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1. Training and Evaluation Details

We provide details of the triplet sampling strategy
used to train the cycle consistent point cloud deformation
method [3] (CC) in Section 1.1, an analysis of the strat-
egy used to evaluate the non-rigid ICP method [4] (nrICP)
in Section 1.2, more information on the points sampling
strategy used to evaluate all the atlas-based methods, i.e.
AtlasNet [2] (AN), Differential Surface Representation [1]
(DSR) and our method (OUR), in Section 1.3 and a time
complexity analysis in Section 1.4.

1.1. Details of Training CC

The training of CC relies on sampling triplets of shapes
from the given dataset. The authors argue that the best re-
sults were achieved when sampling triplets of shapes that
are close to each other in the Chamfer distance (CD) sense.
Specifically, given a randomly sampled shape A, two other
shapes B,C are randomly sampled from the 20 nearest
neighbors of A to complete the triplet. Let us refer to this
sampling strategy as knn.

OUR itself relies on sampling shape pairs, and as shown
in Section 4.3 of the main paper, better results are achieved
when sampling the shape pairs from a time window δ of a
given sequence (neighbors) rather sampling pairs randomly
within a sequence (random).

For fair comparison, we experimented with training CC
using all three strategies, knn, neighbors and random. Ta-
ble 1 reports the results on the DFAUST dataset using the
validation sequence jumping jacks and one more ran-
domly chosen sequence jiggle on toes. Since CC per-
forms best by a large margin when trained using random,
we use this strategy for all the experiments.

1.2. Analysis of the nrICP [4] Strategy

The nrICP method deforms a point cloud to best match
another point cloud and thus can be used to find point-wise
correspondences in an unsupervised way. Formally, let νPj

be the non-rigid ICP function which deforms an input point

Table 1. Comparison of different triplet sampling strategies to
train CC. The experiments were conducted using DFAUST.

sequence sampling msL2 ↓ mr ↓ mAUC ↑

jumping jacks

knn 105.57±217.32 6.43±18.26 77.06±20.18
neighbors 95.13±179.81 6.21±17.42 75.84±20.78
random 32.74±31.65 0.70±1.68 91.47±6.25

jiggle on toes

knn 71.73±203.46 4.36±16.88 87.77±20.92
neighbors 47.69±99.55 2.15±8.48 88.31±12.20
random 26.26±69.02 0.91±5.71 94.86±10.98

cloud Pi to best match Pj . Following the notation intro-
duced in Section 4.1 of the main paper, let πX be a mapping
that projects the points from an input point cloud to their re-
spective nearest neighbors in the target point cloud X . The
simplest way to use nrICP to find correspondences between
a pair of point clouds (Pi, Pj) randomly drawn from the
given sequence is to compute πPj ◦νPj (Pi). Let us call this
strategy random.

Non-rigid ICP tends to break when the deformation be-
tween the two point clouds is severe. However, as we are
dealing with sequences depicting a deforming shape, one
can compute the correspondences between a pair of point
clouds (Pi, Pj) by first predicting the correspondences for
consecutive pairs of point clouds where the deformation
is minimal, i.e., (Pi, Pi+1), (Pi+1, Pi+1), . . . , (Pj−1, Pj),
and finally propagating the correspondences from Pi to Pj .
Formally, we compute πPj

◦νPj
◦· · ·◦πPi+2

◦νPi+2
◦πPi+1

◦
νPi+1

(Pi) and refer to this strategy as propagate simple.
The drawback of propagate simple is that every mapping

πPk
is onto and thus throughout the propagation, progres-

sively more source points get mapped to the same target
point, which causes a loss of spatial information and ulti-
mately yields less precise correspondences. To overcome
this problem, one can replace πPk

with ρPk
, which per-

forms a Hungarian matching of the input point cloud and
the target point cloud Pk with the objective of minimizing
the overall per-point-pair distance. Formally, we compute
ρPj
◦ νPj

◦ · · · ◦ ρPi+2
◦ νPi+2

◦ ρPi+1
◦ νPi+1

(Pi) and call
this strategy propagate bijective.



