This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Learning Hierarchical Graph Neural Networks for Image Clustering

Yifan Xing*
Wei Xia

Tong He*
David Wipf

Tianjun Xiao

Yongxin Wang
Zheng Zhang

Yuanjun Xiong
Stefano Soatto

Amazon Web Services

{yifax, htong, tianjux, yongxinw, yuanjx, wxia, daviwipf, =zhaz, soattos}@amazon.com

Abstract

We propose a hierarchical graph neural network (GNN)
model that learns how to cluster a set of images into an un-
known number of identities using a training set of images
annotated with labels belonging to a disjoint set of identi-
ties. Our hierarchical GNN uses a novel approach to merge
connected components predicted at each level of the hierar-
chy to form a new graph at the next level. Unlike fully unsu-
pervised hierarchical clustering, the choice of grouping and
complexity criteria stems naturally from supervision in the
training set. The resulting method, Hi-LANDER, achieves
an average of 49% improvement in F-score and 7% increase
in Normalized Mutual Information (NMI) relative to cur-
rent GNN-based clustering algorithms. Additionally, state-
of-the-art GNN-based methods rely on separate models to
predict linkage probabilities and node densities as interme-
diate steps of the clustering process. In contrast, our unified
framework achieves a three-fold decrease in computational
cost. Our training and inference code are released ".

1. Introduction

Clustering is a pillar of unsupervised learning. It con-
sists of grouping data points according to a manually speci-
fied criterion. Without any supervision, the problem is self-
referential, with the outcome being defined by the choice
of grouping criterion. Different criteria yield different so-
lutions, with no independent validation mechanism. Even
within a given criterion, clustering typically yields multiple
solutions depending on a complexity measure, and a sep-
arate model selection criterion is introduced to arrive at a
unique solution. A large branch of unsupervised clustering
methods follow the hierarchical/agglomerative framework
[41, 42, 44], which gives a tree of cluster partitions with
varying granularity of the data, but they still require a model

*Indicates equal contribution.
Ihttps://github.com/dmlc/dgl/tree/master/
examples/pytorch/hilander

selection criterion for the final single grouping. Rather than
engineering the complexity and grouping criteria, we wish
to learn them from data.’ Clearly, this is not the data we
wish to cluster, for we do not have any annotations for
them. Instead, it is a different set of training data, the meta-
training set, for which cluster labels are given, correspond-
ing to identities that are disjoint from those expected in the
test set. For example, the test set might be an untagged col-
lection of photos by a particular user, for which there exists
a true set of discrete identities that we wish to discover, say
their family members. While those family members have
never been seen before, the system has access to different
photo collections, tagged with different identities, during
training. Our goal is to leverage the latter labeled training
set to learn how to cluster different test sets with unknown
numbers of different identities. This is closely related to
“open-set” or “open universe” classification [40, 26].

We present the first hierarchical/agglomerative cluster-
ing method using Graph Neural Networks (GNNs). GNNs
are a natural tool for learning how to cluster [51, 57, 56], as
they provide a way of predicting the connectivity of a graph
using training data. In our case, the graph describes the
connectivity among test data, with connected components
ultimately determining the clusters.

Our hierarchical GNN uses a novel approach to merge
connected components predicted at each level of the hier-
archy to form a new graph at the next level. We employ a
GNN to predict connectivity at each level, and iterate until
convergence. While in unsupervised agglomerative clus-
tering convergence occurs when all clusters are merged to
a single node [42, 44], or when an arbitrary threshold of
an arbitrary model complexity criterion is reached, in our
case convergence is driven by the training set, and occurs
when no more edges are added to the graph by the GNN.
There is no need to define an arbitrary model selection cri-
terion. Instead, the “natural granularity” of the clustering

20f course, every unsupervised inference method requires inductive bi-
ases. Ours stems naturally from supervision in the meta-training set and
density in the inferred clusters.

3467

process is determined inductively, by the ground truth in
the training set. Unlike prior clustering work using GNN's
[51, 57, 56], we perform full-graph inference to jointly pre-
dict two attributes: linkage probabilities at the edges, and
densities at the nodes, defined as the proportion of similar
vertices that share the same label within a node’s neighbor-
hood [14, 3, 56]. The densities establish a relative order
between nodes [3, 56], which is then used to guide the con-
nectivity. Nodes at the boundary between two ground-truth
clusters, or nodes having a majority of their neighbors be-
longing to different classes, tend to have a low density, and
accordingly a low expectation of linkage probability to their
neighbors. Prior methods predict the edge connectivity as a
node attribute on numerous sampled sub-graphs [51, 56];
ours directly infers the full graph and predicts connectivity
as an attribute of the edges. Also, prior methods require sep-
arate models for the two attributes of linkage probabilities
and node densities, whereas ours infers them jointly. This
is beneficial as there is strong correlation between the two
attributes, defined by the ground truth. A joint model also
achieves superior efficiency, which enables hierarchical in-
ference that would otherwise be intractable. Compared to
the two separate models, we achieve a speedup from 256s
to 36s as shown in Table 1.

In terms of accuracy, Our method achieves an average
49% improvement in F-score, from 0.390 to 0.585, and an
average 7% increase in NMI, from 0.778 to 0.836 com-
pared to state-of-art GNN based clustering methods [56, 51]
over the face and species clustering benchmarks as shown
in Table 3. Furthermore, the pseudo-labels generated by
our clustering of unlabeled data can be used as a regular-
ization mechanism to reduce face verification error by 14%,
as shown in Table 4, from 0.187 to 0.159 in compared to
state-of-art clustering methods, allowing us to approach the
performance of fully supervised training at 0.136.

In the next section, we summarize our contributions in
the context of prior related work. In Section 3 we introduce
the technical innovations of our paper, and in Section 4 we
detail our experiment results. We discuss failure modes and
limitations of our method in Section 5.

