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Abstract

Image inpainting aims to complete the missing or cor-
rupted regions of images with realistic contents. The preva-
lent approaches adopt a hybrid objective of reconstruction
and perceptual quality by using generative adversarial net-
works. However, the reconstruction loss and adversarial
loss focus on synthesizing contents of different frequencies
and simply applying them together often leads to inter-
frequency conflicts and compromised inpainting. This pa-
per presents WaveFill, a wavelet-based inpainting network
that decomposes images into multiple frequency bands and
fills the missing regions in each frequency band separately
and explicitly. WaveFill decomposes images by using dis-
crete wavelet transform (DWT) that preserves spatial in-
formation naturally. It applies L1 reconstruction loss to
the decomposed low-frequency bands and adversarial loss
to high-frequency bands, hence effectively mitigate inter-
frequency conflicts while completing images in spatial do-
main. To address the inpainting inconsistency in different
frequency bands and fuse features with distinct statistics, we
design a novel normalization scheme that aligns and fuses
the multi-frequency features effectively. Extensive experi-
ments over multiple datasets show that WaveFill achieves
superior image inpainting qualitatively and quantitatively.

1. Introduction
As an ill-posed problem, image inpainting is not to re-

cover the original images for corrupted regions but to syn-
thesize alternative contents that are visually plausible and
semantically reasonable. It has been widely investigated
in various image editing tasks such as object removal, old
photo restoration, movie restoration, and so on. Realis-
tic and high-fidelity image inpainting remains a challeng-
ing task especially when the corrupted regions are large and
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Figure 1. Image inpainting often faces a dilemma of reconstruc-
tion and perceptual quality: L1/L2 loss focuses on the reconstruc-
tion of global low-frequency structures while adversarial loss fo-
cuses on generating high-frequency texture details. State-of-the-
art approaches implicitly tackle this issue by weighted summing of
the two objectives (e.g. in GMCNN [35]) or employing a Coarse-
to-Fine strategy (e.g. in GC [40]), but tend to produce inconsistent
distributions with missing details or artifacts. The proposed Wave-
Fill disentangles images into multiple frequency bands and applies
relevant losses to different bands separately, which mitigates inter-
frequency conflicts and produces more realistic structures and de-
tails. The distances between the ground-truth histogram and pre-
diction histograms in both low-frequency (LF) and high-frequency
(HF) are evaluated by Earth Mover’s Distance (EMD) [30].

have complex texture and structural patterns.
State-of-the-art image inpainting methods leverage gen-

erative adversarial networks (GANs) [10] heavily for gen-
erating realistic high-frequency details [28]. But they often
face a dilemma of perceptual quality and reconstruction that
share a perception-distortion trade-off [4]. Specifically, the
adversarial loss in GANs tends to recover high-frequency
texture details and improve the perceptual quality [31, 8],
while the L1/L2 loss in reconstruction focuses more on
recovering low-frequency global structures [28]. Concur-
rently optimizing the two objectives in spatial domain tends
to introduce inter-frequency conflicts as illustrated in Fig. 1.
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GMCNN [35] balances the two objectives by weighted sum,
but it still works in spatial domain with mixed frequency
and struggles to generate more realistic high-frequency de-
tails due to the inter-frequency conflicts. Gate Convolution
(GC) [40] mitigates this issue by adopting a Coarse-to-Fine
strategy [39, 32, 29, 20, 40] that first predicts global low-
frequency structures and then refines high-frequency texture
details. The coarse estimation network is generally trained
with L1 loss, but the inter-frequency conflicts still exist in
the refinement network. Moreover, the two-stage network
often suffers from inconsistency in generated structure and
texture details due to the lack of effective alignment and fu-
sion of multi-stage features [21].