Finally, an alternative option is not to perform any pro-
jection πPk

or ρPk
as we propagate the correspondences

from Pi to Pj , but instead to gradually deform the in-
put point cloud Pi to best match each point cloud along
the sequence between Pi and Pj . Formally, we compute
νPj ◦ . . . νPi+2 ◦νPi+1(Pi) and refer to this strategy as prop-
agate deform.

Table 2 reports the results of all four aforementioned cor-
respondence estimation strategies on the crane validation
sequence from the AMA dataset. We found that propa-
gate simple suffers from the loss of spatial precision due
to the onto mapping. While propagate bijective overcomes
this problem, the Hungarian matching introduces a strong
drift along the sequence yielding even worse overall corre-
spondences. The strategy propagate deform performs the
best out of all three propagation-based strategies, but is still
outperformed by the simplest strategy random. Therefore,
as random yields the highest correspondence accuracy, we
use it to evaluate nrICP on all datasets.

Table 2. Comparison of strategies used to establish correspon-
dences with nrICP. The experiments were conducted on the
crane validation sequence from the AMA dataset.

strategy msL2 ↓ mr ↓ mAUC ↑

random 172.55±167.76 7.83±12.56 41.61±19.29
propagate simple 211.11±147.43 9.38±10.32 23.01±18.31

propagate bijective 213.87±169.00 10.55±13.99 25.31±17.80
propagate deform 206.64±150.45 10.40±13.35 25.41±16.55

1.3. Point Sampling in Atlas Based Methods

The original AtlasNet work [2] argues that better recon-
struction accuracy is achieved if the 2D points sampled from
the UV domain Ω are spaced on a regular grid. As ex-
plained in Section 4.1 of the main paper, at evaluation time
each atlas based method, i.e., AN, DSR and OUR, predicts
N = 3125 points. Due to the unknown number of collapsed
patches, which are discarded at runtime, it might not be pos-
sible to evenly split N points into P non-collapsed patches
so that the points would form a regular grid in the UV space
Ω.

Therefore, instead of using a regular grid, we distribute
the given available number of points as regularly as pos-
sible in the 2D domain using a simulated annealing based
algorithm. The points are initially distributed uniformly at
random, and then their position is iteratively adjusted so
that every point maximizes its distance to the nearest points.
This procedure is summarized in Algorithm 1. The differ-
ence between random and as regular as possible 2D points
sampling is demonstrated in Fig. 1.

1.4. Time Complexity

The optimization of all the learning based methods was
performed using an Nvidia Tesla V100 GPU, and process-

Algorithm 1: As regular as possible 2D points.
Input: M ∈ N // Number of 2D points.

Output: pi ∈ R2,∀1 ≤ i ≤M // 2D points.

/* Initialization */

1 step := 1
4
√
M

2 decay := 0.994
3 pi ∼ U(0,1),∀1 ≤ i ≤M // Random 2D points.

4 iter := 0
/* Main algorithm. */

5 while iter < 250 do
6 for i := 1 to M do
7 di := minj 6=i ||pi − pj ||
8 αi ∼ U(0, 2π)

9 pnew
i := pi + step ·R(αi)

[
1
0

]
// R: rot. matrix

10

11 dnew
i := minj 6=i ||pnew

i − pnew
j ||

12 if dnew
i > di then

13 pi := pnew
i

14 step := step · decay
15 iter := iter +1

(a) (b)

Figure 1. Comparison of (a) uniform and (b) as regular as pos-
sible 2D points sampling.

ing a sequence of average length takes 16.1 hours for OUR,
while AN, DSR and CC take 4.1, 16.4 and 9.7 hours, re-
spectively. nrICP does not involve the optimization stage
and can process ∼ 1 sample per second.

2. Complete Results

We provide details of the search for the best value of the
hyper-parameter δ in Section 2.1 and we list the complete
per-sequence results of all the evaluated methods on all the
datasets in Section 2.3. Furthermore, we refer the reader to
the supplementary video1 which contains the comparison of
all methods on multiple sequences from all the datasets.

1https://www.youtube.com/watch?v=U89suo6MpIo

https://www.youtube.com/watch?v=U89suo6MpIo


2.1. Tuning the Time-Window δ

As described in Section 3.3 of the main paper, OUR re-
lies on sampling pairs of shapes from a time window de-
noted as δ. We tuned this hyper-paramater individually for
every dataset using a respective validation sequence, and set
it to the values yielding the best correspondence accuracy as
measured by the metrics msL2,mr and mAUC. Table 3 lists
the results of training OUR for δ ∈ [1, 6] and justifies the
selection of δ = 1 for ANIM, δ = 1 for AMA and δ = 5
for DFAUST.

