
Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval
Supplementary Material

Max Bain1 Arsha Nagrani1† Gül Varol1,2 Andrew Zisserman1
1 Visual Geometry Group, University of Oxford

2 LIGM, École des Ponts, Univ Gustave Eiffel, CNRS
{maxbain, arsha, gul, az}@robots.ox.ac.uk

Contents

1. Additional Benchmark Results 1
1.1. LSMDC . . . . . . . . . . . . . . . . . . . . 1
1.2. ActivityNet Captions . . . . . . . . . . . . . 1
1.3. Flickr30K . . . . . . . . . . . . . . . . . . . 2

2. Architectural Details 2
2.1. Video Encoder . . . . . . . . . . . . . . . . 2
2.2. Text Encoder . . . . . . . . . . . . . . . . . 2

3. Architectural Ablations 2
3.1. Video Backbone . . . . . . . . . . . . . . . 2
3.2. Text Backbone . . . . . . . . . . . . . . . . 3
3.3. Space-Time Attention . . . . . . . . . . . . 3
3.4. Temporal Expansion . . . . . . . . . . . . . 3

4. Pretraining on other datasets 3

5. WebVid-2M Dataset Details 3

1. Additional Benchmark Results
We evaluate our model on two other video retrieval

benchmark datasets: LSMDC (Table 1) and ActivtyNet
Captions (Table 2). We additionally evaluate on a standard
image retrieval benchmark: Flickr30K (Table 3), demon-
strating the versatility of our model to perform competitively
for both images and video. These datasets are described in
detail below.

1.1. LSMDC

LSMDC [15] consists of 118,081 video clips sourced
from 202 movies. The validation set contains 7,408 clips
and evaluation is done on a test set of 1,000 videos from
movies disjoint from the train and val sets. This follows
the protocol outlined in [16]. We outperform all previous
methods, except for MMT in Median Rank, which pretrains

Table 1: Text-to-video retrieval results on the LSMDC test
set.

Method R@1 R@5 R@10 MedR
JSFusion [19] 9.1 21.2 34.1 36.0
MEE [13] 9.3 25.1 33.4 27.0
CE [12] 11.2 26.9 34.8 25.3
MMT (HowTo100M) [6] 12.9 29.9 40.1 19.3
Ours 15.0 30.8 40.3 20.0

Table 2: Text-to-video retrieval results on the ActivityNet
val1k set. R@k: Recall@K. MedR: Median Rank.

Method E2E VT PT R@1 R@5 MedR
FSE 18.2 44.8 8.3
CE [12] 18.2 47.7 13.0
CLIPBERT X 21.3 49.0 6.0
MMT 22.7 54.2 5.0
SupportSet [14] 26.8 58.1 3.0
MMT [6] HowTo 28.7 61.4 3.0
SupportSet [14] HowTo 29.2 61.6 3.0
Ours X CC,WebVid-2M 28.8 60.9 3.0

on HowTo100M, a dataset consisting of over 100M clip-
text pairs and contains multiple experts as well as audio
modalities. Our model uses visual information alone.

1.2. ActivityNet Captions

ActivityNet Captions [8] contains 20K YouTube videos
focused on actions, annotated with 100K sentences. The
training set consists of 10K videos, and we use the ‘val1’
set of 4.9K videos to report results. At test time we use
paragraph-to-video retrieval as is standard protocol set by
other works, where the segment descriptions are concate-
nated to give a video-level description. We compare to prior
work in Table 2 and achieve comparable results to the state
of the art by using much less training data.



Table 3: Text-to-image retrieval results on the Flickr30K test
set. ++ indicates additional datasets: COCO Captions, SBU
Captions. VisGenObjects denotes Visual Genome object
bounding box annotations used to pretrain an FRCNN object
feature extractor.