2. Related Work and Contributions

Unsupervised Visual Clustering Traditional unsupervised
clustering algorithms utilize the notion of similarity be-
tween objects, such as K-means [27] and hierarchical ag-
glomerative methods [32, 41, 37]. [5] extends Hierarchi-
cal Agglomerative Clustering (HAC) [41] with a distance
based on node pair sampling probability. Approaches based
on persistent-homology [61] and singular perturbation the-
ory [33] deal with the scale-selection issue. [14, 3, 8] uti-
lize a notion of density defined as the proportion of similar
nodes within a neighborhood. Spectral clustering methods
[33, 17, 47] approximate graph-cuts with a low-dimensional

embedding of the affinity matrix via eigen-decomposition.
Graclus [13] provides an alternative to spectral clustering
with multi-level weighted graph cuts. H-DBSCAN [&] re-
moves the distance threshold tuning in [14]. FINCH [39]
proposes a first neighbor heuristic and generates a hierar-
chy of clusters. More recent unsupervised methods [23, 24]
utilize deep CNN features. [60] proposes a Rank-Order
distance measurement. Our hierarchical design relates the
most to [39], however, instead of the heuristic to link the
first-neighbor of each node for edge selection, which is
prone to error and has limited capability in dealing with
large-scale complex cluster structures, we use a learnable
GNN model.

Supervised Visual Clustering Supervised graph neural
network-based approaches [51, 57, 59, 57, 56] perform
clustering on a k-NN graph. In contrast to these methods
that produce only a single partition, our method generates a
hierarchy of cluster partitions and deals with unseen com-
plex cluster structures with a learnt convergence criterion
from the natural granularity of the “meta-training” set. In
contrast to [56] which requires two separate models to per-
form edge connectivity and node density estimation, our
method jointly predicts these two quantities with a single
model of higher accuracy and efficiency (Table 1). Fur-
thermore, [51, 56] estimate linkage as a node attribute on
sub-sampled graphs, whereas we estimate it as an edge at-
tribute with natural parallelization through full-graph infer-
ence and significantly reduce runtime (Table 5). [I] uses
a two-step process that first refines visual embeddings with
a GNN and then runs a top-down divisive clustering, with
testing limited to small datasets. In contrast, our method
performs clustering as a graph edge selection procedure.

Hierarchical Representation Hierarchical structures have
also been extensively studied in many visual recognition
tasks [34, 21, 28, 53, 29, 15, 31, 22]. In this paper, our
hierarchy is formed by multiple £-NN graphs recurrently
built with clustering and node aggregation, which are learnt
from the meta-training set. Hierarchical representation has
also been explored in the graph representation learning lit-
erature [58, 9, 4, 19, 18, 25]. There, the focus is to learn a
stronger feature representation to classify graph [58] or in-
put nodes [18] into a closed set of class labels. Whereas, our
goal is to “learn” to cluster from a meta-training set whose
classes are disjoint to those of test-time.

Graph Neural Networks in Visual Understanding The
expressive power of GNNs in dealing with complex graph
structures is shown to benefit many visual learning tasks
[20, 16, 10, 50, 45, 12, 54, 55, 11, 6, 52]. [16] samples
and aggregates embeddings of neighboring nodes. [45] fur-
ther advances [16] with additive attention. [10] uses a batch
training scheme based on [| 6] to reduce computational cost.
[50] performs node classification with edge convolution and
feature aggregation through max-pooling. Our method dif-

3468

r LANDER

LANDER ——-}

Hi-LANDER

Figure 1. The proposed hierarchical clustering framework Hi-LANDER. Images are embedded into a k-NN graph with their visual features.
The green, yellow and blue image boundaries illustrate that they belong to three different classes; same for the color of the graph nodes.
At each level of the hierarchy, our base LANDER model outputs a set of selected edges and thus intermediate clusters. These clusters are
then grouped into super-nodes as input for the next level. The process continues til convergence, i.e., when no more edges are added to the
graph. Weights of LANDER are shared across multiple levels of the hierarchy. Best viewed in color.

fers from [50] in that we use a unified model that jointly
learns node densities and edge linkages with two supervi-
sion signals. Furthermore, our GNN learns the edge selec-
tion and convergence criteria for a hierarchical agglomera-
tive process.

Contributions We propose the first hierarchical structure
in GNN-based clustering. Our method, partly inspired by
[39], refines the graph into super-nodes formed by sub-
clusters and recurrently runs the clustering on the super-
node graphs, but differs in that we use a learnt GNN to
predict sub-clusters at each recurrent step instead of an arbi-
trary manual grouping criterion. At convergence, we trace
back the predicted cluster labels on the super-nodes from
the top-level graph to the original data points to obtain the
final cluster.

Our method converges to a cluster based on the level of
granularity established by ground truth labels in the training
set. Although the identities are different from the test set,
they are sufficient to implicitly define a complexity criterion
for the clustering at inference time, without the need for a
separate model selection criterion.

To run multiple iterations of the GNN model efficiently
and effectively, we design a base model that approximates
label-aware linkage probabilities and densities of similar
nodes that share the same label. The densities are useful for
additional regularization and refining edge selection. We re-
fer to this base model as our Link Approximation aNd Den-
sity Estimation Refinement (LANDER) module. Finally, we
denote our hierarchical clustering method Hi-LANDER and
Figure 1 illustrates its structure.

The key innovation of our method is two-fold: 1) we
produce a hierarchy of cluster partitions instead of a sin-
gle flat partition of [57, 51, 56]; 2) We perform full-graph
inference to jointly predict attributes of both nodes and
edges, whereas prior GNN methods used sub-graph infer-

ence and separate models for node and edge attribute pre-
diction. These innovations are collectively responsible for
improving the clustering performance by an average of 49%
F-score and 7% NMI over existing GNN-based methods.

3. Methodology
3.1. Clustering with a ©-NN Graph

Formally, given a set of N images D = {I;}}, and their
corresponding visual embeddings F = {f;}}¥, we first
construct an affinity graph G = {V, E'}, where |V| = N,
via k-nearest neighbors determined w.r.t. cosine similar-
ity, i.e., the inner-product of the normalized visual embed-
dings. Each image (for example one face crop) entails one
object to cluster and represents a node in the graph, with
the node feature being its visual embedding f;. The edges
connect each node to its k neighbors. Per the clustering
paradigms in [14, &, 3, 39, 51, 56, 35], a function ¢ takes
as input the affinity graph G and the node features F’, and
produces an edge subset E' C E, i.e. E' = ¢(G, F). The
resulting graph G’ = {V, E’} is then split into connected
components, with each corresponding to a cluster of nodes.
Our method is built upon this k-NN graph based clustering
paradigm.