Note that, as the ANIM and AMA datasets appear to
have lower frame-rates than the DFAUST dataset, i.e., the
surface undergoes larger motion from frame to frame, the
correspondence error clearly decreases with the decreasing
size of the time window δ, indicating that our method bene-
fits from observing pairs of shapes which are similar enough
to each other. On the other hand, as the DFAUST dataset in
general exhibits small frame to frame changes, the search
reveals that our method can benefit from observing pairs
from larger time windows, since in this case the consecu-
tive frames are nearly identical and decreasing δ makes Lmc
less useful. Note, however, that using the value δ = 1 for
all the sequences shown in this paper still consistently out-
performs all the competing methods.

Table 3. Search for the best value of the hyper-parameter δ
used by OUR on each dataset.

dataset neigh. msL2 ↓ mr ↓ mAUC ↑ CD ↓

ANIM
(cat)

1 9.80±14.36 0.24±0.60 98.27±0.82 0.39±0.00
2 10.27±15.03 0.24±0.54 98.09±1.01 0.39±0.00
3 10.07±15.52 0.23±0.56 98.06±0.94 0.38±0.00
4 17.10±37.51 0.78±3.27 94.49±4.60 0.38±0.01
5 44.58±88.60 3.45±10.04 85.76±11.61 0.41±0.00
6 11.45±16.33 0.30±0.66 97.78±1.03 0.39±0.00

AMA
(crane)

1 66.63±103.11 2.11±6.75 80.24±11.42 0.31±0.02
2 99.86±163.94 4.31±10.82 76.91±17.36 0.31±0.02
3 91.09±138.11 3.68±9.22 74.42±16.49 0.32±0.01
4 81.15±130.99 3.02±8.67 77.58±13.50 0.33±0.01
5 106.34±166.29 4.61±10.85 74.10±17.69 0.34±0.02
6 113.02±162.47 5.16±11.91 68.48±20.39 0.35±0.09

DFAUST
(jumping jacks)

1 32.71±46.68 0.92±3.15 91.77±4.53 0.51±0.09
2 32.01±51.48 0.89±3.50 92.60±3.87 0.48±0.11
3 29.39±33.80 0.73±2.25 93.30±2.86 0.50±0.09
4 30.67±45.30 0.92±3.32 92.38±3.77 0.55±0.15
5 27.98±38.15 0.67±2.55 93.65±3.15 0.41±0.08
6 29.80±51.77 0.84±3.56 93.06±3.76 0.48±0.09

2.2. Impact of αmc on the Visual Quality

As shown in Table 3 of the main paper, every dataset
benefits from a different value of the hyper-parameter αmc
which balances metric consistency and Chamfer distance,
while αmc ∈ [0.1, 1.0] yields the best quantitative results.
Here we show that this fact manifests in the qualitative re-
sults as well. The sequence crane from AMA is one case
where setting αmc = 1 instead of 0.1 yields better quan-

titative results. However, both reconstructions are visually
comparable, as shown in Fig. 2.

↵mc = 0.1 ↵mc = 1.0

frame 22 frame 105 frame 22 frame 105

Figure 2. Comparison of the reconstruction and correspon-
dence quality when using αmc = 0.1 and αmc = 1.0. The sam-
ple pair comes from the sequence crane of AMA. Note that these
are two independent runs, therefore, the spatial distribution of the
patches is arbitrary.

2.3. Evaluation on all Datasets and Stress Test

For brevity, Section 4.3 of the main paper only reports
the mean results computed over all the sequences contained
in the individual datasets. Here we report detailed results
for each sequence separately. The results of all methods
evaluated on the ANIM, AMA and DFAUST datasets are
summarized in Tables 4, 5 and 6, respectively. Note that
the average values reported in the last cell in each table
are computed on all the test sequences, i.e., excluding the
validation sequence cat in ANIM, crane in AMA and
jumping jacks in DFAUST.