To address the aforementioned issues, we design Wave-
Fill, an innovative image inpainting framework that em-
ploys wavelet transform to complete corrupted image re-
gions at multiple frequency bands separately. Specifically,
we convert images into wavelet domain with 2D discrete
wavelet transform (DWT) [6] where the images can be dis-
entangled into multiple frequency bands accurately without
losing spatial information. The disentanglement allows us
to apply adversarial (or L1) loss to the high-frequency (or
low-frequency) branches explicitly and separately, which
greatly mitigates the content conflicts as introduced by con-
currently optimizing the two different objectives over en-
tangled features in spatial space. In addition, we design
a novel frequency region attentive normalization (FRAN)
scheme that aggregates attention from low frequency to
high frequency to align and fuse the multi-frequency fea-
tures. FRAN ensures the consistency across multiple fre-
quency bands and helps suppress artifacts and preserve tex-
ture details effectively. The separately completed features
in different frequency bands are then transformed back to
the spatial domain via inverse discrete wavelet transform
(IDWT) to produce the final completion.

The contributions of this work can be summarized in
three aspects. First, we propose WaveFill, an innova-
tive image inpainting technique that synthesizes corrupted
image regions at different frequency bands explicitly and
separately, which effectively mitigates the inter-frequency
conflicts while minimizing adversarial and reconstruction
losses. Second, we design a novel normalization scheme
that enables attentive alignment and fusion of the multi-
frequency features with effective artifact suppression and
detail preservation. Third, extensive experiments over mul-
tiple datasets show that the proposed WaveFill achieves su-
perior inpainting as compared with the state-of-the-art.

2. Related Works

2.1. Image Inpainting

Image inpainting has been studied for years and earlier
works employ diffusion and image patches heavily. Specif-

ically, diffusion methods [3, 1] propagate neighboring in-
formation towards the corrupted regions but often fail to re-
cover meaningful structures with little global information.
Patch-based methods [2, 7] complete images by searching
and transferring similar patches from the background. They
work well for stationary texture but struggle while generat-
ing meaningful semantics for non-stationary data.

With the recent advance of deep learning, deep neural
networks have been widely explored for the image genera-
tion and inpainting [45, 43, 44, 37, 38, 41]. In particular,
generative adversarial networks [10] have been developed
to complete images with both faithful structures and plau-
sible appearance. For example, Pathak et al. [28] proposes
a GAN-based method to complete large corrupted regions.
Nazeri et al. [26] introduces EdgeConnect to predict salient
edges without coarse estimation. Wang et al. [35] em-
ploys multiple branches with different receptive fields for
inpainting. Zeng et al. [42] designs a Pyramid-Context En-
coder Network to recover the missing regions across multi-
ple scales. Liu et al. [21] recovers structures and textures
by representing them with deep and shallow features. Liu et
al. [20] introduces partial convolution with free-from masks
for inpainting. On top of it, Yu et al. [40] presents gated
convolution for inpainting.

Though the aforementioned methods address image
completion in different manners, most of them work in the
spatial domain where information of different frequencies
is mixed and often introduces inter-frequency conflicts in
learning and optimization. Our method instead decomposes
images into the frequency space and applies different objec-
tives to different frequency bands explicitly and separately,
which mitigates inter-frequency conflicts and improves im-
age inpainting quality effectively.

2.2. Wavelet-based Methods

Wavelet transforms decompose a signal into different
frequency components and has shown great effectiveness
in various image processing tasks [25]. Wavelet-based in-
painting has been investigated far before the prevalence of
deep learning. For example, Chan et al. [5] designs varia-
tional models with total variation (TV) minimization for im-
age inpainting, and it’s improved in [48] with non-local TV
regularization. In addition, Dobrosotskaya et al. [9] com-
bines diffusion with the non-locality of wavelets for better
sharpness in inpainting. Zhang and Dai [46] decomposes
images in the wavelet domain to generate structures and
texture with diffusion and exemplar-based methods, respec-
tively. The aforementioned methods leverage hand-crafted
features which cannot generate meaningful content for large
corrupted regions. We borrow the idea of wavelet-based de-
composition and incorporate CNN representations and ad-
versarial learning which mitigates this issue effectively.

