
Supplementary Material for the Paper:
(Just) A Spoonful of Refinements Helps the Registration Error Go Down

Sérgio Agostinho1 Aljoša Ošep2 Alessio Del Bue3 Laura Leal-Taixé2
1 Instituto Superior Técnico, Portugal 2Technical University of Munich, Germany

3Fondazione Istituto Italiano di Tecnologia, Italy
1sergio.agostinho@tecnico.ulisboa.pt 2{aljosa.osep, leal.taixe}@tum.de

3alessio.delbue@iit.it

1. Introduction
We address and expand certain aspects of the paper that

were not relevant for its general understanding, but that give
additional insight into our work and validate certain claims
we made. We provide proofs and detailed derivations when-
ever suitable, for some less obvious steps presented in the
paper. The documents is organized into 7 main sections:
i) In section 2 we provide an in-depth derivation of our
local approximate estimator; ii) In section 3 we evaluate
the redundancy of our constraints and show that once lin-
earized around a rotation, the determinant constraint can be
expressed as a linear combination of the orthogonality con-
straints. Furthermore, we also demonstrate the Linear Inde-
pendence Constraint Qualification (LICQ) of the orthogo-
nality constraints; iii) In section 4 we demonstrate how the
input matrix supplied to the rotation assembler will never
land on one of its singularities; iv) In section 5 we provide
insights into what makes the linear rotation estimator dif-
ferent from Kabsch, identify how these differences mani-
fest themselves, as well as discuss how the problem geom-
etry influences their occurrence; v) In section 6 we include
some additional experiments and ablations with Deep Clos-
est Point and RPM-Net; vi) In section 7 we expand on our
claim that the most accurate way of establishing correspon-
dence quality in Kabsch is by looking at pose error.

2. Detailed Derivation of the Linearized Local
Approximation Estimator

Given a set of correspondences between the source and
target point clouds Ps, Pt ∈ RN×3 our aim is to find a rigid
transformation (R, t) that minimizes the following error:

argmin
R,t

∑N
i=1 wi∥pti − Rpsi − t∥2 (1a)

s. t. R ∈ SO(3), (1b)

where w ∈ RN
+ represents a (n optionally supplied) set

of weights and psi,pti ∈ R3 are individual points of the

source and target point clouds. Given an optimal rotation
matrix R, the problem reduces itself to a linear regression,
where we can simply extract the optimal translation vector
t in a closed-form as:

t∗ =

∑N
i=1 wi(pti − Rpsi)∑N

i=1 wi

= p̄t − Rp̄s, (2)

where p̄t and p̄s represent the weighted means of the points
for each point cloud. We further define p̃ti and p̃si as the
mean-subtracted versions of pti and psi, such that p̃si =
psi − p̄s and p̃ti = pti − p̄t. We can then factor out
the translation component and Eq. (1) can be formulated
entirely with the respect to the rotation. Back-substituting
Eq. (2) yields the following simplification:

argmin
R

∑N
i=1 wi∥p̃ti − Rp̃si∥2 (3a)

s. t. R ∈ SO(3). (3b)

The membership of R in SO(3) can be expressed as:

R⊤R = I3 (4a)
det R = 1, (4b)

where I3 is a 3 × 3 identity matrix. These are quadratic
and cubic equality constraints, respectively. Eq. (4a) sup-
plies six constraints and Eq. (4b) an additional one. How-
ever, when evaluating the first-order terms of the its Taylor
expansion around a rotation matrix, only the orthogonality
constraints respect the LICQ. We can optionally drop either
one of the orthogonality constraints or the determinant con-
straint. We drop the latter to simplify the formulation. We
expand this further in section 3.

Linearization of Constraints. Denoting our prior rota-
tion estimate as Rt−1, we linearize Eq. (4a) around it, only
taking into consideration the upper triangle section of the
constraints’ matrix. We define matrix c(R) = R⊤R − I

such that c(R) : R3×3 → R3×3 and refer to cij(R) as

the element in the i-th row and j-th column, defined as
cij(R) = e⊤i (R

⊤R−I)ej . The variables ei, ej ∈ R3 are Eu-
clidean bases, vectors of zeros with a single element equal
to one at the i-th and j-th elements, respectively. To lin-
earize it, let us formulate a first-order Taylor expansion for
each element in c(R), around an initial estimate Rt−1:

c
(1)
ij (R, Rt−1) = cij(Rt−1)+tr

(
∂cij(Rt−1)

∂R

⊤
(R− Rt−1)

)
,

(5)
where the superscript (1) represents the first-order Taylor
approximation. The derivative ∂cij(R)

∂R is computed as fol-
lows:

∂cij(R)

∂R
=

∂

∂R
e⊤i (R

⊤R− I)ej (6a)

=
∂

∂R
e⊤i R

⊤Rej (6b)

= Reje
⊤
i + Reie

⊤
j . (6c)

Substituting it back yields,

c
(1)
ij (R, Rt−1) = cij(Rt−1) + tr

(
ESijR

⊤
t−1(R− Rt−1)

)
(7)

for i = 1, . . . , 3; j = i, . . . , 3,

where ESij = eie
⊤
j +eje

⊤
i = Eij+Eji ∈ S3 and Eij = eie

⊤
j .

Langrangian Formulation. After the relaxation and lin-
earization of our constraints, we now have an optimiza-
tion problem with a quadratic cost function and linear con-
straints. Then, we can enforce the (linearized) equality con-
straints in Eq. (7) using the method of Lagrange multipli-
ers. Thus, we obtain a closed-form solution that can be
formulated as a linear system of equations. We write the
Lagrangian of Eq. (3a) as:

L(R, Rt−1) =

N∑
i=1

wi

2
∥p̃ti − Rp̃si∥2 +

6∑
k=1

λkc
(1)
k (R, Rt−1),

(8)
where indices ij previously used to specify the row and col-
umn of the constraints c

(1)
ij (R, Rt−1), are now replaced by

the single index k, iterating over the upper triangular part of
the matrix:

c(1)(R, Rt−1) =

c11 c12 c13
c22 c23

c33


︸ ︷︷ ︸

ij

=

c1 c2 c4
c3 c5

c6


︸ ︷︷ ︸

k

. (9)

The variables λk represent the Lagrange multipliers of the
constraints. The minimum to the original constrained prob-
lem is guaranteed to be a stationary point of the Lagrangian.
Thus, we compute the gradient of the Lagrangian and set it

to 0 to look for possible optimal candidates. We start by
fully expanding all terms in Eq. (8):

L(R, Rt−1) =

N∑
i=1

wi

2
tr(p̃t

⊤
i p̃ti − 2p̃t

⊤
i Rp̃si + p̃s

⊤
i R

⊤Rp̃si)

+

6∑
k=1

λk

(
ck(Rt−1) + tr

(
ESkR

⊤
t−1(R− Rt−1)

))
,

(10)

followed by computing its partial derivatives:

∂L(R, Rt−1)

∂R
=

N∑
i=1

wi(Rp̃sip̃s
⊤
i − p̃tip̃s

⊤
i)

+

6∑
k=1

λkRt−1E
S
k (11a)

∂L(R, Rt−1)

∂λk
= ck(Rt−1) + tr

(
ESkR

⊤
t−1(R− Rt−1)

)
.