Finally, Table 7 shows the results on the
horse collapse sequence used for the stress test
of our method, as reported in Section 4.3 of the main paper,
and an additional similar sequence camel collapse.
Both sequences come from the same work of [5] as the
sequences horse, camel and elephant from the
ANIM dataset, and thus we preprocess them in the same
way, i.e., by scaling each sample so that the first frame of
each sequence fits in a unit cube.
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Table 4. Comparison of OUR to SotA methods on corre-
spondence accuracy and reconstruction quality on the ANIM
dataset. Our method is the most accurate and also yields the same
reconstruction quality as AN.

sequence model msL2 ↓ mr ↓ mAUC ↑ CD ↓

cat

nrICP 77.96±94.55 5.72±9.65 70.39±15.02 -
AN 14.27±18.96 0.41±1.04 97.07±1.18 0.38±0.00
DSR 48.05±80.24 3.05±7.62 82.53±11.60 0.41±0.01
CC 53.37±93.99 3.90±8.83 80.54±14.99 -
OUR 9.80±14.36 0.24±0.60 98.27±0.82 0.39±0.00

horse

nrICP 69.94±76.34 4.91±7.11 72.62±13.23 -
AN 17.52±27.33 0.66±3.01 96.60±1.24 0.09±0.00
DSR 40.21±59.73 2.20±4.74 84.31±11.61 0.22±0.01
CC 30.24±57.97 1.60±4.30 88.39±7.95 -
OUR 12.97±12.81 0.31±0.55 97.82±0.85 0.10±0.00

camel

nrICP 78.48±108.22 7.45±12.29 73.59±14.99 -
AN 16.29±16.93 0.86±1.65 96.90±1.27 0.10±0.00
DSR 75.93±116.15 7.43±13.56 73.80±13.47 0.17±0.02
CC 56.62±93.14 4.75±9.32 77.70±14.57 -
OUR 11.08±10.72 0.42±0.83 98.19±0.53 0.09±0.00

elephant

nrICP 62.54±70.03 4.01±9.17 76.47±12.82 -
AN 21.39±30.20 0.82±3.88 95.35±2.17 0.09±0.01
DSR 23.16±26.39 0.68±1.82 93.77±3.66 0.19±0.00
CC 14.65±11.27 0.27±0.63 97.78±0.75 -
OUR 11.73±9.47 0.16±0.33 98.30±0.45 0.08±0.00

MEAN

nrICP 70.32±84.86 5.46±9.52 74.23±13.68 -
AN 18.40±24.82 0.78±2.85 96.28±1.56 0.09±0.00
DSR 46.43±67.42 3.44±6.71 83.96±9.58 0.19±0.01
CC 33.84±54.13 2.21±4.75 87.96±7.76 -
OUR 11.93±11.00 0.30±0.57 98.10±0.61 0.09±0.00

with multiview convolutional networks. ACM Trans. Graph.,
2017. 1

[5] Robert W. Sumner and Jovan Popović. Deformation transfer
for triangle meshes. ACM Trans. Graph., 2004. 3



Table 5. Comparison of OUR to SotA methods on correspondence accuracy and reconstruction quality on the AMA dataset. Our
method is the most accurate and also yields reconstruction quality competitive with AN.

sequence model msL2 ↓ mr ↓ mAUC ↑ CD ↓ sequence model msL2 ↓ mr ↓ mAUC ↑ CD ↓

bouncing

nrICP 130.93±111.27 4.11±7.76 43.64±17.60 -

march 2

nrICP 187.52±182.98 9.33±14.65 39.92±23.08 -
AN 59.86±50.14 0.92±3.19 77.84±7.56 0.37±0.02 AN 120.96±166.77 5.03±11.33 64.99±18.34 0.30±0.02
DSR 51.09±34.89 0.56±0.96 81.57±7.00 0.35±0.01 DSR 143.05±144.18 5.76±10.75 47.77±20.80 0.96±0.15
CC 45.21±28.94 0.40±0.60 85.56±6.59 - CC 118.02±160.88 5.23±11.34 65.18±20.49 -
OUR 44.31±29.47 0.41±0.71 85.92±6.06 0.40±0.03 OUR 90.62±156.21 3.80±11.09 77.99±18.38 0.36±0.03