Method Vis PT. size R@1 R@5 R@10
SCANM [9] VisGenObj (3.8M) 48.6 77.7 85.2
IMRAM [2] VisGenObj (3.8M) 53.9 79.4 87.2
SGRAF [5] VisGenObj (3.8M) 58.5 83.0 88.8
Ours CC (3.0M) 54.2 83.2 89.8
Ours CC,WV-2M (5.5M) 61.0 87.5 92.7

1.3. Flickr30K

We also evaluate on a text-to-image retrieval benchmark
to demonstrate the versatility of our model in that it can
be used to achieve competitive performance in image set-
tings as well as state-of-the art in video retrieval. The
Flickr30K [18] dataset contains 31,783 images with 5 cap-
tions per image. We follow the standard protocol of 1,000
images for validation, 1,000 images for testing and the re-
maining for training. We report the results in Table 3. Unlike
other works [2, 5, 9] which utilise high resolution regions
extracted using a Faster-RCNN detector, our model is sin-
gle stage and does not require any object detections. We
compare to works with a similar number of training image-
text pairs, and find that our model is comparable. We also
note that training on WebVid2M provides a sizeable boost
(5% improvement in R@1). Note that there are other recent
text-image works such as UNITER [3] and OSCAR [11],
however these are trained on almost twice the number of
samples. Recent works scale this up even further to billions
of samples (ALIGN [7]).

2. Architectural Details
2.1. Video Encoder

The video encoder is composed of: (i) the patch embed-
ding layer; (ii) learnable positional space, time and [CLS]
embeddings; and (iii) a stack of |ℓ | = 12 space-time attention
blocks

1. The patch embedding layer is implemented as a 2D con-
volutional layer with a kernel and stride size equivalent
to the target patch size % = 16, and 3 = 768 output
channels (the chosen embedding dimensionality of the
video encoder).

2. The positional space and time embeddings are instan-
tiated with shape " × 3 and # × 3 respectively, where
" is the maximum number of input video frames and
# is the maximum number of non-overlapping patches
of size % within a frame (196 for a video resolution of
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Figure 1: Detailed diagram of the space-time self attention
block.

224 × 224). The [CLS] embedding is instantiated with
shape 1 × 3.

3. Each space-time attention block consists of norm lay-
ers, temporal and spatial self-attention layers, and an
MLP. The order and connections of these layers is
shown in Figure 1.

2.2. Text Encoder

Our text encoder is instantiated as
distilbert-base-uncased [17]. Distilbert follows
the same general architecture as BERT [4], but with
the number of layers reduced by a factor of 2 and the
token-type embeddings and the pooler removed. We use
the HuggingFace1 transformers library implementation.

3. Architectural Ablations
3.1. Video Backbone

We investigate the effects of using different video back-
bone architectures (Table 4) and find that the space-time
transformer encoder leads to large improvements in perfor-
mance on MSR-VTT when compared to ResNets and 3D
variants thereof.

During testing, all frame-variants see an equal number
of frames, since the video embeddings are averaged over
multiple strides.

For the video backbone ablation, we fix the text backbone
to distilbert-base-uncased. For the text backbone
ablation, we fix the video backone to the base space-time
transformer with an input resolution of 224 and a patch size
% = 16.

1https://huggingface.co/



Table 4: Video backbone. Text-to-video retrieval results
on MSR-VTT test set with different video backbones. All
models were pretrained on WebVid-2M and finetuned on
MSR-VTT train set. 4 frames were given as input, except for
the ResNet-101which only supports image (1-frame) inputs.
The text backbone is fixed to distilbert-base-uncased.

Video Backbone #params R@1 R@10 MedR
ResNet-101 45M 11.5 44.1 14.5
S3D-G 76M 3.6 20.4 59.5
R(3D)-101 85M 9.3 38.3 20.0
S-Tformer 22416 B 114M 26.8 68.2 4.0

Table 5: Text backbone. Text-to-video retrieval results on
MSR-VTT test set with different text backbones. All models
were pretrained onWebVid-2M and finetuned onMSR-VTT
train set. The video backbone is fixed to the base space-time
transformer with an input resolution of 224 and a patch size
% = 16.

Text Backbone #params R@1 R@10 MedR
t5-small 60.5M 15.1 51.4 10.0
t5-base 222.9M 24.0 62.8 6.0
distilbert-base-uncased 66.4M 26.8 68.2 4.0
bert-base-uncased 109.5M 27.5 67.3 4.0

Table 6: Space-time attention method: Zero-shot results
are presented on 1K-A MSR-VTT test set for text-video
retrieval. The models were trained on WebVid-2M.