(11b)

We find the stationary points by finding the values of R and
λk that verify ∇L = 0. These equations are linear w.r.t.
to the variables R and λk, meaning we can estimate them by
solving a linear system of equations. The system needs to be
rewritten so that a linear solver can estimate estimate the un-
knowns

[
vec(R)⊤ λ⊤]⊤. The operator vec, represents a

column-wise vectorization operator and λ = [λ1, . . . , λ6]
⊤.

Let us also define r = vec(R) for brevity. The optimal R and
λ are determined by solving a linear system of the form:

[
A B

B⊤ 0

] [
r
λ

]
=

[
dR

dλ

]
. (12)

We derive A, B, dR and dλ in the following paragraphs.

Partial Derivative w.r.t. R. We need to rearrange the terms
in Eq. (11) in order to now express them w.r.t. r. Starting
with Eq. (11a), ∂L(R,Rt−1)

∂R : R3×3 → R3×3, we need to ac-
cess individual elements of this matrix in order to vectorize
R. Applying a similar step to Eq. (6), we formulate

∂L(R, Rt−1)

∂R mn
= e⊤m

∂L(R, Rt−1)

∂R
en, (13)

for m = 1, . . . , 3 and n = 1, . . . , 3. We introduce the fol-
lowing identity tr(A⊤B) = vec(A)⊤ vec(B). Focusing only

in the terms that depend on R, we have:

∂LR(R, Rt−1)

∂R
= e⊤mR

N∑
i=1

wip̃sip̃s
⊤
i en (14)

= tr

(
e⊤mR

N∑
i=1

wip̃sip̃s
⊤
i en

)
(15)

= tr

(
N∑
i=1

wip̃sip̃s
⊤
i ene

⊤
mR

)
(16)

= tr

(eme⊤n

N∑
i=1

wip̃sip̃s
⊤
i

)⊤

R

 (17)

= tr

(Emn

N∑
i=1

wip̃sip̃s
⊤
i

)⊤

R

 (18)

= a⊤mnr, (19)

with amn = vec
(
Emn

∑N
i=1 wip̃sip̃s

⊤
i

)
. This generates

an equation for each element of ∂L(R,Rt−1)
∂R . However, we

still need to stack these equations as rows of a matrix, in a
suitable form for a linear solver. We do so by vectorizing
∂L(R,Rt−1)

∂R following a column-wise order. This composes
matrix A as presented in the paper:

A =
[
a11 a12 a13 a21 . . . a33

]⊤
. (20)

In the main paper, we express the different rows of A ac-
cording to a single index r. The mapping between indices
mn and r is given by,a11 a12 a13

a21 a22 a23
a31 a32 a33


︸ ︷︷ ︸

mn

=

a1 a4 a7
a2 a5 a8
a3 a6 a9


︸ ︷︷ ︸

r

. (21)

Next we look at ∂Lλk
(R,Rt−1)

∂R i.e., all terms from the par-
tial derivative that depend on λk:

∂Lλk
(R, Rt−1)

∂R
= λkRt−1E

S
k. (22)

The terms λk are already scalar so we only need to vectorize
the expression in order stack all equation like we did for
Eq. (20), resulting in the following definitions

bk = vec(Rt−1E
S
k) (23)

B =
[
b1 . . . b6

]
. (24)

All that remains are the constant terms

∂Lconstant(R, Rt−1)

∂R
=

N∑
i=1

wip̃tip̃s
⊤
i , (25)

that similar to Eqs. (20) (23), are also vectorized:

dR = vec

(
N∑
i=1

wip̃tip̃s
⊤
i

)
. (26)

This concludes the upper part of the linear system of equa-
tions.

Partial Derivative w.r.t. λk.
Every partial derivate w.r.t. λk, with k = 1, . . . , 6, con-

tributes with an equation to the linear system. Addressing
first, the terms that depend on R, we have

∂LR(R, Rt−1)

∂λk
= tr

(
ESkR

⊤
t−1R

)
(27)

= tr
(
(Rt−1E

S
k)

⊤R
)

(28)

= vec
(
Rt−1E

S
k

)⊤
r (29)

= b⊤
k r, (30)

now expressed in terms of r. Performing the same operation
for every value of k and stacking b⊤

k as rows will produce
the matrix B⊤.

The only terms remaining are

∂Lconstant(R, Rt−1)

∂λk
= tr

(
ESkR

⊤
t−1Rt−1

)
− ck(Rt−1) (31)

= tr
(
ESk
)
− ck(Rt−1) (32)

= dλk
. (33)

Stacking dλk
for every possible value of k produces the vec-

tor dλ = [dλ1
, . . . , dλ6

]⊤.

3. Linear Independence Constraint Qualifica-
tion

Our optimization problem is governed by rotation con-
straints as expressed in Eqs. (4). In order to be able to
employ the method of Lagrange Multipliers, our problem
needs to verify the LICQ. In our particular case, ensur-
ing the LICQ is what guarantees that the linear system of
equations in Eq. (12) can be inverted and we can retrieve a
unique solution. Contrary to what was done in the previous
section, to study the LICQ, it is convenient to express con-
straints w.r.t. to the column vectors of R. To do so, let us
define vectors r1, r2 and r3, such that

R =

r1 r2 r3

 , (34)

where ri ∈ R3, for i = {1, 2, 3}. With these new variables,
we now represent Eqs. (4) as:

r⊤i ri = 1 for i = {1, 2, 3} (35a)

r⊤i rj = 0 for (i, j) = {(1, 2), (2, 3), (3, 1)} (35b)

r⊤1 ⌊r2⌋×r3 = 1 (determinant). (35c)

The operator ⌊·⌋× takes a vector in R3 and produces the
skew symmetric matrix

⌊v⌋× =

 0 −vz vy
vz 0 −vx
−vy vx 0

 . (36)

This matrix can be used to represent a vector cross-product
in matrix form, e.g. v1 × v2 = ⌊v1⌋×v2. The determi-
nant constraint in Eq. (35c) is expressed as the scalar triple
product of the column vectors. A scalar triple product is
a product of the form v1 · (v2 × v3). The product does
not change with a circular shift of the vectors, meaning the
determinant of R can also be represented as r⊤2 ⌊r3⌋×r1 or
r⊤3 ⌊r1⌋×r2.