Recently, incorporating wavelets into deep networks has
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Figure 2. The architecture of the proposed WaveFill inpainting network: The WaveFill generator consists of three branches for processing
information of different frequencies separately. Given an Input Image, we first decompose it into multiple frequency bands via DWT
(discrete wavelet transform) and then assemble the decomposed frequency bands into three ‘broadbands’ LowFreq, Lv2-HighFreq and Lv1-
HighFreq. The completion is performed in the LowFreq first with GC ResBlk and the generated features are then aligned and propagated
to high-frequency branches (via a novel normalization scheme FRAN) for further completion. The L1 loss is explicitly applied in the low-
frequency branch, and two discriminators are employed to enable adversarial training in the two high-frequency branches. The generated
features in the three branches are finally transformed back to spatial domain via IDWT (inverse DWT) to produce the final Prediction.

been explored in various computer vision tasks such as
super-resolution [13, 8], style transfer [23], quality en-
hancement [33] and image demoiréing [22]. Different from
them that directly concatenate frequency bands and pass
them to convolutional layers, we design separate network
branches to explicitly generate contents for each group of
frequency bands, and meanwhile incorporate features from
other branches for better completion.

3. Proposed Method

3.1. Overview

The overview of our proposed inpainting network is
illustrated in Fig. 2. An input image is first decom-
posed and assembled into 3 frequency bands LowFreq,
Lv2HighFreq and Lv1HighFreq, which are then fed to three
network branches for respective completion. We apply
L1 reconstruction loss to LowFreq and adversarial loss
to Lv2HighFreq and Lv1HighFreq to mitigate the inter-
frequency conflicts. In addition, we design a novel normal-
ization scheme FRAN that aligns and fuses features from
the three branches to enforce the completion consistency
across the three frequency bands. The generation results in
the three branches are finally transformed back to the spa-
tial domain to complete the inpainting, more details to be
described in the ensuing subsections.

3.2. Wavelet Decomposition

The key innovation of our work is to disentangle im-
ages into multiple frequency bands and complete the im-

ages in different bands separately in the wavelet do-
main. We adopt 2D discrete wavelet transform (DWT) to
first decompose images into multiple wavelet sub-bands
with different frequency contents. For each iteration of
the decomposition, the DWT applies low-pass and high-
pass wavelet filters alternatively along image columns
and rows (followed by downsampling), which produces
4 sub-bands including LL,LH,HL, and HH . The de-
composition continues iteratively on LLn−1 to produce
LLn, LHn, HLn, and HHn until the target level of de-
composition Nw is reached. Hence, a total number of
3Nw + 1 wavelet sub-bands will be finally produced in-
cluding LLNw , {LHn}Nw

n=1, {HLn}Nw
n=1, and {HHn}Nw

n=1.
Here LLNw captures low-frequency information at the Nw-
th level, LHn, HLn and HHn capture the horizontal, ver-
tical and diagonal high-frequency information at the n-th
level, respectively. Note that the sizes of sub-bands at the
n-th level are down-sampled with a factor of 1/2n.

In this work, we adopt the Haar wavelet filter as the
basis for the wavelet transform, where the high-pass fil-
ter is hhigh = (1/

√
2, 1/

√
2) and the low-pass filter is

hlow = (1/
√
2,−1/

√
2). The level of wavelet decom-

position Nw is empirically set to 2, we treat LL2 as low-
frequency, concatenate LHn, HLn and HHn in the chan-
nel dimension as n-th level high-frequency. Given a input
image of size H × W × 3, we will thus obtain three in-
puts in the wavelet domain, namely, LowFreq with size of
H/4×W/4×3, Lv2-HighFreq with size of H/4×W/4×9
and Lv1-HighFreq with size of H/2×W/2× 9.
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3.3. Frequency Region Attentive Normalization