Attention Method R@1 R@10 MedR
Divided Space-Time [10] 13.0 40.2 18.0
Ours 14.6 42.7 16.0

3.2. Text Backbone

The choice of text backbone has a significant impact on
downstream performance (Table 5), with the t5 models per-
forming significantly worse with more or similar numbers of
parameters. DistilBERT and normal BERT achieve similar
performance, with DistilBERT having far fewer parameters,
therefore we chose to use DistilBERT in our work for effi-
ciency.

3.3. Space-Time Attention

Space-time attention. Our modified space-time attention
block, shown in Fig. 2, improves retrieval performance, as
show in Table 6. We compare both variants during pre-
training on WebVid-2M by reporting zero-shot results on
MSR-VTT. We find once again that our modification leads
to modest performance gains.
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Figure 2: Attention block: The original divided block used
in the Timesformer [1] architecture (left) compared to ours
(right). We find that this minor modification of the input
residual connection trains more quickly and is more stable
than the original.

3.4. Temporal Expansion

Table 7: Temporal expansion method. The effect of dif-
ferent expansion methods increasing the input number of
frames from 4⇒8. Results are presented on 1K-A MSR-
VTT test set for text-video retrieval. The models were pre-
trained on CC3M & WebVid-2M and finetuned on MSR-
VTT train set.

Method R@1 R@10 MedR
Zero-pad 30.7 68.3 4.0
Nearest Neighbour 29.4 69.5 4.0
Bilinear 28.3 69.9 4.0

We explore 3 different methods for expanding temporal
positional embeddings (zero-padding and two interpolation
methods), and observe robustness to all 3 (see Table 7).

4. Pretraining on other datasets
In Table 8, we restrict the pretraining of our model to

COCO Captions, a dataset with only 600k image-text pairs.
We demonstrate that we are able to achieve generally com-
petitive performance on MSR-VTT. We outperform Clip-
BERT – which trains on both COCO Captions and Visual
Genome (totalling 5.6M image-text pairs) – by several per-
centage points, demonstrating the strength of our proposed
architecture.

5. WebVid-2M Dataset Details
In this section, we show further details of the new

WebVid-2M dataset. More qualitative examples of video-
text pairs can be found in Figure 3 and histograms of caption



1990s: man driving excava-
tor, rotates seat, opens win-
dows in cab. hand presses
lever.

Frying pancakes in the kitchen at
home. a woman is cooking tradi-
tional russian pancakes. modern
kitchen, skillet and batter.

Twilight zhuhai famous
mountain park top cityscape
aerial panorama 4k timelapse
china

A child with a suitcase. a
happy little girl sits on a
suitcase with a passport and
money.

Kherson, ukraine - 20 may 2016: open, free, rock
music festival crowd partying at a rock concert.
hands up, people, fans cheering clapping applauding
in kherson, ukraine - 20may 2016. band performing’

Cockatoos on the fence Runners feet in a sneakers
close up. realistic three di-
mensional animation.

Ontario, canada january 2014
heavy pretty snow on tree
branches

Figure 3: WebVid-2M dataset examples: We provide additional examples from our dataset by showing video-text pairs,
using video thumbnails.
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Figure 4: WebVid-2M dataset statistics: We report the histogram of video duration in seconds (top) and the histogram of
caption length in words (bottom).

Table 8: Pretraining sources extended: The effect of dif-
ferent other pretraining sources. We use 4 frames per video
when finetuning. Results are presented on the 1K-A MSR-
VTT test set for text-video retrieval.

Method Pre-training #pairs R@1 R@10 MedR
ClipBERT COCO, VisGen 5.6M 22.0 59.9 6.0
Ours COCO 0.6M 25.5 64.6 5.0

lengths and video durations can be found in Figure 4. Note
that 275,000 videos are longer than 30 seconds, providing
many examples of videos which can be used for training
long-range video models.
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