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Abstract

With the development of 3D scanning technologies, 3D
vision tasks have become a popular research area. Ow-
ing to the large amount of data acquired by sensors, un-
supervised learning is essential for understanding and uti-
lizing point clouds without an expensive annotation pro-
cess. In this paper, we propose a novel framework and
an effective auto-encoder architecture named “PSG-Net”
for reconstruction-based learning of point clouds. Unlike
existing studies that used fixed or random 2D points, our
framework generates input-dependent point-wise features
for the latent point set. PSG-Net uses the encoded input
to produce point-wise features through the seed generation
module and extracts richer features in multiple stages with
gradually increasing resolution by applying the seed fea-
ture propagation module progressively. We prove the effec-
tiveness of PSG-Net experimentally; PSG-Net shows state-
of-the-art performances in point cloud reconstruction and
unsupervised classification, and achieves comparable per-
formance to counterpart methods in supervised completion.

1. Introduction
Deep neural networks, especially convolutional neural

networks (CNNs), have achieved success in the perfor-
mance of various computer vision tasks [10, 14, 13]. Re-
cently, research centered on 2D space has been expanded to
3D space following the development of 3D scanning tech-
niques. 3D sensors such as LiDAR and RGB-D cameras
acquire data in form of point clouds, so it is essential to
effectively recognize this type of data in robotics and au-
tonomous driving applications. Point clouds lie in 3D space,
so they incur significantly higher labeling costs for a spe-
cific vision task when compared to 2D data. Therefore,
the need for effective unsupervised learning techniques for
point clouds is highly emphasized.

For unsupervised learning, auto-encoder structures
based on CNNs have been widely used to deal with 2D im-
age data. Although CNNs show superior ability in learn-

Figure 1. Examples of the 3D point cloud reconstruction, unsuper-
vised classification, point cloud completion results with PSG-Net.
Our network successfully performs each task from the input point
cloud.

ing general features from 2D images, it is difficult to apply
CNNs to point clouds because of the irregularity of the data
format. Thus, network architectures that are specifically de-
signed for point cloud recognition must be used as the en-
coder of the auto-encoder. In previous studies [5, 34, 24],
point cloud classification networks such as PointNet [16]
and PointNet++ [17] have been used as encoders, and some
other works have utilized graph layers [30]. Encoders ex-
tract a global feature representation called a codeword vec-
tor, which becomes the input to the decoder.

For the decoder architecture, a popular approach is the
concept of “folding” a 2D plane into a 3D object surface be-
cause the number of the output point clouds may not be de-
termined. During the folding operation, the latent point set
sampled from the 2D plane is transformed into 3D points,
thus achieving point cloud generation. This approach was
first proposed in FoldingNet [30] and has been mathemati-
cally established in several studies [5, 34]. In FoldingNet,
a pre-defined set of fixed grid points in 2D space was used
as the latent point set to the decoder along with the output
of the encoder. Then, the folding operation was applied to
transform this 2D point set into 3D points. In AtlasNet [5]
and 3D Point Capsule Network (3D-PointCapsNet) [34],
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multi-patch approaches were used for point cloud recon-
struction. These works used randomly sampled points from
the uniform distribution in a fixed area of the 2D plane.
Throughout this paper, the latent point set will be referred
to as seed.

One limitation of these methods is that the output point
cloud is generated from an arbitrary 2D plane. Fixed grid
points [30] or randomly sampled points [5, 34] were used
as inputs to the decoder. Considering that an arbitrary 2D
plane might not have enough capacity to model a complex
3D surface, AtlasNet and 3D-PointCapsNet utilize multiple
patches to improve performance. However, the number of
decoders increases with the number of patches, which leads
to significant computational costs. Therefore, it is neces-
sary to fundamentally change the sampling process in the
2D plane, rather than simply use more patches.