We write the first-order Taylor expansion for each con-
straint, now formulated w.r.t. column vectors, assuming the
form:

c(1)(ri, rit−1
) = c(rit−1

) +
∂c(rit−1

)

∂ri

⊤

(ri − rit−1
). (37)

The method of Lagrange multipliers requires that equality
constraints are expressed as functions that are equal to 0.
At the same time, because the linearization point Rt−1 will
always be a rotation matrix, its columns will always ensure
that c(rit−1) = 0.

Unit Norm. We look first into the (matrix) orthogonality
constraints that place requirements in the norm of the col-
umn vectors. Following this requirement, we define

cni
= r⊤i ri − 1 for i = {1, 2, 3}. (38)

The corresponding derivative at the linearization point is
given by

∂cni
(rit−1

)

∂ri
= 2rit−1

, (39)

resulting in the following linearized constraint

c(1)ni
= 2r⊤it−1

(ri − rit−1
) (40)

= 2(r⊤it−1
ri − 1) for i = {1, 2, 3}. (41)

For brevity, we shall omit the explicit dependency of cni

w.r.t. ri and rit−1
, as well as in all constraints mentioned

henceforth. This constraint forces the vector ri to belong to
a tangent plane to the unit sphere, with the plane defined by
the normal rit−1 as displayed in Figure 1.

Orthogonality. The column (and row) vectors of a rotation
matrix are all perpendicular to each other. This constraint is
expressed as

coij = r⊤i rj for (i, j) = {(1, 2), (2, 3), (3, 1)}. (42)

The corresponding derivatives at the linearization point are
given by

∂coij
∂ri

= rjt−1
,

∂coij
∂rj

= rit−1
, (43)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

r1t 1

r1

r2t 1 r2

Section at z = 0
feasible for r1
feasible for r2

Figure 1. This figure depicts how rotation (matrix) orthogonality
constraints manifest themselves in space once they are linearized.
The figure shows a cross section at z = 0 and only the first
two column vectors of the rotation matrices R and Rt−1 are rep-
resented. The frame of reference is aligned with the bases of Rt−1.
The (blue) vertical and (orange) horizontal lines represent the 3D
planes created from linearizing the vector’s unit norm constraints.
They show that the resultant column vectors of the matrix our lin-
ear estimator produces, will always have a norm larger or equal to
one. Simultaneously, we can also see that the projections of r1 and
r2 to the plane formed by vectors r1t−1 and r2t−1 , in this image
represented as z = 0, will also be orthogonal to each other. How-
ever, since the vectors r1 and r2 are not restricted to z = 0, there
is no guarantee that they are orthogonal.

resulting in the following linearized constraint

c(1)oij = r⊤jt−1
ri+r⊤it−1

rj for (i, j) = {(1, 2), (2, 3), (3, 1)}.
(44)

Please refer to Figure 1 for additional insights on how these
constraints look in space.

Unit Determinant. The determinant constraint of a rota-
tion matrix is given by

cd = r⊤1 ⌊r2⌋×r3 − 1 (45)

= r⊤2 ⌊r3⌋×r1 − 1 (46)

= r⊤3 ⌊r1⌋×r2 − 1. (47)

We will make use of all three variants to compute the dif-
ferent partial derivatives. The partial derivatives at the lin-

earization point are

∂cd
∂r1

= ⌊r2t−1⌋×r3t−1 (48)

= r1t−1 (49)
∂cd
∂r2

= ⌊r3t−1⌋×r1t−1 (50)

= r2t−1 (51)
∂cd
∂r3

= ⌊r1t−1
⌋×r2t−1

(52)

= r3t−1
, (53)

resulting in the following linearized constraint

c
(1)
d =

3∑
i=1

r⊤it−1
(ri − rit−1

) (54)

=

3∑
i=1

r⊤it−1
ri − 3. (55)

The determinant constraint can be written as

c
(1)
d =

1

2

3∑
i=1

c(1)ni
, (56)

implying this constraint is linearly dependent and as such it
is removed from the final formulation.

Linear Independence Constraint Qualification. In order
for the method of Lagrange Multipliers to produce a single
solution, our constraints need to verify the Linear Indepen-
dence Constraint Qualification (LICQ). The LICQ requires
all gradients of the constraints to be linearly independent at
the optimum R∗, assuming one exists. Since the determinant
constraint could be formulated as a linear combinations of
the orthogonality ones, it was dropped. If a constraint is lin-
early dependent, its gradients will also be. If we only con-
sider the (matrix) orthogonality constraints and we stack all
their gradients into a single matrix it yields

C =

2r1t−1
0 0 r2t−1

r3t−1
0

0 2r2t−1
0 r1t−1

0 r3t−1

0 0 2r3t−1
0 r1t−1

r2t−1

 ,

(57)
where C ∈ R9×6. Each column ci ∈ R9 of C, represents
a gradient of one of the constraints. These vectors are con-
stant because the constraints are linear. Therefore, if we en-
sure they are linearly independent, this also holds at the op-
timum R∗. To guarantee linear independence, the columns
of C need to satisfy the following property:

6∑
i=1

αici = 0 → ∀ 1 ≤ i ≤ 6 : αi = 0. (58)

The entries in C consist of the column vectors of matrix
Rt−1 =

[
r1t−1

r2t−1
r1t−1

]
∈ SO(3). This matrix is

the solution at iteration t − 1 and hence satisfies the prop-
erties in Eqs. (4a) and (4b). Eq. (4a) ensures Rt−1 is or-
thogonal. This implies that its column (and row) vectors
are linearly independent and hence we are given that for
∀β1, β2, β3 ∈ R with β1r1t−1 + β2r2t−1 + β3r3t−1 = 0 ⇒
β1 = β2 = β3 = 0. Now assume that we are given such
α1, . . . , α6 ∈ R with α1c1 + · · · + α6c6 = 0. We obtain
the following three equations:

2α1r1t−1
+ α4r2t−1

+ α5r3t−1
=

00
0

 (59)

2α2r2t−1
+ α4r1t−1

+ α6r3t−1
=

00
0

 (60)

2α3r3t−1
+ α5r1t−1

+ α6r2t−1
=

00
0

 . (61)

Since we know that the columns vectors r1t−1 with 1 ≤ i ≤
3 are linear independent, we can deduce that

(59) → α1 = α4 = α5 = 0 (62)
(60) → α2 = α4 = α6 = 0 (63)
(61) → α4 = α5 = α6 = 0, (64)

and thus we obtain that ∀ 1 ≤ i ≤ 6 : αi = 0.