It is a vital step to align and fuse the low-frequency
and high-frequency features for generating consistent and
realistic contents across different frequency bands.An ef-
fective fusion of low-frequency and high-frequency fea-
tures has two major challenges. First, the statistics of low-
frequency and high-frequency bands have clear differences,
direct summing or concatenating them could greatly sup-
press high-frequency information due to its high sparsity.
Second, the different branches are trained with their explicit
loss terms, and the learning capacity (No. of CNN layers
and kernel sizes) also varies among the branches. Thus,
when inpainting different branches independently without
inter-branch alignment, a network branch may generate
contents that are reasonable in its own frequency bands but
inconsistent across frequency bands of other branches (in
object shapes or sizes). Both issues could lead to various
blurs and artifacts in the completion results. We design a
novel Frequency Region Attentive Normalization (FRAN)
technique that aligns and fuses low-frequency and high-
frequency features for more realistic inpainting.

For the issue with the statistical difference, we propose
to align the low-frequency features with the target high-
frequency features so as to fuse them effectively and al-
leviate the difficulty of generating target high-frequency
bands. Inspired by the spatially-adaptive normalization
(SPADE) [27], we achieve the feature alignment by inject-
ing the learnable modulation parameters γH and βH of
high-frequency features XH = {x1

H , ..., xN
H} to the low-

frequency features XL = {x1
L, ..., x

N
L }, where N is the

number of spatial positions, i.e. N = H ×W .
To align the contents in the missing regions, we aggre-

gate the self-attention score of low-frequency features to
high-frequency features. Since the attention map depicts the
correlation between low-frequency feature patches, the mis-
aligned high-frequency features of corrupted regions can be
reconstructed by collectively aggregating features from un-
corrupted regions. Another advantage of applying attention
aggregation is to leverage complementary features of distant
regions by establishing long-range dependencies. As shown
in Fig. 3, the attention scores Wj,i are computed from low-
frequency features XL ∈ RC×N (C is the channel number)
which are firstly transformed to two features space for key
and query respectively, i.e. K = f(XL), Q = g(XL), f
and g are the 1× 1 convolutions. For efficiency, we employ
max-pooling to obtain a spatial dimension of N = 1024
(32× 32) for attention calculation and aggregation.

Wj,i =
exp(si,j)∑N
i=1 exp(si,j)

, where si,j = f(xi
L)

T g(xj
L) . (1)

The high-frequency features XH is then mapped to the
feature space with the same hidden dimension by V =
h(XH) where h is the transformation function by convo-
lution. The aggregation of XH at position i is defined by:
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Figure 3. The structure of the proposed Frequency Region Atten-
tive Normalization (FRAN): The irregular regions in each feature
map denote corrupted regions. After projecting high-frequency in-
formation to a feature space, FRAN aligns the corrupted regions
of low-frequency and high-frequency features by aggregating the
attention score of low-frequency to high-frequency. The aligned
high-frequency features are then convolved to produce modula-
tion parameters γH and βH that are injected into the normalized
low-frequency features.

Ai =

N∑
j=1

Wj,ih(x
i
H) . (2)

Since the high-frequency features are significantly
sparse, the magnitude of resultant aggregation is relatively
small. We adopt a parameter-free positional normalization
[19] to normalize it and meanwhile preserve structure in-
formation. The same normalization is also applied to low-
frequency features before the modulation. Finally, the ag-
gregation output A is convolved to produce the modulation
parameters γH and βH to modulate the normalized low-
frequency features:

H = γH

XL − µL

σL
+ βH , (3)

where H is the modulated features, µL and σL is the mean
and standard deviation of XL along the channel dimension.

3.4. Network Architecture

Our network consists of one generator and 2 discrimina-
tor as illustrated in Fig. 2.