In this paper, we propose a novel framework for
reconstruction-based learning. The main idea is to generate
the seed from the function of the input point cloud. Previ-
ous methods used fixed or randomly sampled 2D points as
seeds, which can be a substantial constraint to the decoder.
We revisit the problem to explain why the generated seed
helps our decoder to generate various 3D shapes. We im-
plement our framework by “PSG-Net”, which is far more
effective and superior to existing methods. The seed is gen-
erated in multiple stages through the seed generation mod-
ule. Then, the seed feature propagation module processes
the generated seed and codeword vector to produce the out-
put shape. In addition, we introduce a progressive approach
to enrich the information of the feature for the output point
cloud. This is achieved by generating a gradually increasing
resolution of the seed and interpolated feature maps. The re-
sult from the last seed feature propagation module is trans-
formed into 3D point cloud coordinates through the point
generation layers.

Our network achieves performances comparable to the
state-of-the-art methods in various unsupervised tasks such
as point cloud reconstruction and unsupervised classifica-
tion, and achieves the best performance among counterpart
methods in supervised point cloud completion. Further-
more, our method can be used in combination with other
existing methods such as the multi-patch approach, which
is expected to result in enhanced performance. The main
contributions of this study are as follows.

1. We propose a novel framework for reconstruction-
based learning of point clouds that uses the generated
input-dependent point-wise features as seed, instead
of using simple 2D points. To implement this frame-
work, we incorporate seed generation module (SGM)
and seed feature propagation module (SFPM) in an ef-
ficient auto-encoder architecture called PSG-Net.

2. We analyze two proposed modules and demonstrate

the superiority of our model by experimentally prov-
ing the analysis.

3. We show that the performance of PSG-Net is compara-
ble to state-of-the-art methods in various 3D tasks such
as point cloud reconstruction, unsupervised classifica-
tion and supervised point cloud completion.

2. Related work
There has been much research on 3D computer vision us-

ing point clouds in recent years [16, 26, 22, 12]. We present
previous studies related to our method in this section. Be-
cause point cloud completion can be seen as a task expanded
from point cloud reconstruction, a method for one of these
tasks can often be used for another, as in this paper. Given
that both tasks have been performed in this study as well,
we introduce research on these two tasks.

Point cloud reconstruction. The first auto-encoder
was a simple network based on PointNet introduced in L-
GAN [1]. L-GAN aims to generate the point cloud with
generative adversarial network (GAN) and acts as a baseline
network for later studies. Subsequently, FoldingNet [30]
performs point cloud reconstruction by learning 2D-to-3D
mapping under the intuition that a 2D plane can be trans-
formed into a 3D surface through certain operations. The
authors call this a “folding” operation and define it as
the concatenation of replicated codeword vectors to low-
dimensional grid points, followed by a point-wise multi-
layer perceptron (MLP). FoldingNet consists of a graph-
based encoder and a folding-based decoder, and uses a fixed
2D grid as the sampled points of a 2D plane. AtlasNet [5]
proposed to use multiple 2D patches instead of a single 2D
plane as in FoldingNet. In this architecture, 2D points were
randomly sampled from a uniform distribution inside the
unit square, so that the network can better learn the shape
of the objects. 3D-PointCapsNet [34] extracts latent cap-
sules by applying a dynamic routing system and creates a
point cloud from them. There is also a study that performs
reconstruction to learn local descriptors. PPF-FoldNet [3]
converts a point cloud into a point pair feature (PPF) repre-
sentation and performs feature reconstruction using folding
operations to learn local descriptors on a point cloud.

Point cloud completion. Point cloud completion is a
rapidly growing research area derived from point cloud re-
construction. PCN [31] was the first method to perform
point cloud completion with a leading-based approach to
a point cloud instead of a voxel. PCN uses an extended
version of PointNet as an encoder and a decoder that com-
bines the fully connected decoder and the folding-based de-
coder to generate a dense output point cloud. In [21], a
tree-structured decoder called TopNet was proposed to cre-
ate an arbitrary grouping of points. Because the global
feature extracted from the incomplete point cloud may re-
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Figure 2. Overview of our framework. PSG-Net consists of three parts : seed generation module (SGM), seed feature propagation module
(SFPM), and point generation layers. Several parameters such as the number of layers that make up the SGM or the number of SFPMs can
be changed depending on the input conditions. Each convolution and fully connected layer is followed by batch normalization and ReLU
layers (omitted from the figure).

sult in loss of information about structural details, SA-
Net [24] uses a skip-attention mechanism for utilizing hier-
archical information obtained from the PointNet++ encoder
in the folding-based decoder. RL-GAN-Net [19] and Ren-
der4Completion [6] complete the point cloud more realis-
tically by utilizing reinforcement learning and GAN. Re-
cently, GRNet [28] achieved high performance by combin-
ing a voxel-based approach and a point cloud-based ap-
proach. There have also been studies focusing on missing
parts by separating the known and missing parts [33, 7].