4. Orthogonalization Singularities
In the paper, we make the claim that during the orthog-

onalization steps of our rotation assembler stage, the esti-
mates produced by our linear estimator will not lie close to
the singularities of this operation. We present once more the
steps involved into turning the estimates back into rotation
matrices. Assume that R′ is a 3×3 input matrix to this stage,
resulting from the output of the linear estimator and formed
by the columns r′1, r

′
2, r

′
3 ∈ R3. This matrix is constructed

in the following way:

r1 =
r′1
∥r′1∥

, (65)

r2 =
(I3 − r1r

⊤
1)r

′
2

∥(I3 − r1r⊤1)r
′
2∥

, (66)

r3 = r1 × r2. (67)

To avoid the singularities associated with the denomina-
tor terms of Eqs. (65) and (66), we need to ensure that both
∥r′1∥ > 0 and ∥(I3 − r1r

⊤
1)r

′
2∥ > 0. This is accomplished

by guaranteeing that the input column vectors have a posi-
tive norm, something that is directly observable in Figure 1,
and by guaranteeing that r′1 and r′2 are not collinear.

Positive Vector Norm. To show that all column vectors
have a positive norm, we recover the linearized norm con-
straints

r⊤it−1
r′i = 1 for i = {1, 2, 3}. (68)

From here the we perform the following manipulation

r⊤it−1
r′i = 1 (69)

⇔ − 2r⊤it−1
r′i = −2 (70)

⇔ ∥rit−1
∥2 − 2r⊤it−1

r′i + ∥r′i∥2 = ∥rit−1
∥2 − 2 + ∥r′i∥2

(71)

⇔ ∥r′i − rit−1
∥2 = ∥r′i∥2 − 1 (72)

⇔ 1 ≤ ∥r′i∥, (73)

confirming the intuition from Figure 1.

Non-collinear Vectors. We show that r′1 and r′2 cannot be
collinear by contradiction. If r′1 were r′2 indeed collinear,
one would be able to write r′2 = ar′1, with a representing
an arbitrary non-null scalar in R. However, if we substi-
tute this relation into the linearized (vector) orthogonality
constraints, it yields

r⊤2t−1
r′1 + r⊤1t−1

r′2 = 0 (74)

⇔ 1

a
r⊤2t−1

r′2 + ar⊤1t−1
r′1 = 0 (75)

⇔ 1

a
r⊤2t−1

r′2︸ ︷︷ ︸
(68)
=1

+a r⊤1t−1
r′1︸ ︷︷ ︸

(68)
=1

= 0 (76)

⇔ 1

a
+ a = 0 (77)

⇔ a2 = −1. (78)

There is no a ∈ R that satisfies the equation above, contra-
dicting the original assumption that r′1 and r′2 are collinear.

5. Understanding the Differences Between Es-
timators

As mentioned in the main paper, the estimator we pro-
pose solves a very similar problem to Kabsch, minimizing
the same correspondence loss, but under a different set of
constraints: a linear approximation of the original second-
order equality constraints. A network trained with and with-
out our additional layers will learn a different set of pa-
rameters and will have different registration performance,
a byproduct of the different gradients that our extra layers
produce. To monitor gradient differences, we revisit Deep
Closest Point [4] (DCP). DCP uses a Transformer architec-
ture [3] to compute point-wise features. To limit the in-
fluence of a backpropagation cascading effect, i.e. that a
difference in gradient in the last layers causes considerably
stronger differences in gradients in the early layers, we re-
strict our focus to the gradients of parameters of the very

last layer of the transformer decoder, namely the mean and
standard deviation of a Normalization layer.

Different Gradients. If Kabsch and our Linear Estima-
tor produce different rotation estimates, then including our
layer will produce different gradients. Without loss of gen-
erality, consider the loss function used to train DCP, specif-
ically only the terms that explicitly penalize rotation error.
This loss is of the form

LR =
1

Nr + 1

Nr+1∑
i=1

∥R⊤i Rgt − I3∥2, (79)

where Nr is the number of refinements performed with the
linear estimator. Consider the simple case where Nr = 1
and let us denote Kabsch by f(P′t) and the Linear Estima-
tor by g(P′t, f(P

′
t)), omitting variables in both functions that

are not dependent on learnable parameters. The matrix P′t
represents the regressed (target) correspondences by DCP.
When Kabsch is used standalone, the gradient will respect
the following relationship:

∂LR

∂P′t
=

∂LR

∂f

∂f

∂P′t
. (80)

Performing a single refinement of the linear estimator, will
modify this gradient to

∂LR

∂P′t
=

1

2

∂LR

∂f

∂f

∂P′t
+

1

2

∂LR

∂g

(
∂g

∂P′t
+

∂g

∂f

∂f

∂P′t

)
. (81)

In situations where the linear estimator produces estimates
similar to Kabsch, we have that g(P′t, f(P

′
t)) ≈ f(P′t), yield-

ing

∂LR

∂P′t
≈ 1

2

∂LR

∂f

∂f

∂P′t
+

1

2

∂LR

∂g

(
0 + I

∂f

∂P′t

)
(82)

≈ ∂LR

∂f

∂f

∂P′t
. (83)

Conversely, we can only have different gradients if the lin-
ear estimator produces a different estimate than Kabsch.

To confirm this, we conducted an experiment over a sin-
gle training epoch, where we measured the relative gradient
difference as a function of the amount of divergence error.
This experiment uses the same training data as in DCP’s
unseen categories experiment. To measure gradient differ-
ence, we perform a forward and backwards pass without
our layer, and store Kabsch’s gradient. We then do a for-
ward and backward pass with our layers added, storing also
this gradient. We proceed with training using our gradi-
ent as the descent direction. To report a relative gradient
difference, we compute an element-wise relative difference
between both gradients, concretely

∆(∇L)i =
|∇Loursi −∇LKabschi |

|∇LKabschi |
. (84)

10 5 10 4 10 3 10 2 10 1

Divergence Error

10 4

10 3

10 2

10 1

100

101

102

Gr
ad

ie
nt

 R
el

at
iv

e
Di

ffe
re

nc
e

(%
)

Figure 2. A representation of the gradient relative difference, be-
tween employing and not employing our extra layers, as a function
of the divergence error between the rotation estimates of the Lin-
ear Estimator and Kabsch. This image shows that networks trained
with our layers, experience difference gradients whenever the Lin-
ear Estimator produces different rotation estimates than Kabsch.