3.2. Hierarchical Generalization to Hi-LANDER

In order to model the natural level of granularity of clus-
ters in a dataset, we propose a hierarchical generalization
to the above single-level k-NN based clustering paradigm.
Given a set of initial visual embeddings F' and a small
fixed value of k,* we iteratively generate of a sequence of
graphs G; = {V}, E;} and the corresponding node features
H; = {h;}, wherei = 1...|Vj|and ! = 1..., using a

3We emphasize that k is a hyper-parameter tuned with the meta-training
/ validation set.

3469

base cluster function ¢ and an aggregation function . Al-
gorithm 1 summarizes the proposed hierarchical generaliza-
tion process.

To start, we define (G; as the (G in Section 3.1 and H, =
{f:}. The function ¢ performs the following operation

E] = ¢(Gi, Hy), (D

taking as input the node features and k-NN graph at level
[and producing the selected edge subsets E;. As a result,
the graph G = {V}, E}} is split into multiple connected
components. We define the set of connected components in
G as {cgl)}‘izlfl‘, where ¢! is the i-th element.

i
In order to generate GG;11, we obtain V;,i, H;y; and
Ej41 as follows. First, we define the i-th node in G4,

UUH), as an entity representing the connected compo-

7
nent cl(-l). Next, we generate the new node feature vectors

through an aggregation function v, which performs
Hir = (Hi, GY), 2)

It aggregates the node features in each connected compo-

nent cgl) into a single feature vector respectively. Finally,
we obtain Eji; by searching for k-nearest-neighbors on
H, 11 and connecting each node to its k£ neighbors.

The generation converges when no more new edges are
added, i.e., El' = . We define L to be the length of the con-
verged sequence. For the final cluster assignment, starting
with G, we assign cluster identity (ID) 7 to the connected

component cEL)

(L)y,,(L)
{Uj |”j

, which propagates the ID i to all its nodes
€ cEL)}. Then, each ’UEL) propagates its label

to the corresponding connected component CEL_l) of the
previous iteration. This ID propagation process eventually
assigns a cluster ID to every node in V7, and this assignment
is used as the final predicted clustering.

In the following sections, we describe the design of the
base cluster function ¢, the aggregation function 1 and
how we learn the overall Hi-LANDER model with a meta-
training set. We refer LANDER to our underlying single-
level model, akin to a single iteration of Hi-LANDER.

3.3. Realizing the Cluster Function ¢

To achieve high accuracy, we design ¢ as a learnable
GNN model for clustering in a supervised setting to deal
with complex cluster structures, where each node v; in V'
comes with a cluster label y;, but only in the meta-training
set. Unlike unsupervised clustering methods, we do not en-
gineer an explicit grouping criterion but learn it from data.
State-of-art supervised clustering methods [51, 56] show
that density and linkage information are effective supervi-
sion signal to learn the GNN model and we use both of
them. However, unlike prior work, to improve both effi-
ciency and accuracy, we jointly predict these two quantities

Algorithm 1: Hi-LANDER Clustering

Input N, F, k;

I+ 1;

H1 +— F;

while not converged do
G| < k-nearest-neighbor(Hj, k);
E| «+ ¢(G, H)) ; // LANDER
G} < connected-components(E}) ;
Hyipy < (H;,GY) 5
I« 1+1;

end

ID < id-propagation({G;}, {G}}) ;

Return ID

using the embeddings produced by a single graph encoder.
The linkage and density estimates are then passed through a
graph decoding step for determining edge connectivity and
thus cluster prediction. Below details our LANDER design.
Graph Encoding For each node v; with corresponding in-
put feature h;, a stack of Graph Attention Network (GAT)
[45] layers encode each h; as the new feature or embedding
h%. In general though, we found that alternative encoders
(e.g., vanilla graph convolutional network layers), produce
similar performance (see supplementary).
Joint prediction for density and linkage For each edge
(vs,v;) in E, we concatenate the source and destination
node features obtained from the encoder as [h;, h’], where
[-,-] is the concatenation operator. Then, we feed it into
a Multi Layer Perceptron (MLP) layer followed by a soft-
max transformation to produce the linkage probabilities
pij = P(y; = y;), i.e., an estimate of the probability that
this edge is linking two nodes sharing the same label. We
also use this value to predict a node pseudo-density estimate
d;, which measures the similarity-weighted proportion of
same-class nodes in its neighborhood.*

For this purpose, we first quantify the similarity a;; be-
tween nodes v; and v; as the inner product of their respec-

tive node features, i.e., a;; = (h;, h;). Subsequently, we
compute corresponding edge coefficients as é;; as
éij = Pyi =y;) — P(yi # y;) 3

where j indexes the k nearest neighbors of v;. We may then
define d; as

k
I LA
di =+]221 €ij - Qij- “)

This estimator is designed to approximate the ground-truth
pseudo-density d;, which is obtained by simply replacing

4Note that d; is only a density proxy, not a strict non-negative density
that sums to one.

3470

the ground-truth class labels, where 1 is the indicator func-
tion. By construction, d; is large whenever the most similar
neighbors have shared labels; otherwise, it is small. And
importantly, by approximating d; in terms of é;; via p;;, the
resulting joint prediction mechanism reduces parameters for
the prediction head during training (see Section 3.5 below),
allowing the two tasks to benefit from one another.

Graph Decoding Once we obtain the linkage probabilities
and node density estimates, we convert them into final clus-
ters via the following decoding process. Prior methods rely
on an analogous decoding step [3, 56]; however, herein we
tailor this process to incorporate our joint density and link-
age estimates. Initially we start with E/ = @. Given é;;,
a?i, p;; and an edge connection threshold p., we first define
a candidate edge set £(i) for node v; as

5(2) = {j|(1}i,1}j) € F and CZL < Cij andpij > p.r}. 5
For any 4, if £(7) is not empty, we pick

J = argmax é;; (6)
JEE®)
and add (v;,v;) to E’. We emphasize that the selection
of the edge connection threshold p, is a hyper-parameter
tuning process only on the validation set split from the
meta-training set. It stays fixed after meta-training. This is
different from the arbitrary parameter selection in unsuper-
vised agglomerative clustering where the selection criteria
will likely need to change across different test sets.
Additionally, the definition of £(i) ensures that each
node v; with a non-empty £(i) adds exactly one edge to
E’. On the other hand, each node with an empty £(4) be-
comes a peak node with no outgoing edges. Meanwhile,
the condition d; < d; introduces an inductive bias in estab-
lishing connections. As nodes with low density tend to be
those ones having a neighborhood that overlaps with other
classes, or nodes on the boundary among multiple classes,
connections to such nodes are often undesirable. After a full
pass over every node, E’ forms a set of connected compo-
nents G’, which serve as the designated clusters.