Generation Network. The generation network consists
of 3 branches LowFreq, Lv2-HighFreq and Lv1-HighFreq
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that recover corrupted regions separately. The LowFreq
branch consists of a completion module GC ResBlk that
adopts gated convolution [40] and residual connection [11].
Specifically, GC ResBlk consists of several consecutive
residual blocks with growing dilation rates up to 16 to in-
crease the receptive field. Meanwhile, it replaces all convo-
lutions by gated convolution to dynamically handle missing
regions. The generated low-frequency features will be prop-
agated to a decoder that has two gated convolutions to pre-
dict the completion of low-frequency sub-bands. Besides,
they will also be transferred to two high-frequency branches
for guiding and aligning with their generation.

The high-frequency branch Lv2-HighFreq consists of a
new residual block FRAN ResBlk that is introduced with
FRAN as illustrated in Fig. 2 (right). As the learned
modulation parameters have encoded high-frequency infor-
mation, we directly feed the high-frequency bands to the
FRAN without additional encoding. After injecting the
high-frequency information to low-frequency features, we
propagate the acquired high-frequency features to a sepa-
rate decoder which also consists of two gated convolutions.
Another high-frequency branch Lv1-HighFreq shares sim-
ilar structures with Lv2-HighFreq, except that it concate-
nates the well-aligned and normalized features from the pre-
vious two branches and up-sampling them to the current
spatial dimension. The generation network thus predicts
the inpainting of all 3 frequency bands, and finally con-
verts them back to the spatial domain via inverse Discrete
Wavelet Transform (IDWT). As DWT and IDWT are both
differentiable, the network can be trained end-to-end.

Discrimination Network. To synthesize high-frequency
information, we adopt two discriminators of the same struc-
ture to predice Lv2-HighFreq and Lv1-HighFreq, respec-
tively. Motivated by PatchGAN [15] and global and local
GANs [14], we adopt global and local sub-networks on top
of PatchGAN to ensure the generation consistency. Addi-
tionally, we append a self-attention layer [47] after the last
convolutional layer to assess the global structure and en-
force the geometric consistency.

3.5. Loss Functions

We denote the finally completed image by Iout, the pre-
dictions in the wavelet domain by {LNw

out, H
1
out, ...,H

Nw
out }

(Nw is number of levels in wavelet decomposition), the
ground-truth image by Igt and its corresponding wavelet
coefficients by {LNw

gt , H1
gt, ...,H

Nw
gt }. Dn is the discrim-

inator for the n-th level high-frequency wavelet coefficients
in the wavelet domain.

Low-Frequency L1 Loss. We explicitly employ the L1
loss on the low-frequency subbands in the wavelet domain,
which can be defined by:

LLF = ||LNw
out − LNw

gt ||1 . (4)

Adversarial Loss. For the 2 discriminators of high-
frequency branches, we apply the same adversarial losses
to them using hinge loss [15]. The adversarial loss for dis-
criminator Dn is defined as:

LDn = EHn
gt
[ReLU(1−Dn(H

n
gt)]

+ EHn
out

[ReLU(1 +Dn(H
n
out)] .

(5)

For the generator, we sum up the adversarial loss of each
discriminator to obtain the final loss LG as below:

LG = −
Nw∑
n=1

EHn
out

[Dn(H
n
out)] . (6)

Feature Matching Loss. As the training could be unsta-
ble due to the sparsity of high-frequency bands, we adopt
the feature matching loss following pix2pixHD [34] on both
the two discriminators to stabilize the training process.

LFM =

Nw∑
n=1

E

[
L∑

i=1

1

Ni
||Di

n(H
n
out)−Di

n(H
n
gt)||1

]
,

(7)

where L is the last layer of the discriminator, Di and Ni are
the activation map and its number of elements in the i-th
layer of the discriminator, respectively.