We report the mean relative gradient difference, only for the
parameters in the last layer. We compute divergence as the
chordal distance between Kabsch’s and our estimates:

D =

5∑
i=1

∥Roursi − RKabsch∥F . (85)

In Figure 2 we can see that as predicted, networks trained
with our layers, experience difference gradients whenever
the Linear Estimator produces different rotation estimates
than Kabsch. In the majority of situations, given a rota-
tion estimate from Kabsch, our estimator will replicate it.
However, the linearized constraints make our estimator in-
creasingly sensitive to certain geometric configurations of
point clouds. Under these configurations, the estimator will
produce a pose estimate that will diverge from Kabsch at
each iteration. We stress that in our case, divergence comes
paired with the positive effect of facilitating the network to
avoid said configurations, something that is also beneficial
for Kabsch.

Understanding Divergent Cases. We have established
that divergence from Kabsch is what produces different
training outcomes, but we have yet to understand under
which conditions our method diverges. At the time of writ-
ing, we still do not hold a definitive answer that fully iden-
tifies the underlying cause, but we have found certain con-
ditions that establish some empirical upper boundaries on
whether divergence has a chance to occur. These mostly
depend on the geometric relationship between the uncon-
strained solution to

Ru = argmin
R

N∑
i=1

wi∥p̃ti − Rp̃si∥2 (86)

and the solution produced by Kabsch, that we shall hence-
forth designate by RK ∈ SO(3).

It is important to recognize that the optimization prob-
lem in Eq. (86) is solving three independent optimization
problems. To illustrate that, we employ an alternative for-
mulation of the problem in Eq. (86)

Ru = argmin
R

N∑
i=1

wi∥R⊤p̃ti − p̃si∥2 (87)

=

(
N∑
i=1

wip̃tip̃t
⊤
i

)
︸ ︷︷ ︸

G

−1(N∑
i=1

wip̃tip̃s
⊤
i

)
︸ ︷︷ ︸

F

, (88)

with matrices Ru, F ∈ R3×3 and G ∈ S3. Each column
of matrix R will independently pick the best location in 3D
that will minimize its correspondence error. Each column
rui

∈ R3 of matrix Ru is given by

rui = G−1f i (89)

where f i ∈ R3 is the i-th column of F. So each column
rui

has its own distinct loss landscape in R3 that can be
expressed as

Lruj
=

N∑
i=1

wi(p̃t
⊤
i rj − p̃sij)

2 with 1 ≤ j ≤ 3. (90)

Note the usage of index j to represent the column index,
to avoid a clash with index i that denotes correspondences.
The level set surfaces of these loss landscapes form quadrics
in 3D space as exemplified in Figure 3.

Figure 3 shows an example where the linear estimator
produces an estimate that does not diverge from Kabsch’s
estimate. In contrast, in Figure 4 we show a particular
example where the linear estimator diverged considerably.
This example captures some of the representative aspects
that cause the linear estimator to diverge: the unconstrained
solutions is considerably far away from Kabsch’s estimate,
usually a consequence of level set quadrics that are close to
being degenerate due to the target point cloud not spanning
full 3D space; some of the unconstrained solution column
vectors are close to being orthogonal to their corresponding
column vectors in Kabsch’s estimate. We explore these two
cases further.

Distance between the Unconstrained and Kabsch’s So-
lutions. We conducted an experiment over a single train-
ing epoch, where we measured the maximum distance be-
tween Kabsch’s and the unconstrained solutions, across all
three column vectors. This experiment uses the same train-
ing data as in DCP’s unseen categories experiment. We map
the divergence error from Eq. (85) to the maximum distance
between both solutions, computed as

dunc, Kabsch = max
i

∥rui
− rKi

∥, (91)

3 2 1 0 1 2
x

3

2

1

0

1

2

y 1

2

1

2

x-y loss 1

8.0e-02

1.6e-01

2.4e-01

3.2e-01 4.0e-01

4.8e-01

5.6e-01

6.4e-01

7.2e-018.0e-01

8.0e-01

8.8e-01

8.8e-01

9.6e-01

9.6e-01

1.0e+00

1.0e+00

1.1e+00

1.1e+00

1.2e+00

1.2e+00

1.3e+00

1.3e+00

1.4e+00

1.4e+00

1.4e+00

1.4e+00 1.4e+00

1.5e+00

1.5e+00

1.6e+00

1.6e+00

1.7e+00

1.7e+00

1.8e+00

1.8e+00

1.8e+00

1.8e+00

1.9e+00

1.9e+00

2.0e+00
2.1e+00

2.2e+00
2.2e+00

2.3e+00
2.4e+00

2.5e+00
2.6e+00

2.6e+00
0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3 2 1 0 1 2
x

3

2

1

0

1

2

y 1

2

1

2

x-y loss 2

1.0e-01

2.0e-01 3.0e-01

4.0e-01
5.0e-01

5.0e-01

6.0e-01

6.0e-01

7.0e-01

7.0e-01

8.0e-01

8.0e-01

9.0e-01

9.0e-01

1.0e+00

1.0e+00

1.1e+00

1.1e+00

1.2e+00

1.2e+00

1.3e+00

1.3e+00

1.4e+001.5e+001.6e+001.7e+001.8e+00
1.9e+00

2.0e+002.1e+002.2e+00
2.3e+00

2.4e+00
2.5e+00

2.6e+00
2.7e+00

2.8e+00
2.9e+00

3.0e+00
3.1e+00

3.2e+00
3.3e+00 0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

Figure 3. A cross-section of the loss landscape for the first two column vectors of R. left: Loss landscape for the column vector r1. right:
Loss landscape for the column vector r2. The figure’s axes are aligned with the initialization Rt−1 provided to the linear estimator. The
numbers 1 and 2 indicate the location of each column vector, with red representing the solution of the unconstrained problem rui and green
the solution from Kabsch rKi . The level set surfaces form quadrics in 3D space. This is a particular example in which the linear estimator
does not diverge from the Kabsch’s estimate.

and show it in Figure 5. We can see that this distance estab-
lishes a practical upper bound on the divergence error, that
increases when the distance between both solutions also in-
creases. In Figure 6, we validate our claim of the strong
correlation between the unconstrained solution distance and
how this usually manifests itself when the level set quadrics
are close to being degenerate.

Angle between the Unconstrained and Kabsch’s Solu-
tions. We conducted an experiment over a single training
epoch, where we measured the maximum angle between
Kabsch’s and the unconstrained solutions, across all three
column vectors. This experiment also relies on the same
training data as in DCP’s unseen categories experiment. We
map the divergence error from Eq. (85) to the maximum
angle between both solutions, computed as

∠unc, Kabsch = max
i

180

π
arccos

(∣∣∣∣ rui

∥rui
∥
⊤ rKi

∥rKi
∥

∣∣∣∣) , (92)

and show it in Figure 7. We can see the angle also estab-
lishes a practical upper bound on the divergence error, that
increases when the angle between both solutions also in-
creases.