3.4. Realizing the Aggregation Function ¢

Recall that we denote cgl) to be the ¢-th connected com-

ponent in Gj. To build G;41 = {Vj41, Ej41}, we first con-

vert cgl) in Gy to node v£l+1) in Vi41. We define two node

feature vectors for the new node, namely the identity feature

EEZH) and the average feature EEZH) as

1 -
SR

(0
e jec®

RD = 0 and R =

where m; = argmax; _ cZ(»l), represents the peak node

index of the connected component cl(-l). Additionally, in the

first level, izl(-o) = Bl(-o) = f;, where f; is the visual embed-
ding feature.

The next-level input feature for the base cluster function
¢ of node vflﬂ) is the concatenation of the peak feature
and average feature, i.e., hit' =[BT RTY] We em-
pirically found that directly using one of the features pro-
duces similar performances as the concatenation on some
validation sets and we left this as a hyper-parameter. The
identity feature 155.” can be used to identify similar nodes
across hierarchies, while the average feature Bff) provides
an overview of the information for all nodes in the cluster.

3.5. Hi-LANDER Learning

Because the merged features for super nodes, hglﬂ) and
BZ(-ZH), always lie within the same visual embedding space
as the node features h(Y) of the previous level, the same
GNN model parameters can be shared across multiple levels
of the hierarchy structure in learning the natural granularity
of the cluster distribution of the meta-training set.
Hierarchical Training Strategy Given k& and the ground
truth labels, we can determine the level L at which the hier-
archical aggolemeration convergences. Thus, we build the
sequence of graphs {G)} with respect to the algorithm de-
picted in Algorithm 1, the only difference being that we
use the ground-truth edge connections {£,} at all lev-
els and thus ground-truth intermediate clusters {G;g"} for
graph constructions. We initialize LANDER, and train it
on all intermediate graphs {G;}. In one epoch, we loop
through each G, perform a forward pass on graph {G,},
compute the loss as will be defined next, and then update
the model parameters with backpropagation.

Training Loss The Hi-LANDER model is trained using the
composite loss function given by

L= Econn + £d6n~ (8)

The first term L,,,,, provides supervision on pair-wise link-
age prediction via the average per-edge connectivity loss

1
£conn = _E Z lijv (9)
(vi Vs) EE

where [;; is the per-edge loss in the form

L {qw’ log pij + (1 — gi5) log(1 — pi;), if di < d;
* 0, otherwise
(10
Here the ground truth label ¢;; = 1(y; = y,) indicates
whether the two nodes connected by the edge belong to the
same cluster, and can be computed across all levels as de-
scribed previously (similarly for the ground-truth d; derived
from the g;; values). Meanwhile, the second term L g, rep-

3471

resents the neighborhood density average loss given by

V]

1 o
‘cden:mzndz_dlug (11)
i=1

During training, both L ,,, and L4, are averaged across
data from all levels. Note that prior work has used con-
ceptually related loss functions for training GNN-based en-
coders [56]; however, ours is the only end-to-end frame-
work to do so in a composite manner without introducing a
separate network or additional parameters.

4. Experimental Results

We evaluate Hi-LANDER across clustering benchmarks
involving image faces, video faces, and natural species
datasets. First, we show the sensitivity of our method to
early-stopping and illustrate that it is only used to reduce
complexity without affecting accuracy. We also illustrate
ablation experiments over the model components. We then
evaluate clustering performance under both settings of same
train-test and unknown test-distributions. We further show
the advantage of Hi-LANDER via a semi-supervised face
recognition task with pseudo label training. Finally, we an-
alyze the runtime cost.

We compare with the following baselines. The unsuper-
vised methods include DB-SCAN [14], ARO [35], HAC
[41], H-DBSCAN [&], Graclus [13] and FINCH [39], where
the latter four are hierarchical baselines. The supervised
baselines include L-GCN [51], GCN-V [56] and GCN-E
[56]. Hyperparameters for the baselines are tuned to report
their best performances respectively. For example, we tune
the optimal MinPts parameter for H-DBSCAN. Supervised
GNN baselines have their best parameters tuned with the
validation sets (part of the meta-training set), e.g., we tune
the optimal k-NN k and 7 parameters for GCN-V/E.

4.1. Evaluation Protocols

Datasets For face clustering, we use the large-scale im-
age dataset TrillionPairs [2] and randomly choose one-tenth
(660K faces) for training. For testing, we use IMDB (im-
ages, 1.2 million faces) [48] and Hannah (video-frames,
200K faces) [36]. Hannah has no overlapping person iden-
tities with the TrillionPairs training set, whereas IMDB has
a small overlap (less than 2%). Features for all face datasets
are extracted from a state-of-the-art embedding model [49]
trained on TrillionPairs. The average cluster size of Trillion-
Pairs, IMDB, and Hannah are 37, 25 and 800 respectively.
For species clustering, we use iNaturalist2018 [43]. We fol-
low the open-set train-test split for image retrieval as in [7],
where the training (320K instances) and testing (130K in-
stances) classes are disjoint. Both splits have similar clus-
ter size distributions with an average of 56 instances per
class. Features are extracted from a ResNet50 pretrained

object retrieval model from [7]. Table 6 of the supplemen-
tary shows detailed statistics of all datasets. For all cluster-
ing training sets, we reserve 20% for validation and hyper-
parameter tuning. When finalized, we re-train on the entire
training split with fixed hyper-parameters. We use Deep-
glint and IMDB datasets for pseudo label training for face
recognition and evaluate using the openset IJBC [30] bench-
mark.