Perceptual Loss. To penalize the perceptual and seman-
tic discrepancy, we employ the perceptual loss [16] using a
pertrained VGG-19 network:

Lperc =
∑
i

λi||Φi(Iout)− Φi(Igt)||1

+λl||Φl(Iout)− Φl(Igt)||2 ,
(8)

where λi are the balancing weights. Φi is the activation
of i-th layer of the VGG-19 model which corresponds to
the activation maps from layers relu1 2, relu2 2, relu3 2,
relu4 2 and relu5 2. Φl represents the activation maps of
relu4 2 layer, and we select this specific layer to emphasize
the high-level semantics.

Full Objective. With the linear combination of the
aforementioned losses, the network is optimized by the fol-
lowing objective:

Lθ = min
G

max
D1,D2

(λlLLF + LG + λfLFM + λpLperc) , (9)

where we empirically set λl = 2, λf = 5, and λp = 10 in
our experiments for balancing the objectives.

4. Experiments
4.1. Experimental Settings

Datasets. We conduct experiments on three public
datasets that have different characteristics:
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(c) EC* (d) GC(b) GMCNN (e) Ours(a) Input (f) GT

Figure 4. Qualitative comparison of WaveFill with the state-of-the-art: WaveFill generates more realistic inpainting with much less
artifacts (over the dataset CelebA-HQ[17] with central square masks). ∗ means that the model is trained with official implementation.

– CelebA-HQ [17]: It is a high-quality version of the
human face dataset CelebA [24] with 30,000 aligned
face images. We follow the split in [40] that produces
28,000 training images and 2,000 validation images.

– Places2 [49]: It consists of more than 1.8M natural
images of 365 different scenes. We randomly sampled
10,000 images from the validation set in evaluations.

– Paris StreetView [28]: It is a collection of street view
images in Paris, which contains 14,900 training images
and 100 validation images.

Compared Methods. We compare our method with a
number of state-of-the-art methods as listed:

– GMCNN [35]: It is a generative model with different
receptive fields in different branches.

– GC [40]: It is also known as DeepFill v2, a two-stage
method that leverages gated convolution.

– EC [26]: It is a two-stage method that first predicts
salient edges to guide the generation.

– MEDFE [21]: It is a mutual encoder-decoder that
treats features from deep and shallow layers as struc-
tures and textures of an input image.

Evaluation Metrics. We perform evaluations by using
four widely adopted evaluation metrics: 1) Fréchet Incep-
tion Score (FID) [12] that evaluates the perceptual quality
by measuring the distribution distance between the synthe-
sized images and real images; 2) mean ℓ1 error; 3) peak
signal-to-noise ratio (PSNR); and 4) structural similarity in-
dex (SSIM) [36] with a window size of 51.

Implementation Details. The proposed method is im-
plemented in PyTorch. The network is trained using 256 ×
256 images with random rectangle masks or irregular masks
[20]. We use Adam optimizer [18] with β1 = 0 and

GMCNN [35] EC∗ [26] GC [40] Ours

FID↓ 8.17 8.04 7.39 6.48
ℓ1(%) ↓ 2.38 2.31 2.53 2.26
PSNR↑ 25.86 25.64 25.37 26.53
SSIM↑ 0.905 0.896 0.894 0.911

Table 1. Quantitative comparison of WaveFill with state-of-the-
art methods over CelebA-HQ [17] validation images (2,000) with
square masks. ∗ denotes that we trained the model based on offi-
cial implementation.

β2 = 0.9, and set the learning rate at 1e-4 and 4e-4 for the
generator and discriminators, respectively. The experiments
are conducted on 4 NVIDIA(R) Tesla(R) V100 GPU. The
inference is performed in a single GPU, and our full model
runs at 0.138 seconds per 256× 256 image.