3. Method
In this section, we introduce our framework and PSG-

Net architecture. First, we formulate the problem and ex-
plain the model architecture. Then, we describe the analy-
sis, including a comparison with existing methods.

3.1. Formulation and Notation

We follow the same approximation as those presented in
previous studies [30, 5, 34]. We consider that in the point
cloud P = {pi ∈ R3} , every point p comes from the sur-
face S of a 3D shape. Because S is 2-manifold, there ex-
ists an open set U ⊂ R2 and an open set W , that satisfies
p ∈ W ⊂ R3, such that S ∩W is homeomorphic to U. The
mapping C : S ∩W → U is called a chart, and its inverse
Ψ ≡ C−1 : U → S∩W is called a parameterization. Based
on these notations, the problem is defined as follows:

Definition 1 (Problem)
The point cloud reconstruction problem is defined as learn-
ing to generate 3D surface S by finding the function Ψ that
satisfies Ψ(U, θ) = P ′ ≈ P , where θ is a codeword vector.

In practice, we use a discrete set U ′ = {uj ∈ R2} in-
stead of an open set U because the input point cloud P is a
discrete sampled subset of S. Because previous studies have
already formulated the problem in detail and proved the the-
orems needed to support this type of method, we refer the
reader to [30, 5, 34] for further information. Additionally,
we use the term “seed” for u in this study. Thus, it can be
said that p′j from P ′ = {p′j ∈ R3} is generated from the
corresponding seed uj .

Definition 2 (Seed)
We call the element u of the discrete set U ′ a “seed”, which
generates the corresponding output point.

3.2. Model Architecture

The input to our model is an N × d point cloud, where d
is basically 3 as each point cloud is composed of 3D coor-
dinates (x, y, z). Considering that our main focus is on the
decoder, we utilize the existing feature extractor, which is
commonly used in 3D tasks as the encoder. For the recon-
struction task, we adopted PointNet++ [17] as our encoder.
PointNet++ consists of three set abstraction modules, each
of which consists of sampling, grouping, and mini-PointNet
layers. This encoder structure helps capture the hierarchical
features and finally extracts a global feature vector θ′ as the
codeword vector. The encoder can be replaced by any point
cloud processing architecture according to its relevance to
the target task.

The proposed decoder contains three different parts:
seed generation module (SGM), seed feature propagation
module (SFPM), and point generation layers. We explain
each module in detail in the following paragraphs. The
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overall architecture is shown in Figure 2.
Seed generation module takes θ′ as input and generates

2D feature maps from a transposed 2D convolution (Conv)
- batch normalization (BN) [8] - ReLU layer sequence. We
use the feature map fl from the l = {1, 2, · · · , L} th layer
sequence as seed set U ′

l = {u′
il} for the SGM. Given that

the feature map fl has a spatial size of [hl, wl], the number
of u′ in U ′

l is N ′
l = (hl × wl). U ′

L from the final layer of
the SGM has NL seeds, which is equal to or close to the
number of input points N .

Seed feature propagation module takes three inputs:
seed generated from the SGM, codeword vector, and inter-
mediate feature map produced by the previous SFPM. As
input to the k = {1, 2, · · · ,K} th SFPM, the codeword
vector (θ′) is replicated N ′

L−(K−k+1) times and then con-
catenated with U ′

L−(K−k+1) and the output of the (k−1) th
SFPM in the channel dimension. For the 1 st SFPM, we
use θ′ and U ′

1 to create the input of the 1 st SFPM. The k th
SFPM is made of a 1×1 Conv - BN - ReLU layer sequence
and an interpolation layer. After the input passes through
the layer sequence, the k th seed-wise feature with the chan-
nel dimension |θ′|/2 is created. We interpolate the feature
for the (k + 1) th SFPM. This interpolation layer ensures
that the output of the k th SFPM Vk = {vik} has the same
number of seeds as those of U ′

L−K+k. For the interpolation
layer, bilinear interpolation is adopted for efficiency.