Evaluation Metrics For clustering, we report the Normal-
ized Mutual Information (NMI) [46] capturing both homo-
geneity and completeness. We also report the pairwise and
bicubed F-score which are two types of harmonic mean of
the precision and recall of clustering prediction, denoted by
F, and Fj. We report the standard face recognition met-
rics, including False Non Match Rate (FNMR) @ various
False Match Rate (FMR) for verification and False Nega-
tive Identification Rate (FNIR) @ different False Positive
Identification Rate (FPIR) for identification.

4.2. Implementation Details

We use the validation sets to choose our optimal meta-
training hyper-parameters. k is set to 10 for k-NN graph
building and is fixed for inference for all settings and test-
sets. p; is set to 0.9 for face clustering and 0.1 for species.
Both face and species clustering use the identity feature
aggregation (detailed in Section 3.4). All validation sets
are part of the meta-training sets and we have no access to
any test information during hyper-parameter tuning. Due
to space limitations, sensitivity analysis to these hyper-
parameters and additional details are included in the sup-
plementary.

4.3. Ablation Experiments

Sensitivity to Early-stopping The proposed agglomera-
tion process converges when there are no more new edges
added. Though this convergence is reached without an
explicit termination criterion, we observe that the process
can be terminated early without affecting much the final
clustering accuracy. Figure 2 shows the model sensitiv-
ity to early-stopping. The two dotted vertical yellow lines
indicate the iterations at which the early-stopping and fi-
nal convergence criteria are met. Clustering performance
(Fp/Fb/NMI) plateaus after the iteration of early-stopping
and there is no significant difference in accuracy and clus-
ter numbers predicted compared to the final convergence.
Therefore, simply for computational complexity consider-
ations, we terminate the agglomeration early if computa-
tional cost is a concern. This choice is neither an arbitrary
termination criterion nor a complexity / accuracy trade-off,
rather, it is merely a computational expedient. Since there
is no performance loss at early-stopping, we report perfor-
mances with early-stopping in all subsequent sections.

3472

Our early stopping criteria is based on the following ob-
servation. In the case where all clusters are k-ary trees, the
number of new edges created at one level should be < 1/k
of the number of edges created in the previous level. This
matches the behavior in the early hierarchies when multi-
ple intermediate clusters are merged. In the last couple of
iterations, the model adds very few number of edges for sev-
eral levels before an exact convergence. Therefore, if at any
level the new edges created is more than 1/k of the previous
one, one can choose to early stop the agglomeration.

Hannah Sensitivity to Early Stopping
1.0{+ 9.4

iNat2018-Test Sensitivity to Early Stopping
1.0

— NMI

Lt 2D \ =
20814 S oos{ i Ffp 1088
= Y = u —— Fb

0.6 9.0 -~ \
Qv \ s o 0.61 === # clusters
\ fr \

]
8.842

s
@
S
clusters (I

=04 — NMmI 5 =04
2 Fp 860 = —
0.2 — Fb $# 202 N 10.84
e --- #clusters [8.4 h
[e e S s e 0.0 e oe

2earl3y stép > final 0oz
iterations convergence

Figure 2. Sensitivity to early-stopping. The two dotted vertical
yellow lines indicate the iterations at which the early-stopping and
final convergence criteria are met. Left y-axis shows the accuracy
of clustering prediction and right y-axis shows the predicted num-
ber of clusters (log-scale). The early-stopping is used to reduce
further iterations after the model is close to convergence.

3 4 5 6 7
early stop final
iterations convergence

Method Hannah Runtime
Fp Fb NMI | sec
GCN-V+E [56] | 0.062 0224 0.640 256.2
LANDER 0.065 0.234 0.644 449
Hi-LANDER 0.714 0.677 0.797 36.9
Table 1. Ablation experiments:1) value of joint prediction com-

pared to inference with two-separate models 2) value of hierarchy.

Value of Joint Inference We examine the effect of joint
inference in our single level LANDER model compared to
a prior GNN [56] that uses two-separate models in Table 1.
The joint model outperforms the baseline, with a 5% boost
in F-scores, while reducing the runtime by five-fold.

Value of Hierarchy Design We examine the effect of the
hierarchical design in Hi-LANDER in Table 1. Comparing
row two and three, combining LANDER with our hierar-
chical approach resulting in Hi-LANDER brings significant
gains in F-scores from 0.234 to 0.677 and increase in NMI
from 0.644 to 0.810 via modeling the data granularity using
a disjoint meta-training set with a learnt convergence.

4.4. Clustering Performance

Here, we compare Hi-LANDER with state-of-art unsu-
pervised and supervised methods under the setting where
the cluster size distributions of train and test data are similar.
For face, we sample a subset of IMDB to match the training
distribution of Deepglint, and name this sub-sampled test-
set as IMDB-Test-SameDist. For species, we use iNat2018-
Train and iNat2018-Test for training and testing since they
follow the same cluster size distribution. Table 2 shows the

Method IMDB-Test-SameDist iNat2018-Test

Fp Fb NMI | Fp Fb NMI
DBSCAN[14] | 0.064 0092 0822] 0.100 0.116 0.753
ARO [35] 0012 0079 0821 | 0007 0062 0.747
HAC [41] 0598 0591 0904 | 0.117 0245 0.732
H-DBSCAN [8] | 0423 0628 0895 | 0.178 0241 0.754
Graclus[13] | 0014 0099 0829 | 0.003 0050 0.735
FINCH[39] | 0001 0001 0.155 | 0.014 0014 0283
LGCN [51] 0.695 0.779 00940 | 0069 0.125 0.755
GCN-V [56] | 0722 0753 0936 | 0300 0360 0.719
GCN-V+E [56] | 0.345 0.567 0.864 | 0273 0353 0.719

Hi-LANDER [0.756 0.792 0.945 [0330 0350 0.774
Table 2. Same train-test distribution clustering performance. First
six rows show the unsupervised baselines (latter four are hierar-
chical based) and the last four rows show the supervised GNN
based methods (including ours). Hi-LANDER outperforms both
prior SOTA unsupervised and supervised GNN methods, with an
average improvement of 35% and 3% in F-scores, respectively.

results. Hi-LANDER consistently outperforms prior SOTA
unsupervised and supervised GNN baselines. Supervised
baselines perform better than unsupervised ones in this set-
ting. We hypothesize this is due to the domain specializa-
tion in dealing with complex cluster structure through GNN
training on label-annotated datasets.