6. Additional Experiments

6.1. Deep Closest Point with ModelNet40 Data

Alignment for identical point clouds. In Table 1, we re-
port the point cloud registration results obtained on the in-
stances of CAD models that were held-out during the model
training. In this setting, we are aligning identical point
clouds; therefore, perfect correspondences between them
exist. As can be seen, with the addition of our refinements,
we obtain a performance that is on-par with the original
method. We marginally improve the rotation error by 0.07%
at the marginal cost of translation accuracy of 0.19%, when
normalized by the maximum magnitude of the rotation and
translations sampled. When the problems is simple for the
underlying network, our method does not provide any as-
sistance, but it will not make the results worse. This allows
to blindly use it as an add-on that can only improve perfor-
mance. In the experiments presented in the main paper, we
show that in more challenging scenarios, our layer provides
more meaningful improvements.

6.2. RPM-Net with ModelNet40 Data

Alignment under Gaussian noise. We sample a different
set of 1024 points (from the original 2048) for each point
cloud and add Gaussian noise N (0, 0.012) independently
to both, clamped at [−0.05, 0.05]. We show the results in
Table 2. In this experiment, we do not provide any measur-

300 200 100 0 100 200 300
z

300

200

100

0

100

200

300

x

3

1
3131

z-x loss 3

5.0e+02

5.0e+02

1.0e+03

1.0e+03

1.5e+03

1.5e+03

2.0e+03

2.0e+03

2.5e+03

2.5e+03

3.0e+03

3.0e+03

3.5e+03

3.5e+03

4.0e+03

4.0e+03

4.5e+03

4.5e+03

5.0e+03

5.0e+03

5.5e+03

5.5e+03

6.0e+03

6.0e+03

6.5e+03

6.5e+03

7.0e+03

7.0e+03

7.5e+03

7.5e+03

8.0e+03

8.0e+03

8.5e+03

8.5e+03

9.0e+03

9.0e+03

9.5e+03

9.5e+03

1.0e+04

1.0e+04

1.0e+04

1.0e+04

1.1e+04

1.1e+04

1.2e+04

1.2e+04

1.2e+04

1.2e+04

1.2e+04

1.2e+04

1.3e+04

1.3e+04

1.4e+04

1.4e+04

1.4e+04

1.4e+04

1.4e+04

1.4e+04

1.5e+04

1.5e+04

1.6e+04

1.6e+04

1.6e+04

1.6e+04

1.6e+04

0

2000

4000

6000

8000

10000

12000

14000

16000

300 200 100 0 100 200 300
z

300

200

100

0

100

200

300

x

3

1
3131

z-x loss 1

5.0e+02

5.0e+02

1.0e+03

1.0e+03

1.5e+03

1.5e+03

2.0e+03

2.0e+03

2.5e+03

2.5e+03

3.0e+03

3.0e+03

3.5e+03

3.5e+03

4.0e+03

4.0e+03

4.5e+03

4.5e+03

5.0e+03

5.0e+03

5.5e+03

5.5e+03

6.0e+03

6.0e+03

6.5e+03

6.5e+03

7.0e+03

7.0e+03

7.5e+03

7.5e+03

8.0e+03

8.0e+03

8.5e+03

8.5e+03

9.0e+03

9.0e+03

9.5e+03

9.5e+03

1.0e+04

1.0e+04

1.0e+04

1.0e+04

1.1e+04

1.1e+04

1.2e+04

1.2e+04

1.2e+04

1.2e+04

1.2e+04

1.2e+04

1.3e+04

1.3e+04

1.4e+04

1.4e+04

1.4e+04

1.4e+04

1.4e+04

1.4e+04

1.5e+04

1.5e+04

1.6e+04

1.6e+04

1.6e+04

1.6e+04

1.6e+04

0

2000

4000

6000

8000

10000

12000

14000

16000

3 2 1 0 1 2
z

3

2

1

0

1

2

x 3

1

3
1

z-x loss 3

5.0e-02

5.0e-021.0e-01

1.0e-01

1.5e-01

1.5e-01

2.0e-01

2.0e-01

2.5e-01

2.5e-01

3.0e-01

3.0e-01

3.5e-01

3.5e-014.0e-01

4.0e-01

4.5e-01

4.5e-01

5.0e-01

5.0e-01

5.5e-01

5.5e-01

6.0e-01

6.0e-01

6.5e-01

6.5e-01

7.0e-01

7.0e-01

7.5e-01

7.5e-018.0e-01

8.0e-018.5e-01
9.0e-01

9.5e-01
1.0e+00
1.1e+00
1.1e+00
1.2e+00
1.2e+00
1.2e+00
1.3e+00
1.4e+00
1.4e+00
1.5e+00
1.5e+00

1.6e+00
1.6e+00
1.7e+00
1.7e+00
1.8e+00
1.8e+00
1.9e+00
1.9e+00
2.0e+00
2.0e+002.1e+00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

3 2 1 0 1 2
z

3

2

1

0

1

2

x 3

1

3
1

z-x loss 1

4.0e-02

4.0e-02

8.0e-02

8.0e-02

1.2e-01

1.2e-01

1.6e-01

1.6e-01

2.0e-01

2.0e-01

2.4e-01

2.4e-01

2.8e-01

2.8e-01

3.2e-01

3.2e-01

3.6e-01

3.6e-01

4.0e-01

4.0e-01

4.4e-01

4.4e-01

4.8e-01

4.8e-015.2e-01

5.2e-015.6e-01

5.6e-01

6.0e-01

6.0e-01

6.4e-01

6.4e-01

6.8e-01

6.8e-01

7.2e-01

7.2e-01

7.6e-01

7.6e-01

8.0e-01

8.0e-01

8.4e-01

8.4e-01

8.8e-01

8.8e-01

9.2e-01

9.2e-01

9.6e-01

9.6e-01

1.0e+00

1.0e+00

1.0e+00

1.0e+00

1.1e+00

1.1e+00

1.1e+00

1.1e+00

1.2e+00

1.2e+00

1.2e+00
1.2e+00
1.3e+00

1.3e+00
1.4e+00

1.4e+00
1.4e+00
1.5e+00

1.5e+00

0.00

0.16

0.32

0.48

0.64

0.80

0.96

1.12

1.28

1.44

Figure 4. A cross-section of the loss landscape for the first and third column vectors of R. top-left: Loss landscape for the r3. top-right:
Loss landscape for the r1. bottom-left: Loss landscape for the r3. A zoomed-in view of top-left. bottom-right: Loss landscape for the
r1. A zoomed-in view of top-right. The numbers 1 and 3 indicate the location of each column vector, with red representing the solution
of the unconstrained problem rui , blue representing the solution of the linear estimator ri and green the solution from Kabsch rKi . The
figure’s axes are aligned with the initialization Rt−1 provided to the linear estimator, and explain why the solution from Kabsch is no longer
contained inside the unit circle. In this particular example, the linear estimator diverges from Kabsch’s estimate. Contrary to Figure 3, note
how the unconstrained solution is considerably distant from Kabsch’s estimate and how the level set curves appear to be almost parallel,
usually a sign that the correspondences in the target point cloud are close to being distributed along a linear subspace in 3D space, e.g. a
plane or a line. In this image we can also confirm that the solutions from the linear estimator respect the constraints shown in Figure 1.