Point generation layers take θ′, U ′
L, and VK to gener-

ate the output point cloud. The point generation layers are
similar to the SFPM but have slightly different components
to output a point cloud. Because the size of the generated
point-wise feature may be different from the desired output
size, we add the interpolation layer to match this. Then,
the feature map is flattened and passed through a fully con-
nected (FC) layer to produce an M × 3 point cloud as the
output.

As in other studies [30, 5, 34], we use the discrete cham-
fer distance as the loss function for training. The loss func-
tion is as follows:

LCD(P, P ′) =
1

|P |
∑
p∈P

min
p′∈P ′

∥p− p′∥2+

1

|P ′|
∑
p′∈P ′

min
p∈P

∥p′ − p∥2. (1)

For specific implementation details about our decoder,
please refer to Supplementary Material Section 1.

3.3. Analysis

We introduced the formulated form of the problem in
Section 3.1. Now, we analyze our method and its superi-
ority by revisiting the problem. If we represent the encoder

as a function E, then θ can be written as E(P ). Therefore,
the problem of point cloud reconstruction is to find Ψ that
satisfies Ψ(U ′, E(P )) = P ′ ≈ P . Now, we can rewrite
Definition 1 as follows:

Definition 3
The problem of point cloud reconstruction is defined as find-
ing the function Ψ, where Ψ(U ′, E(P )) forms an identity
function IP .

The fundamental difference between our framework and
the previous methods lies in generating U ′. So far, U ′ has
been set to a fixed grid or randomly generated in the do-
main ] 0, 1[ 2 : U(0, 1). That is, u is an arbitrary 2D co-
ordinate (x, y) independent of p. However, the presence
of another independent variable U ′ may make it difficult
to optimize Ψ(U ′, E(P )) to form IP . We ease this op-
timization issue by setting U ′ as a function of P . Be-
cause our decoder generates U ′ from θ through the func-
tion G that represents the SGM, Ψ(U ′, E(P )) can be ex-
pressed as Ψ(G(θ), E(P )) = Ψ(G(E(P )), E(P )). Given
that Ψ(G(E(P )), E(P )) can be rearranged into Ψ′(P ), the
problem becomes easier to solve than it had been previ-
ously:

Definition 4
The problem is redefined as finding the function Ψ′, where
Ψ′(P ) forms an identity function IP .

Furthermore, we expand 2-dimensional point set U ′ to an
n-dimensional features that contains more semantic infor-
mation than simple 2D coordinates. This guarantees more
informative u to generate p′.

Another noticeable difference between our method and
previous methods is that our method produces the output
in a progressive manner. Because progressive seeds with
multiple resolutions are generated through the SGMs, we
can combine coarse semantic information and fine detailed
information by fusing the feature hierarchy from each seed.
Similar to FCN [14], we implement feature fusion by a 1×1
Conv - BN - ReLU layer sequence and a bilinear interpola-
tion operation.

In summary, there are three factors that have led to sig-
nificant differences between previous methods [30, 5, 34].

1. A discrete set U ′ ⊂ R2

2. Parameterization function Ψ

3. Combination of U ′ and a codeword vector θ

Our framework uses Input-dependent high-dimensional
seeds that facilitate the reconstruction, while existing meth-
ods used arbitrary 2D coordinates. Since we adopted
transposed 2D Conv in the process of generating input-
dependent seeds for simplicity and efficiency, our Ψ is de-
fined as the transposed 2D Conv, MLP (equivalent to 1× 1
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(a)

(b)

Figure 3. Examples of point cloud reconstruction results on ShapeNetCore13. (a) is the ground truth and (b) is our result.

Method ShapeNet
Core13

ShapeNet
Corev2

Oracle 0.85 3.10
L-GAN [1] - 7.07
Points baseline 1.61 -
AtlasNet-125 [5] 1.51 5.66
PointFlow [29] - 7.54
3D-PointCapsNet [34] 1.46 -
DF-Net [9] - 6.17

Ours 1.39 5.78

Table 1. Results of point cloud reconstruction on ShapeNetCore13
and ShapeNetCorev2. The chamfer distance is multiplied by 103

for ShapeNetCore13 and 104 for ShapeNetCorev2.