Method I Hannah IMDB iNat2018-Test
| Fp Fo NMI [Fp Fo NMI [Fp Fb NMI
DBSCAN[I4] | 0.04T 0.128° 0.546 | 0.057 0.118 0851 [0.100 0.116 0.753
ARO [35] 0.001 0018 0483 | 0.012 0.103 0.849 | 0.007 0.062 0.747
HAC [41] 0.197 0475 0521 | 0592 0.624 0923 | 0.117 0245 0732
H-DBSCAN [8] | 0.112 0296 0.526 | 0395 0.641 0912 | 0.178 0241 0.754
Graclus [13] | 0.001 0004 0452 | 0.018 0.131 0857 | 0.003 0050 0.735
FINCH([39] | 0265 0258 0338 | 0001 0001 0089 | 0014 0014 0283
LGCN [51] 0002 0098 0455 | 0.665 0771 0946 | 0.030 0076 0.747
GCN-V [56] | 0056 0218 0.637 | 0.634 0768 0948 | 0.269 0.352 0719
GCN-V+E[56] | 0.062 0224 0640 | 0589 0732 0940 | 0252 0338 0719

Hi-LANDER | 0.714__0.677__0.797 | 0698 0.778__ 0948 | 0.294 0352 0.764
Table 3. Clustering with unseen test data distribution. Super-

vised methods for iNat2018-Test are trained on iNat2018-Train-
DifferentDist. Hi-LANDER outperforms SOTA GNN supervised
and unsupervised methods, with an average F-score boost of 49%
and 47%. On Hannah, where the test-distribution is very different
from that in meta-training, we improve the F-score from 0.224 to
0.677 and NMI from 0.640 to 0.797 over prior GNN methods.

4.5. Clustering with Unseen Test Data Distribution

We also report clustering performance under the setting
where test-time distribution is unknown and different from
that of meta-training. Namely, parameters (such as 7 and
k-NN k in GCN-V/E and max cluster size in L-GCN) can-
not be adjusted in advance using test-time information. For
face clustering, we train with TrillionPairs-Train and test
on Hannah and IMDB. For species, we sample a subset
of the iNat2018-Train to attain a drastically different train-
time cluster size distribution as iNat2018-Test, and name
it iNat2018-Train-DifferentDist. Table 3 illustrates the re-
sults. Hi-LANDER outperforms prior supervised methods
by alarge margin over Hannah, where distribution of cluster
sizes is long-tail (varying from 1-20K). This is due to Hi-
LANDER’s ability to perform dynamic inference and adapt
to clusters with largely varying sizes during test (as shown

3473

in supplementary Figure 1). Some unsupervised baselines
such as H-DBSCAN and HAC outperform the supervised
ones over Hannah, showing better generalization capability.
Despite being a supervised method, Hi-LANDER outper-
forms all unsupervised baselines, owing to the strong ex-
pressive power of our unified GNN LANDER model.

Method IJBC 1:1 FNMR@FMR IJBC 1:N FNIR@FPIR

le-3 le-4 [el le-2

Graclus [13] 0.290 0.461 0.467 0.620
FINCH [39] 0.133 0.230 0.240 0.375
H-DBSCAN [39] | 0.111 0.200 0.196 0.312
GCN-V [56] 0.107 0.181 0.181 0.270
GCN-V+E [56] 0.110 0.187 0.191 0.291
Hi-LANDER 0.091 0.159 0.162 0.250
Fully-supervised | 0.072 0.136 0.136 0.235

Table 4. Face recognition on [JBC[30]. Hi-LANDER outperforms
all baselines and improves over the best result from prior-arts with
a 14% error reduction. Models trained with pseudo labels gener-
ated by Hi-LANDER brings the performance (0.159) closer to the
lower bound with fully supervised training (0.136).

4.6. Representation Learning with Pseudo-Labels

We follow a setting similar to that of [59, 38, 57] for face
recognition with pseudo label training. Starting with an ini-
tial representation learned through some labeled datasets,
we utilize the clustering methods to generate pseudo labels
for unlabeled datasets and train with these pseudo labels to
better learn a representation.’ The face recognition exper-
iment involves the following steps: 1) Start with an initial
face recognition model learnt on TrillionPairs. 2) Train a
clustering model on the TrillionPairs or use an unsuper-
vised clustering method with the initial face representations.
3) Generate pseudo label on IMDB (overlapping identities
with TrillionPairs removed). 4) Train face recognition mod-
els on IMDB via the pseudo labels. 5) Evaluate the learned
face representation on the open-set [JBC benchmark. Ta-
ble 4 shows the results. We also report the lower bound from
fully supervised training on IMDB with human labeled data.
Hi-LANDER achieves a 14% error reduction compared to
the best baseline. Interestingly, pseudo label training with
Hi-LANDER brings the performance to 0.159 (verification
FNMR @FPIR 1e-4), closer to the lower bound of fully su-
pervised training at 0.136 than any of the baselines.

4.7. Runtime Analysis

We compare the runtime (seconds) of Hi-LANDER with
all baselines (Table 5). The hardware and software specifi-
cations are included in the supplementary. The complexity

5The pseudo-labels generated by our clustering, or any other determin-
istic or stochastic processing of the training set, span the same Sigma
Algebra as the training set, so they cannot be thought of as “ground
truth” or “additional information” when training a classifier with pseudo-
supervision. However, the pseudo-labels capture the inductive bias of the
training process and therefore serve as a regularizer that, while not adding
information, nevertheless improves generalization, as shown empirically.

Dataset .
Method Hannah IMDB iNat2018-Test
DBSCAN [14] 480.2 10,358.0 592.6
ARO [35] 184.4 1,349.3 223.9
HAC [41] 446.8 183,311.8 6,730.5
H-DBSCAN [8] 9,865.3 | 390,360.0 121,821.0
Graclus [13] 38.3 176.6 474
FINCH [39] 74.7 300.4 46.2
LGCN [51] 3,342.1 33,211.1 3,057.4
GCN-V [56] 41.7 204.8 534
GCN-V+E [56] 256.2 3,283.3 197.5
Hi-LANDER [36.9 [511.0 [67.4

Table 5. Runtime comparison on all benchmarks in Table 3 (secs).

numbers above are from Hi-LANDER with early-stopping.
Our method is faster than most baselines and is comparable
with GCN-V[56], FINCH][39] and Graclus[13]. The multi-
ple hierachical levels introduced do not bring in additional
overhead since Hi-LANDER runs faster level by level, with
fewer number of nodes remaining after each level.