4.2. Quantitative Evaluation

We perform extensive quantitative evaluations over data
with central square masks and irregular masks [20]. For in-
painting with central square masks, we use the mask size of
128×128, and benchmark with GMCNN [35], EC [26] and
GC [40] over the validation images of CelebA-HQ [17]. For
inpainting with irregular masks, we conducted experiments
over Places2 [49] and Paris StreetView [27] and bench-
marked with GC [40], EC [26] and MEDFE [21]. The ir-
regular masks in the experiments are categorized based the
ratios of the masked regions over the image size. Perfor-
mance of the compared methods was acquired by running
publicly available pre-trained. The only exception is EC
[26] which was trained with the official implementation on
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(c) GC (d) MEDFE(b) EC (f) GT(a) Input (e) Ours

Figure 5. Qualitative comparison of WaveFill with the state-of-the-art: WaveFill generates more realistic inpainting with much less
artifacts as compared with the state-of-the-art (over dataset Places2 [49] with irregular masks).

CelebA-HQ [17] with random rectangle masks.
Table 1 shows experimental results for dataset CelebA-

HQ with central square masks. It can be observed that
WaveFill outperforms all existing methods under different
evaluation metrics consistently. In addition, experiments
with irregular masks show that WaveFill achieves supe-
rior inpainting under different mask ratios as shown in Ta-
ble 2. The effectiveness of WaveFill largely attributes to
the wavelet-based frequency decomposition and the pro-
posed normalization scheme. Specifically, disentangling
frequency information in the wavelet domain helps miti-
gate the conflicts in generating low-frequency and high-
frequency contents effectively, and it improves the inpaint-
ing quality in PSNR and SSIM as well. With the proposed
normalization scheme, the low and high frequency informa-
tion can be aligned for consistent generations in different
frequency bands. Moreover, it allows the model to establish
long-range dependencies which help generate more seman-
tically plausible contents with better perceptual quality in
FID. Quantitative results for Paris StreetView [27] are pro-
vided in the supplementary materials due to space limit.

4.3. Qualitative Evaluations

Figs. 4 and 5 show qualitative experimental results over
the validation set of CelebA-HQ [17] and Places2 [49], re-
spectively. As demonstrated in Fig. 4, the inpainting by
GMCNN [35] and EC [26] suffers from unreasonable se-
mantics and inconsistency near edge regions clearly, while
the inpainting by GC [40] contains obvious artifacts and
blurry textures. As a comparison, the inpainting by Wave-
Fill are more semantically reasonable and has less artifacts
but more texture details. For dataset Places2 [49], the in-

Mask EC [26] GC [40] MEDFE [21] Ours

FID↓

10-20% 2.55 5.18 2.81 1.96
20-30% 5.36 10.06 7.51 4.08
30-40% 9.28 15.67 15.84 7.33
40-50% 15.17 22.69 28.98 12.68

ℓ1(%) ↓

10-20% 1.55 2.19 1.42 1.39
20-30% 2.71 3.73 2.62 2.32
30-40% 3.97 5.34 4.13 3.42
40-50% 5.42 7.05 5.97 4.73

PSNR↑

10-20% 27.23 24.96 28.48 28.72
20-30% 24.30 22.02 24.76 25.87
30-40% 22.31 20.03 22.05 23.74
40-50% 20.67 18.54 19.87 21.99

SSIM↑

10-20% 0.942 0.906 0.954 0.956
20-30% 0.890 0.833 0.902 0.918
30-40% 0.830 0.758 0.833 0.867
40-50% 0.758 0.679 0.749 0.803

Table 2. Quantitative comparison of WaveFill with state-of-the-art
methods over Places2 [49] validation images (10,000) with irreg-
ular masks [20].

painting by GC [40] and MEDFE [21] contains undesired
artifacts and distorted structures as shown in Figs. 5b and
5c. Though EC [26] produces more visually appealing con-
tents with less artifacts, its generated semantics are still
short of plausibility. Thanks to the frequency disentangle-
ment and FRAN, WaveFill achieves superior inpainting for
both central square masks and irregular masks.