Conv), and bilinear interpolation. Naturally, the concatena-
tion of θ, U ′, and the corresponding coarse feature becomes
the input of Ψ.

In addition, we can control the number of output point
clouds by adjusting the parameters that make up the de-
coder, as in existing methods. We show an example of this
in the point cloud upsampling task, please refer to Supple-
mentary Material Section 2.

4. Experiments
We conducted extensive experiments to demonstrate the

effectiveness of our method. First, we compared the perfor-
mance of our method against existing methods for various
3D tasks such as point cloud reconstruction, unsupervised
classification and point cloud completion. Then, we exper-
imentally proved the analysis provided in Section 3.3.

4.1. Implementation

Our method is evaluated on four datasets: ShapeNet-
Core13 [2], ShapeNetCorev2 [2], Completion3D [21], and
ModelNet40 [27] datasets. We implemented our network
using the PyTorch [15] framework. The network was
trained using an ADAM optimizer with betas (0.9, 0.999)
and weight decay 1e-6. We used an initial learning rate of

Method Supervised Accuracy (%)

PointNet [16] Yes 89.2
PointNet++ [17] Yes 90.7
PointCNN [12] Yes 92.2
DGCNN [22] Yes 92.2

L-GAN [1] No 85.7
L-GAN [1] (MN40) No 87.3
FoldingNet [30] No 88.4
FoldingNet [30] (MN40) No 84.4
3D-PointCapsNet [34] No 88.9
PointGrow [20] No 85.8
PointFlow [29] No 86.8
MRTNet-VAE [4] No 86.4
PCGAN [11] No 87.8
SA-Net-cls [24] No 90.6

Ours No 90.9

Table 2. The results of unsupervised classification on ModelNet40.

5e-5 for ModelNet40, and 1e-4 for others. The batch size
was set to 32. The chamfer distance (CD) was used as the
evaluation metric of point cloud reconstruction and comple-
tion tasks.

4.2. Comparative Study

Point cloud reconstruction. We performed point cloud
reconstruction on ShapeNetCore13 and ShapeNetCorev2.
We followed the dataset settings of AtlasNet [5] for both
datasets. The results in Table 1 clearly show that our model
achieves performance that is comparable to the state-of-the-
art methods. Oracle randomly samples a point cloud from
the ground truth shape, and therefore constitutes an upper
bound of the performance. Points baseline is a network of
MLPs presented with detailed structures in AtlasNet.

It should be noted that AtlasNet and 3D-PointCapsNet
utilize 125 and 32 patches for finer reconstruction, respec-
tively. Our method uses only a single patch but outperforms
the two methods on ShapeNetCore13, and achieves com-
parable performance to AtlasNet on ShapeNetCorev2. We
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Method Overall Airplane Cabinet Car Chair Lamp Sofa Table Watercraft

FoldingNet [30] 19.07 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51
PCN [31] 18.22 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73
PointSetVoting [32] 18.18 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16
AtlasNet [5] 17.77 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62
PointNetFCAE 16.88 10.30 19.06 11.82 24.68 20.30 20.09 17.57 10.50
TopNet [21] 14.25 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82

SoftPoolNet [23] 11.90 4.89 18.86 10.17 15.22 12.34 14.87 11.84 6.48
SA-Net [24] 11.22 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84
GRNet [28] 10.64 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86
PMP-Net [25] 9.23 3.99 14.70 8.55 10.21 9.27 12.43 8.51 5.77

Ours 13.29 7.19 19.54 10.5 18.53 14.16 16.8 11.34 7.69

Table 3. Results of point cloud completion on Completion3D. The chamfer distance is multiplied by 103.

(a)

(b)

(c)

Figure 4. Examples of point cloud completion results on Completion3D. (a) is the input, (b) is our result, and (c) is the ground truth.

further present performance that outperforms even AtlasNet
in Section 4.3. Figure 3 visually shows the reconstruction
results of ShapeNetCore13.