able improvement to the baseline method. Similar to DCP,
this happens when the correspondence problem is too sim-
ple. However, the results encourage the idea that we do
not incur a penalty in including our layer and that it can be
blindly applied as an add-on. We also evaluated increas-
ing the magnitude of Gaussian error at test time, but both

approaches produce similar results.

6.3. Ablation Studies

Our method is governed by two critical design choices:
how many refinement iterations should we conduct and
whether to impose a loss in all poses output by our method

10 1 100 101 102 103

Maximum distance between Unc and Kabsch

10 6

10 5

10 4

10 3

10 2

10 1

100

Di
ve

rg
en

ce
 E

rro
r

Figure 5. A representation of the divergence error, as a function
of the maximum distance across all column vectors, between Kab-
sch’s and the unconstrained solution. The distance establishes a
practical upper bound on the divergence error, that increases when
the distance between both solutions also increases.

10 1 100 101 102 103

Maximum distance between Unc and Kabsch

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

de
t(G

)

Figure 6. A representation of det(G), as a function of the max-
imum distance across all column vectors, between Kabsch’s and
the unconstrained solutions. The closer the points in the target
point cloud are to span only a linear subspace of 3D, like a plane
or a line, the closer the det(G) will be to the value 0. When that
happens, our the level set quadrics approximate degeneracy and
the unconstrained solution shifts considerably in space.

or only in the last one. In this section we show how both
these decisions affect registration performance. We evalu-
ate the choice of performing 1, 2, 5 and 10 refinement it-
erations. We carry-over the experimental setup from DCP
with unseen categories and from RPM-Net on partially vis-
ible data with noise. We report RMSE for both rotation and
translation for these variants. We report results for DCP in
Table 3 and for RPM-Net in Table 4. In both cases, ap-
plying the pose loss to all poses produced by the network,
in conjunction with performing 5 iterations of our method
produces the best pose error.

0 20 40 60 80
Angle between unconstr. and Kabsch solutions (°)

10 6

10 5

10 4

10 3

10 2

10 1

100

Di
ve

rg
en

ce
 E

rro
r

Figure 7. A representation of the divergence error, as a function of
the maximum angle across all column vectors, between Kabsch’s
and the unconstrained solution. Similar to Figure 5, the angle also
establishes a practical upper bound on the divergence error, that
increases when the angle between both solutions also increases.

Model RMSE(R)◦ MAE(R)◦ RMSE(t) MAE(t)

ICP 29.914835 23.544817 0.290935 0.248755
Go-ICP [5] 11.852313 2.588463 0.025665 0.007092
FGR [6] 9.362772 1.999290 0.013939 0.002839
PointNetLK [1] 15.095374 4.225304 0.022065 0.005404

DCP-v2 1.093971 0.751517 0.001717 0.001173
DCP-v2 + ours 1.063893 0.760524 0.002677 0.001865

Table 1. Deep Closest Point on ModelNet40: Test on unseen point
clouds with perfect correspondences. We marginally improve the
rotation error by 0.07% at the marginal cost of translation accuracy
of 0.19%, when normalized by the maximum magnitude of the
rotation and translations sampled. The problem is too simple for
our layer to provide meaningful improvements to the baseline, but
it will not make the results worse, allowing it to blindly used as an
add-on that can only improve match or improve performance.

7. Measuring Correspondence Improvement

In the main paper, we made the claim that evaluating
correspondence quality simply based on the Euclidean dis-
tance can be misleading. This is because improvements in
this metric do not necessarily translate in improvements in
pose. In fact, it is possible to engineer a particular case that
for a higher average Euclidean distance error, the network
produces a better pose estimate. In light of this, we make
the argument that only pose error can accurately represent
a measure of correspondence quality improvement, for the
task of point cloud registration. To establish an initial in-
tuition behind our claims we refer to Figure 8, also present
in the main paper. In here, we show a cherry picked ex-
ample where the pose error is particularly small. Contrary
to intuition, the regressed target points (red) hardly resem-
ble the ground truth target points (black) and yet the net-

Method Anisotropic err. Isotropic err. C̃D
(Rot.) (Trans.) (Rot.) (Trans.)

ICP 3.414 0.0242 6.999 0.0514 0.00308
RPM 1.441 0.0094 2.994 0.0202 0.00083
FGR 1.724 0.0120 2.991 0.0252 0.00130
PointNetLK 1.528 0.0128 2.926 0.0262 0.00128
DCP-v2 4.528 0.0345 8.922 0.0707 0.00420

RPM-Net 0.343 0.0030 0.664 0.0062 0.00063
RPM-Net +
Ours

0.342 0.0030 0.664 0.0062 0.00063

Table 2. RPM-Net on ModelNet40: Performance on data with
Gaussian noise. The Chamfer distance using groundtruth trans-
formations is 0.00055. Our network provides no improvement in
this case because the problem is simple for the matching network,
but it also does not hinder performance.

Iters. / Loss ∆p ∆Rani ∆t

1 / all 0.491894 5.472425 0.005496
2 / all 0.491909 5.573030 0.007119
5 / all 0.491878 2.051718 0.004543
10 / all 0.492074 5.558087 0.014462

1 / last 0.491913 3.791935 0.006351
2 / last 0.491890 2.485598 0.004585
5 / last 0.491963 4.859206 0.009861
10 / last 0.492326 6.622592 0.021234

Table 3. Ablations on the Deep Closest Point unseen categories
experiment. We evaluate the influence of the number of refinement
iterations used, as well as the effect of employing a loss term to all
or just the last pose produced by the combination of Kabsch and
our method. We present results for the mean point distance ∆p,
and RMSE for rotation ∆Rani and translation ∆t (L2 norm) errors.

Method Anisotropic err. Isotropic err. C̃D
(Rot.) (Trans.) (Rot.) (Trans.)