4.4. User Study

We performed user studies over datasets Paris
StreetView[28], Places2[49] and CelebA-HQ[17]. Specif-
ically, we randomly sampled 25 test images from each
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Figure 6. Inpainting evaluation by user study: The percentages tell
the amount of images that are judged as the most realistic among
images inpainted by all compared methods.

Models FID↓ ℓ1(%) ↓ PSNR↑ SSIM↑

Spatial + Concat 33.95 2.45 28.37 0.898
DCT + Concat 100.93 4.71 23.56 0.765
Wavelet + Concat 32.73 2.46 28.46 0.899
Wavelet + SPADE 32.14 2.38 28.81 0.901
Wavelet + FRAN 31.02 2.34 28.94 0.904

Table 3. Ablation study of WaveFill over Paris StreetView [27]
validation set (100) with irregular masks [20]. Model in the last
row is the standard WaveFill.

dataset with no idea of inpainting results, which leads to
75 multiple choice questions in the survey. We recruited
20 volunteers with image processing backgrounds and each
subject is asked to vote for the most realistic inpainting in
each question. As Fig. 6 shows, the proposed WaveFill
outperforms state-of-the-art methods by large margins.

4.5. Ablation Study

We study the individual contributions of our technical
designs by several ablation studies over Paris StreetView
[27] as shown in Table 3. In the ablation studies, we trained
four network models including: 1) Spatial + Concat (Base-
line) that adopts the typical encoder-decoder network with
gated convolution [40]. Different from WaveFill, L1 and
adversarial losses are applied together, multi-level features
are directly concatenated; 2) DCT + Concat that adopts
discrete cosine transform (DCT) to compare with wavelet
transformation. Similar to WaveFill, we split the frequency
bands into three groups and feed them to the three gener-
ation branches; 3) Wavelet + Concat that replaces FRAN
by concatenation of multi-frequency features; 4) Wavelet +
SPADE that replace FRAN by SPADE [27].

As shown in Table 3, using DCT degrades the inpainting
greatly due to the lack of spatial information. Wavelet trans-
formation preserves spatial information which improves in-
painting by large margins. In addition, using wavelet out-
performs the baseline especially in FID, largely because

(a) Input (b) Spatial + Concat (c) DCT + Concat

(d) Wavelet + Concat (e) Wavelet + SPADE (f) Wavelet + FRAN
(Ours)

Figure 7. Ablation study of the proposed WaveFill: Our ‘Wavelet’
and ‘FRAN’ designs both help suppress artifacts and synthesize
plausible semantics effectively. The study is performed over Paris
StreeView [28] with irregular masks. The red boxes are used to
highlight the main differences across different approaches.

wavelet-based model disentangles multi-frequency infor-
mation and recovers corrupted regions in different fre-
quency bands separately. Visual evaluation is well aligned
with quantitative experiments in Fig. 7. We can see that
DCT-based model fails to synthesize meaningful structures
as shown in (c). Spatial-based model instead introduces un-
reasonable semantics and clear artifacts as shown in (b).
Our wavelet-based model fills the missing regions with
much less artifacts as shown in (d). Further, concatenation
and SPADE do not align the features of different frequen-
cies for better content consistency. FRAN addresses this
issue effectively as shown in Table 3 and Fig. 7. More ab-
lation studies are included in the supplementary materials.

5. Conclusion

This paper presents WaveFill, a novel image inpainting
framework that disentangles low and high frequency infor-
mation in the wavelet domain and fills the corrupted regions
explicitly and separately. To ensure the inpainting consis-
tency across multiple frequency bands, we propose a novel
frequency region attentive normalization (FRAN) that ef-
fectively aligns and fuses the multi-frequency features es-
pecially those within the missing regions. Extensive ex-
periments show that WaveFill achieves superior image in-
painting for both rectangle and free-form masks. Moving
forward, we will study how to adapt the idea of wavelet de-
composition and separate processing in different frequency
bands to other image recovery and generation tasks.
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