Unsupervised classification. To evaluate the efficiency
of the feature representation of our method, we performed
unsupervised classification on ModelNet40. In accordance
with the settings of the previous studies [1, 30, 34], we first
performed the reconstruction on ModelNet40 and then ex-
tracted the codeword vector. Thereafter, we normalized the
codeword vector and used it to train the linear support vec-
tor machine (SVM) classifier. Table 2 indicates that our
method achieves reasonable accuracy among unsupervised
learning methods. We note that our method not only out-
performs the unsupervised methods, but also surpasses the
supervised version of the same encoder.

Point cloud completion. To demonstrate the effective-
ness of our decoder architecture, we train PSG-Net for su-
pervised learning of point cloud completion. Because the
experimental settings of existing studies on point cloud
completion have not been unified, we participated in the

Completion3D benchmark1 to evaluate our model for the
point cloud completion task. We utilized the PCN [31] en-
coder, which is mainly used in the completion task for com-
parison focused on the decoder architecture.

We added our result to the current leaderboard and
present it in Table 3. We excluded the result of no method
being presented. The result shows that the performance of
our method is comparable to that of others for the point
cloud completion task, even though the structure is aimed
at reconstruction. The methods which show better perfor-
mance than ours, are not suitable for direct comparison with
ours because they use the codeword vector and other tech-
niques with much powerful encoders for supervised point
cloud completion. However, our method is aimed at unsu-
pervised learning and uses only global representation with
PCN encoder. Thus, practically, our method can be consid-
ered to have achieved the best performance in counterpart
methods, and improvements can be expected depending on
the type of encoder. Because no ground truth for the test set

1https://completion3d.stanford.edu

6418



Method ShapeNetCorev2

Ours (512-dim) 5.78
Ours (1024-dim) 5.15

Table 4. Results of point cloud reconstruction on ShapeNetCorev2.
The chamfer distance is multiplied by 104 for ShapeNetCorev2.

Method # Parameters (M)

AtlasNet-25 [5] 44.8
AtlasNet-125 [5] 219.3

3D-PointCapsNet [34] 69.5

Ours 7.6

Table 5. The number of parameters on various networks.

is publicly available, we visualize the completion results of
the validation set in Figure 4.

4.3. Analytical Study

We explained in Section 3.3 that our method is superior
to existing methods. In this section, we demonstrate this
experimentally in various ways.

Effect of different codeword lengths. Because the ex-
isting methods used 512-dimensional or 1024-dimensional
codeword vectors, we conducted experiments based on 512-
dimensional codeword vectors. However, to show the ef-
fect of using different codeword lengths, we performed
point cloud reconstruction on ShapeNetCorev2 with 1024-
dimensional codeword vector. The results in Table 4 clearly
demonstrate that our method performs well with 1024-
dimensional codeword vector.

Computational efficiency. To demonstrate the effi-
ciency of our method, we compare the number of param-
eters of our method with those of the existing methods. Ta-
ble 5 indicates that our network requires far fewer parame-
ters than existing methods. As mentioned in Section 1, the
number of parameters increases linearly with the number
of patches, which is shown by the examples of AtlasNet-
25 and AtlasNet-125 [5]. This observation emphasizes the
computational efficiency of our method.

Combination with other methods. We conducted ex-
periments that produced higher performance, even state-
of-the-art, through combinations with existing methods to
demonstrate the applicability of our method. For the re-
construction on ShapeNetCorev2, we applied our method
to AtlasNet by adding the SGM to the structure of AtlasNet
with 32 patches.

For the unsupervised classification, since the results in
Table 2 show the results of training each proposed network
by normal reconstruction training with a chamfer distance,
studies with higher performance may exist as new unsuper-
vised learning methods are applied. For example, [18] fo-

Task Method Supervised Result

rec AtlasNet-125 [5] No 5.66
rec Ours + AtlasNet-32 [5] No 5.31

cls PointGLR [18] Yes 91.69
cls PointGLR [18] No 92.22
cls PointGLR [18] Hybrid 92.42
cls Ours + PointGLR [18] No 92.59

Table 6. The results of combination with other methods. Rec
and cls indicate reconstruction task and unsupervised classification
task, respectively. In result, reconstruction task uses the chamfer
distance multiplied by 104 as an evaluation metric, and classifica-
tion task uses the accuracy (%) as an evaluation metric.

cused on new loss functions which help unsupervised learn-
ing, rather than the network architecture itself, and achieved
state-of-the-art performance on the unsupervised classifica-
tion task. Although [18] presented higher performance, we
did not compare our method with [18] in Table 2 because
we considered that their improvement is orthogonal to that
of our work. Thus, we further conducted an experiment that
combines our decoder with [18].