1 / all 0.8944 0.00877 1.704 0.0184 0.00089
2 / all 0.8851 0.00861 1.686 0.0183 0.00091
5 / all 0.8318 0.00805 1.577 0.0169 0.00085
10 / all 0.8473 0.00815 1.604 0.0172 0.00085

1 / last 0.8798 0.00833 1.661 0.0175 0.00087
2 / last 0.8792 0.00835 1.695 0.0176 0.00085
5 / last 0.8570 0.00843 1.634 0.0177 0.00087
10 / last 0.8876 0.00839 1.687 0.0177 0.00087

Table 4. Ablation RPM-Net on ModelNet40: Performance on
partially visible data with noise. The Chamfer distance using
groundtruth transformations is 0.00055.

work is still able to estimate an almost perfect pose. This
confirms that a seemingly high positional error between re-
gressed and ground truth target points does not imply a bad
pose estimate. In fact, Figure 8 suggests that in order to
retrieve an accurate pose estimate, it only matters that the

Figure 8. A qualitative example of the how correspondences are
generated by Deep Closest Point. In the image we see point clouds
of two different colors: black and red. We cherry-pick an example
with the lowest pose estimation error, ∠∆Riso = 0.2712◦, ∆t =
0.0002. Black: Point cloud generated by applying the ground-
truth transformation to the source point cloud i.e., each point is
given by pti = Rgtpsi + tgt. Red: The correspondences produced
by the network to perform the registration task, where each point
represents p′

ti .

centroids and principal directions of both point sets are rel-
atively consistent.

Recall that for each point psi in the source point cloud,
both DCP and RPM-Net regress the coordinates of its corre-
sponding point, expressing it as p′

ti =
∑N

j=1 αijptj , where
αij is the probability of point psi matching pti . The mean
subtracted version of these pairs of correspondences p̃si
and p̃′

ti are used as input to Kabsch. The Kabsch algo-
rithm [2] provides a closed-form to the problem in Eq. (3).
Given correspondences, Kabsch computes a globally opti-
mal solution via SVD, as follows:

H =

N∑
i=1

wip̃
′
ti
p̃s

⊤
i (93)

U, S, V = svd(H) (94)

R = U diag([1, 1,det(UV⊤)])V⊤. (95)

The operator diag() produces a diagonal square matrix, in
which the input vector represents the diagonal. To pro-
duce a correct rotation estimate, it is not necessary that
∀i : ∥p̃′

ti − Rp̃si∥ = 0. Furthermore, Kabsch is a method
that is invariant to scale. Multiplying the source and target
point clouds by arbitrary non-negative scalars will produce
the same rotation matrix, because these positive scalars will
be “absorbed” by the diagonal matrix of singular values S.

To further stress this idea, consider a problem composed
of (already centered) point clouds P̃′t, P̃s ∈ RN×3, with each
row p̃′

ti , p̃si ∈ R3 representing a corresponding point, for
which we already have extracted the optimal rotation R us-
ing Kabsch. Let us define the mean squared correspondence
error as

d0 =
1

N

N∑
i=1

∥p̃′
ti − Rp̃si∥

2. (96)

From the previous paragraph, we know that if we multiply
P̃
′
t by a ∈ R+, the optimal rotation that minimizes the corre-

Metric DCP DCP + Ours

Abs. Rot. (◦) 10.565127 8.030258
Rel. Rot. (%) 27.130154 20.763237

Abs. Trans. 0.005020 0.005533
Rel. Trans. (%) 1.188571 1.303502

Abs. Corr. 0.522025 0.515820
Rel. Corr. (%) 96.776123 95.725166

Table 5. Mean absolute and relative rotation (Rot.), translation
(Trans.) and correspondence position (Corr.) errors, averaged over
all data samples in ModelNet40’s testing set. DCP represents the
network trained with its original architecture using the pretrained
model supplied the authors of the paper. DCP + Ours represents
a network trained with our proposed layer after the Kabsch. We
show that a 1% improvement in correspondence error results in a
7% improvement in rotation error.

spondence error remains unchanged. We are now interested
in finding the mean squared correspondence error with this
new scaled point cloud.

da =
1

N

N∑
i=1

∥ap̃′
ti − Rp̃si∥

2 (97)

=
1

N

N∑
i=1

a2p̃
′⊤
ti p̃

′
ti − 2ap̃

′⊤
ti Rp̃si + p̃⊤

siR
⊤Rp̃si (98)

= d0 +
1

N

N∑
i=1

(a2 − 1)p̃
′⊤
ti p̃

′
ti − 2(a− 1)p̃

′⊤
ti Rp̃si

(99)

= d0 +
a2 − 1

N

N∑
i=1

p̃
′⊤
ti p̃

′
ti −

2

a+ 1
p̃

′⊤
ti Rp̃si (100)

= d0 +
a2 − 1

N

N∑
i=1

p̃
′⊤
ti

(
p̃′
ti −

2

a+ 1
Rp̃si

)
︸ ︷︷ ︸

∆d

. (101)

From Eq. (101), one can see that as long as all points p̃si are
finite, we will always be able find a large enough a that en-
sures ∆d > 0. In fact, we can make ∆d arbitrarily large, ef-
fectively increasing the mean squared correspondence error
by an arbitrary amount, without incurring in any additional
pose error.

Despite the arguments presented, in the interest of com-
pleteness, we evaluate the quality of correspondences based
on the average point distance, when DCP is trained with and
without our layers. We revisit the DCP’s Gaussian noise
experiment, where noise is added independently to one of
the point clouds at test time. We present results for mean
correspondence position, isotropic rotation, and translation
errors in Table 5. The relative errors are normalized w.r.t.
ground-truth values. Despite the seemingly marginal im-

provement in correspondence error, this produces a signifi-
cant improvement in the quality of pose estimated. We im-
prove the rotation error by 7% just from a 1% improvement
in correspondence error.

References
[1] Hunter Goforth, Yasuhiro Aoki, Arun Srivatsan Rangaprasad,

and Simon Lucey. Pointnetlk: Robust and efficient point cloud
registration using pointnet. In IEEE Conf. Comput. Vis. Pat-
tern Recog., 2019. 10

[2] John C Gower. Generalized procrustes analysis. Psychome-
trika, 40(1):33–51, 1975. 11

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 6

[4] Yue Wang and Justin M. Solomon. Deep closest point: Learn-
ing representations for point cloud registration. In Int. Conf.
Comput. Vis., 2019. 6

[5] Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde Jia.
Go-icp: A globally optimal solution to 3D icp point-set regis-
tration. IEEE Trans. Pattern Anal. Mach. Intell., 38(11):2241–
2254, 2015. 10

[6] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global
registration. In Eur. Conf. Comput. Vis., 2016. 10