5. Discussion

The proposed clustering method aims at providing a rich
representation of unlabeled data using induction from an an-
notated training set. GNNSs represent a natural tool, for they
allow training from a disjoint dataset a model that outputs
a graph structure. Since the clustering problem is intrinsi-
cally ill-posed, for there is no unique “true” cluster, we aim
to provide a rich hierarchical representation that gives the
user more control — in the spirit of agglomerative hierar-
chical clustering. To tackle the computational challenge in
replicating the basic graph operations across levels of the hi-
erarchy, we have proposed enhancements of current GNN-
based methods that improve efficiency. Though the com-
plexity of our method is Q(kN), the same as the vanilla
flat-version of GNN clustering, the full-graph inference is a
natural parallelization and significantly reduces the runtime
compared to prior GNNs with sub-graph inference.

Hi-LANDER is subject to the usual failure modes of all
inductive methods, when the distribution of test data is ex-
tremely different from that in training. In addition, the cur-
rent node feature aggregation takes the form of averaging
while there might be more sophisticated methods such as
learnable attention for more informative aggregation.

Even so, our goal is to reduce the number of arbitrary
choices as much as possible and defer to the data the most
critical design decisions. One is the choice of clustering
criterion. This is inherited by the training set, through the
simple classification loss. So is the level of granularity of
the partition of the data. Though we use early stopping, we
do so only after verifying that the method, when iterated to
convergence, settles on a solution that is not substantially
different from that obtained in earlier iteration. Therefore
early stopping is not chosen as a design parameter or an
inductive bias, but merely as a way to reduce computation.

3474

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

(11]

(12]

(13]

[14]

[15]

https://cs.nyu.edu/media/publications/
choma_nicholas.pdf. 2
http://trillionpairs.deepglint.com/
overview. 6

Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel,
and Jorg Sander. Optics: ordering points to identify the clus-
tering structure. ACM Sigmod record, 28(2):49-60, 1999. 2,
3,5

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi,
and Cesare Alippi. Hierarchical representation learning in
graph neural networks with node decimation pooling. arXiv
preprint arXiv:1910.11436, 2019. 2

Thomas Bonald, Bertrand Charpentier, Alexis Galland, and
Alexandre Hollocou. Hierarchical graph clustering using
node pair sampling. arXiv preprint arXiv:1806.01664,2018.
2

Guillem Brasé and Laura Leal-Taixé. Learning a neu-
ral solver for multiple object tracking. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6247-6257, 2020. 2

Andrew Brown, Weidi Xie, Vicky Kalogeiton, and Andrew
Zisserman. Smooth-ap: Smoothing the path towards large-
scale image retrieval. arXiv preprint arXiv:2007.12163,
2020. 6

Ricardo JGB Campello, Davoud Moulavi, and Jorg Sander.
Density-based clustering based on hierarchical density esti-
mates. In Pacific-Asia conference on knowledge discovery
and data mining, pages 160-172. Springer, 2013. 2, 3, 6, 7,
8

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena.
Harp: Hierarchical representation learning for networks.
arXiv preprint arXiv:1706.07845, 2017. 2

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgen: fast learning
with graph convolutional networks via importance sampling.
arXiv preprint arXiv:1801.10247, 2018. 2

Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Yan
Shuicheng, Jiashi Feng, and Yannis Kalantidis. Graph-based
global reasoning networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
433-442, 2019. 2

Michaél Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In Advances in neural infor-
mation processing systems, pages 3844-3852, 2016. 2
Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted
graph cuts without eigenvectors a multilevel approach. /IEEE
transactions on pattern analysis and machine intelligence,
29(11):1944-1957, 2007. 2, 6,7, 8

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu,
et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. 2, 3, 6, 7, 8

Mohammed E Fathy, Quoc-Huy Tran, M Zeeshan Zia, Paul
Vernaza, and Manmohan Chandraker. Hierarchical metric
learning and matching for 2d and 3d geometric correspon-
dences. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 803-819, 2018. 2

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

3475

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. In Advances in neu-
ral information processing systems, pages 1024-1034, 2017.
2

J. Ho, Ming-Husang Yang, Jongwoo Lim, Kuang-Chih Lee,
and D. Kriegman. Clustering appearances of objects under
varying illumination conditions. In 2003 IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition, 2003. Proceedings., volume 1, pages I-1, 2003. 2
Fenyu Hu, Yanqgiao Zhu, Shu Wu, Liang Wang, and
Tieniu Tan. Hierarchical graph convolutional networks
for semi-supervised node classification. arXiv preprint
arXiv:1902.06667, 2019. 2

Jingjia Huang, Zhangheng Li, Nannan Li, Shan Liu, and Ge
Li. Attpool: Towards hierarchical feature representation in
graph convolutional networks via attention mechanism. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 6480-6489, 2019. 2

Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 2

Tian Lan, Tsung-Chuan Chen, and Silvio Savarese. A hi-
erarchical representation for future action prediction. In
European Conference on Computer Vision, pages 689-704.
Springer, 2014. 2

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017. 2

Wei-An Lin, Jun-Cheng Chen, Carlos D Castillo, and Rama
Chellappa. Deep density clustering of unconstrained faces.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8128-8137, 2018. 2
Wei-An Lin, Jun-Cheng Chen, and Rama Chellappa. A
proximity-aware hierarchical clustering of faces. In 2017
12th IEEE International Conference on Automatic Face
& Gesture Recognition (FG 2017), pages 294-301. IEEE,
2017. 2

Alex Lipov and Pietro Lid. A multiscale graph convolu-
tional network using hierarchical clustering. arXiv preprint
arXiv:2006.12542, 2020. 2

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha
Raj, and Le Song. Sphereface: Deep hypersphere embedding
for face recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 212-220,
2017. 1