The results in Table 6 show that our method not only
achieves the state-of-the-art, but is capable of combining
with other studies.

Decoder ablation. We constructed various models suit-
able for analysis and conducted point cloud reconstruction
on the ShapeNetCorev2. Our analysis was focused on the
contribution of different U ′s and the progressive seed gen-
eration to the performance improvement.

We first compared the performance of various U ′ set-
tings. For fair comparison, we used the same encoder based
on PointNet [16] and the same decoder based on Fold-
ingNet [30], which consists of two MLP - BN - ReLU se-
quences. We built the following four decoders which differ
only in U ′: Decoder A that sets U ′ as fixed 2D grid points;
Decoder B that sets U ′ as 2D points sampled from the uni-
form distribution U(0, 1); Decoder C2 that generates U ′

from θ; Decoder C32 that generates U ′ as 32-dimensional
features generated from θ (Please refer to Supplementary
Material Section 3).

The results in Table 7 and Figure 5 demonstrate that
our method performs point cloud reconstruction more ef-
fectively than existing methods. Interestingly, we observe
that Decoder A with U ′ set to a fixed grid has a higher per-
formance than Decoder B with U ′ set to a uniform distri-
bution. It can also be seen that Decoder C2 performs better
than both Decoders A and B, and that the performance is
even better when high-dimensional feature vectors are used
instead of 2D points (Decoder C32). These results are con-
sistent with the analysis in Section 3.3. To form Ψ as an
identity function in Def 3, it is best to fix the indepen-
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Method Decoder A Decoder B Decoder C2 Decoder C32 + 1 SFPM + 2 SFPMs + 3 SFPMs

CD 7.43 7.96 7.34 6.84 6.63 6.40 6.38

Table 7. Results of point cloud reconstruction on ShapeNetCorev2 with various decoders for analysis. The chamfer distance is multiplied
by 104.

Input Decoder A Decoder B Decoder C32

Figure 5. Examples of point cloud reconstruction on ShapeNetCorev2 with various decoders for analysis.

Decoder A Decoder B Decoder C2

Figure 6. Coordinates of the sampled points used in Decoders A, B, and C2. Decoder A used grid points, Decoder B used random points,
and Decoder C2 used points constructed from the codeword vector.

dent variable U ′ to a constant value. Therefore, Decoder
A with U ′ set to a fixed 2D grid can learn a function better
than Decoder B with U ′ set to a random variable. In addi-
tion, because U ′ is a function of P , Decoder C2 achieves
higher performance than Decoders A and B. Decoder C32

achieves the highest performance because U ′ contains the
most information about P . Figure 6 shows the coordinates
of the 2D points used in Decoders A and B and the coordi-
nates of 2D points learned in Decoder C2. We observe that
the Decoders A and B sample grid points and completely
random points on a rectangular plane, whereas the Decoder
C2 samples points on a uniquely constructed plane.

We also prove the effectiveness of the progressive ap-
proach by adding more SFPMs to Decoder C32 and observe
the performance change in point cloud reconstruction. As
shown in Table 7, the performance is gradually improved as
1, 2, and 3 SFPMs are added.

5. Conclusion

In this paper, we propose a novel framework that gen-
erates the input-dependent point-wise features as seed for
reconstruction-based learning of point cloud. To this end,
we constructed efficient yet powerful PSG-Net with two
modules, namely SGM and SFPM, focusing on the concept
of the seed. PSG-Net achieves reasonable performance in
point cloud reconstruction, unsupervised classification, and
point cloud completion. Given that we focus on the fun-
damental concept rather than the technical concept of point
cloud reconstruction and the construction of PSG-Net, this
study can be used with other methods. Considering the ap-
plication of PSG-Net, we believe that our study will con-
tribute to the understanding and application of point clouds.
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