with multiple attackers in the V2V
setting. We train on settings with various number of attackers and
evaluate the models across the settings.

their perturbations assuming other messages have not been
perturbed. Results with up to 3 attackers are shown in Ta-
ble 3. As expected, more attackers can increase the strength
of attack significantly, furthermore, if multiple agents can
coordinate, a stronger attack can be generated.

Next, we apply adversarial training to the multi-attacker
setting and present results in Table 4. Here, all attacks are
done in the cooperative setting and we show results with 4
total agents. Similar to the single attacker setting, adver-
sarial training is highly effective. However, while adversar-
ial training against one attacker improves performance in
natural examples, being robust to stronger attacks sacrifices
performance on natural examples. This suggests that adver-
sarial training has the potential to improve general perfor-
mance when an appropriate threat model is selected. Fur-
thermore, we can see that training on fewer attacks does
not generalize perfectly to more attackers but the opposite
is true. Thus, it is necessary to train against an equal or
greater threat model to fully defend against such attacks.

Domain Adaptation: More results of the transfer attack
are included in Table 5. First, we conduct an ablation and
show that a transfer attack without domain adaptation (DA)
is almost completely ineffective. On the contrary, surrogate
models trained with DA achieve significant improvements.
A visual demonstration of feature map alignment with DA
is shown in Figure 7, visualizing 4 channels of the interme-
diate feature maps. Features from a surrogate trained with
DA is visually very similar to the victim, while a surrogate
trained without DA produces features with no resemblance.

Since our proposed DA improves the transferability of
the surrogate model, we can further improve our transfer
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ShapeNet V2V

Clean 66.28 82.19
Transfer 66.21 81.31
Transfer + DA 42.59 72.45
Transfer + DA + ILAP 35.69 71.76
Transfer + DA + DI 49.38 75.18

Table 5. Transfer attacks evaluated with 2 agents. Training the sur-
rogate with domain adaptation (DA) significantly improves trans-
ferability. In addition, we attempt to enhance transferability with
ILAP [23] and DI [58].

Victim

DA

No DA

Figure 7. Visualization of how domain adaptation(DA) affects 4
channels of the intermediate feature map. Observe that the surro-
gate trained with DA closely imitates the victim model, while the
surrogate trained without DA produces different features.

attack by also adopting methods from the literature which
enhance the transferability of a given perturbation. We
find that generating perturbations from diversified inputs
(DI) [58] is ineffective as resizing input feature maps dis-
torts spatial information which is important for localizing
objects detection. On the other hand, using an intermediate
level attack projection (ILAP) [23] yields a small improve-
ment. Overall, we find transfer attacks more challenging
when at the feature level. In standard attacks on sensory
inputs, perturbations are transferred into the same input do-
main. However, at a feature level the input domains are
model-dependent, making transfer attacks between differ-
ent models more difficult.

Online Attacks: We conduct an ablation on the proposed
methods for exploiting temporal redundancy in an online
V2V setting, shown in Table 6. First, if we ignore tempo-
ral redundancy and do not reuse the previous perturbation,
attacks are much weaker. In this evaluation we switch from
PGD [31] to FGSM [21] to obtain a stronger perturbation in
one update for fair comparison. We also show that applying
a rigid transformation on the perturbations at every frame to
compensate for egomotion provides a modest improvement
to the attack when compared to the No Warp ablation.

Loss Function Design: We conduct an ablation study
on using our adversarial loss Ladv instead of the neg-
ative task loss −Ltask in Table 7. This ablation vali-
dates our loss function and showcase that for structured
outputs, properly designed adversarial losses is more ef-
fective than the naive negative task loss which is widely

2 Agents 4 Agents 6 Agents

Our Attack 7.55 52.31 76.18
No Warping 7.17 52.35 77.37
Independent 56.98 80.21 87.05

Table 6. Ablation on online attacks in the V2V setting. Indepen-
dent refers to treating each frame independently and not reusing
previous perturbations. No warp refers to omitting the rigid trans-
formation to account for egomotion.

2 Agents 4 Agents 6 Agents

ShapeNet −Ltask 6.10 20.07 29.00
Ladv 0.37 4.45 13.77

V2V −Ltask 20.8 63.82 79.11
Ladv 7.55 52.31 76.18

Table 7. Ablation on loss function, it produces stronger adversarial
attacks than simply using the negative of the training task loss.

used in image classification tasks. Our choice for the
loss function design is motivated by our knowledge of the
post-processing non-maximum suppression (NMS). Since
NMS selects bounding boxes with the highest confidence
in a local region, proposals with higher scores should re-
ceive stronger gradients. More specifically, an appropri-
ate loss function of f for proposal score σ should sat-
isfy (|∇σ2

f(σ2)| − |∇σ1
f(σ1)|) /(σ2 − σ1) > 0 so that

|∇σf(σ)| is monotonically increasing in σ. We can see
that the standard log likelihood does not satisfy this criteria,
which explains why our loss formulation is more effective.
In addition, we add the focal loss term [29] to generate more
false positives, as aggressively focusing on one proposal in
a local region is more effective due to NMS.

5. Conclusion

In this paper, we investigate adversarial attacks on com-
munication in multi-agent deep learning systems. Our ex-
periments in two practical settings demonstrate that com-
promised communication channels can be used to execute
adversarial attacks. However, robustness increases as the ra-
tio of benign to malicious actors increases. Furthermore, we
found that more practical transfer attacks are more challeng-
ing in this setting and require aligning the distributions of
intermediate representations. Finally, we propose a method
to achieve efficient and practical online attacks by exploit-
ing temporal consistency of sensory inputs. We believe
studying adversarial robustness on multi-agent deep learn-
ing models in real-world applications is an important step
towards more secure multi-agent systems.
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