Stuart Lloyd. Least squares quantization in pcm. /EEE trans-
actions on information theory, 28(2):129-137, 1982. 2
Hans Lobel, René Vidal, and Alvaro Soto. Hierarchical joint
max-margin learning of mid and top level representations for
visual recognition. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1697-1704, 2013. 2
Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan
Yang. Hierarchical convolutional features for visual track-
ing. In Proceedings of the IEEE international conference on
computer vision, pages 3074-3082, 2015. 2

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

Brianna Maze, Jocelyn Adams, James A Duncan, Nathan
Kalka, Tim Miller, Charles Otto, Anil K Jain, W Tyler
Niggel, Janet Anderson, Jordan Cheney, et al. Iarpa janus
benchmark-c: Face dataset and protocol. In 2018 Inter-
national Conference on Biometrics (ICB), pages 158-165.
IEEE, 2018. 6, 8

Li Mi and Zhenzhong Chen. Hierarchical graph attention
network for visual relationship detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13886—13895, 2020. 2

Mark EJ Newman. Fast algorithm for detecting commu-
nity structure in networks. Physical review E, 69(6):066133,
2004. 2

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral
clustering: Analysis and an algorithm. In Advances in neural
information processing systems, pages 849-856, 2002. 2
Duy-Kien Nguyen and Takayuki Okatani. Multi-task learn-
ing of hierarchical vision-language representation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 10492-10501, 2019. 2

Charles Otto, Dayong Wang, and Anil K Jain. Clustering
millions of faces by identity. IEEE transactions on pattern
analysis and machine intelligence, 40(2):289-303, 2017. 3,
6,7,8

Alexey Ozerov, Jean-Ronan Vigouroux, Louis Chevallier,
and Patrick Pérez. On evaluating face tracks in movies. In
2013 IEEE International Conference on Image Processing,
pages 3003-3007. IEEE, 2013. 6

Pascal Pons and Matthieu Latapy. Computing communities
in large networks using random walks. In International sym-
posium on computer and information sciences, pages 284—
293. Springer, 2005. 2

Aruni RoyChowdhury, Xiang Yu, Kihyuk Sohn, Erik
Learned-Miller, and Manmohan Chandraker. Improving face
recognition by clustering unlabeled faces in the wild. In
European Conference on Computer Vision, pages 119-136.
Springer, 2020. 8

Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelhagen. Effi-
cient parameter-free clustering using first neighbor relations.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8934-8943, 2019. 2,
3,6,7,8

Walter J Scheirer, Anderson de Rezende Rocha, Archana
Sapkota, and Terrance E Boult. Toward open set recogni-
tion. [EEE transactions on pattern analysis and machine
intelligence, 35(7):1757-1772, 2012. 1

Robin Sibson. Slink: an optimally efficient algorithm for the
single-link cluster method. The computer journal, 16(1):30—
34,1973. 1,2,6,7,8

Noam Slonim and Naftali Tishby. Agglomerative informa-
tion bottleneck. In NIPS, volume 4, 1999. 1

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The inaturalist species classification and de-
tection dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8769-8778,
2018. 6

[44]

[45]

[46]

(47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

3476

Andrea Vedaldi and Stefano Soatto. Quick shift and kernel
methods for mode seeking. In European conference on com-
puter vision, pages 705-718. Springer, 2008. 1

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-
tention networks. arXiv preprint arXiv:1710.10903,2017. 2,
4

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Infor-
mation theoretic measures for clusterings comparison: Vari-
ants, properties, normalization and correction for chance.
The Journal of Machine Learning Research, 11:2837-2854,
2010. 6

Ulrike Von Luxburg. A tutorial on spectral clustering. Statis-
tics and computing, 17(4):395-416, 2007. 2

Fei Wang, Liren Chen, Cheng Li, Shiyao Huang, Yanjie
Chen, Chen Qian, and Chen Change Loy. The devil of face
recognition is in the noise. arXiv preprint arXiv:1807.11649,
2018. 6

Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu. Ad-
ditive margin softmax for face verification. IEEE Signal Pro-
cessing Letters, 25(7):926-930, 2018. 6

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1-12, 2019. 2, 3

Z. Wang, L. Zheng, Y. Li, and S. Wang. Linkage based
face clustering via graph convolution network. In 2079
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1117-1125, 2019. 1, 2, 3, 4,
6,7,8

Xinshuo Weng, Yongxin Wang, Yunze Man, and Kris Ki-
tani. Gnn3dmot: Graph neural network for 3d multi-
object tracking with multi-feature learning. arXiv preprint
arXiv:2006.07327, 2020. 2

Lingxi Xie, Qi Tian, Richang Hong, Shuicheng Yan, and Bo
Zhang. Hierarchical part matching for fine-grained visual
categorization. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1641-1648, 2013. 2
Sijie Yan, Zhizhong Li, Yuanjun Xiong, Huahan Yan, and
Dahua Lin. Convolutional sequence generation for skeleton-
based action synthesis. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 4394-4402,
2019. 2

Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. arXiv preprint arXiv:1801.07455, 2018. 2

Lei Yang, Dapeng Chen, Xiaohang Zhan, Rui Zhao,
Chen Change Loy, and Dahua Lin. Learning to cluster faces
via confidence and connectivity estimation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 13369-13378, 2020. 1, 2, 3, 4, 5, 6,
7,8

Lei Yang, Xiaohang Zhan, Dapeng Chen, Junjie Yan,
Chen Change Loy, and Dahua Lin. Learning to cluster faces
on an affinity graph. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2298—
2306, 2019. 1,2, 3,8

(58]

[59]

[60]

[61]

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,
Will Hamilton, and Jure Leskovec. Hierarchical graph rep-
resentation learning with differentiable pooling. In Advances
in neural information processing systems, pages 4800—4810,
2018. 2

Xiaohang Zhan, Ziwei Liu, Junjie Yan, Dahua Lin, and
Chen Change Loy. Consensus-driven propagation in massive
unlabeled data for face recognition. In Proceedings of the
European Conference on Computer Vision (ECCV), Septem-
ber 2018. 2, 8

Chunhui Zhu, Fang Wen, and Jian Sun. A rank-order dis-
tance based clustering algorithm for face tagging. In CVPR
2011, pages 481-488. IEEE, 2011. 2

Afra Zomorodian and Gunnar Carlsson. Computing per-
sistent homology. Discrete & Computational Geometry,
33(2):249-274, 2005. 2

3477