crane

nrICP 172.55±167.76 7.83±12.56 41.61±19.29 -

samba

nrICP 100.50±91.01 3.58±6.17 58.47±23.58 -
AN 77.64±99.96 2.13±6.27 74.08±12.38 0.30±0.01 AN 75.38±83.78 2.41±5.42 72.22±20.14 0.22±0.01
DSR 128.18±168.36 5.64±11.18 64.07±23.11 0.29±0.01 DSR 114.61±124.73 5.06±9.48 57.38±26.40 0.25±0.01
CC 76.80±96.52 2.17±5.85 73.49±18.45 - CC 72.31±85.51 2.34±5.49 73.72±20.53 -
OUR 66.63±103.11 2.11±6.75 80.24±11.42 0.31±0.02 OUR 62.84±80.00 1.93±4.64 77.44±21.38 0.27±0.02

handstand

nrICP 256.22±194.98 14.16±17.45 21.87±24.70 -

squat 1

nrICP 84.88±86.77 2.23±4.93 65.16±26.07 -
AN 182.36±186.97 8.74±14.38 42.11±26.55 0.35±0.03 AN 46.91±41.54 0.71±1.59 82.91±12.40 0.28±0.01
DSR 380.79±226.71 20.52±17.35 4.54±1.59 551.20±471.57 DSR 46.91±41.82 0.65±1.52 82.67±13.36 0.28±0.01
CC 89.79±142.39 3.11±10.10 71.53±16.92 - CC 26.81±18.42 0.16±0.25 94.32±2.83 -
OUR 126.52±167.36 5.69±13.80 58.47±23.49 0.38±0.03 OUR 27.81±27.48 0.25±0.78 92.60±4.73 0.27±0.00

jumping

nrICP 206.43±172.56 10.38±14.50 29.02±18.96 -

squat 2

nrICP 90.50±85.60 2.29±4.77 61.18±25.81 -
AN 116.86±148.11 4.86±11.78 61.05±18.89 0.32±0.02 AN 47.93±42.15 0.66±1.63 82.61±10.97 0.29±0.01
DSR 114.90±151.03 4.92±11.16 64.81±19.44 0.33±0.02 DSR 121.50±119.10 3.75±6.51 51.09±27.88 4.77±0.71
CC 77.53±111.13 2.29±6.71 75.31±17.45 - CC 37.02±28.14 0.32±0.58 89.14±7.37 -
OUR 45.10±31.25 0.50±1.01 85.31±6.01 0.37±0.03 OUR 33.72±31.41 0.32±0.81 89.85±7.06 0.28±0.01

march 1

nrICP 174.05±171.86 8.59±14.23 42.75±22.83 -

swing

nrICP 127.41±111.79 4.98±7.89 46.58±17.80 -
AN 57.66±42.75 0.93±1.99 77.90±9.56 0.29±0.01 AN 73.26±59.32 1.86±4.30 69.01±13.40 0.24±0.02
DSR 79.26±97.42 2.52±6.44 72.20±14.13 0.33±0.02 DSR 59.92±49.39 1.25±2.38 75.19±12.90 0.24±0.01
CC 124.76±157.34 5.26±10.01 64.16±23.63 - CC 79.78±149.09 3.13±12.27 74.73±19.23 -
OUR 34.85±24.72 0.29±0.56 90.66±4.66 0.31±0.01 OUR 48.28±40.07 0.80±1.67 82.39±8.68 0.26±0.01

MEAN

nrICP 150.94±134.31 6.63±10.26 45.40±22.27 -
AN 86.80±91.28 2.90±6.18 70.07±15.31 0.30±0.01
DSR 123.56±109.92 5.00±7.39 59.69±15.94 62.08±52.50
CC 74.58±97.98 2.47±6.37 77.07±15.00 -
OUR 57.12±65.33 1.55±3.90 82.29±11.16 0.32±0.02



Table 6. Comparison of OUR to SotA methods on correspondence accuracy and reconstruction quality on the DFAUST dataset.
Our method is the most accurate and also yields reconstruction quality on par with AN.

sequence model msL2 ↓ mr ↓ mAUC ↑ CD ↓ sequence model msL2 ↓ mr ↓ mAUC ↑ CD ↓

chicken wings

nrICP 72.20±135.09 5.15±15.70 80.89±13.79 -

one leg jump

nrICP 81.13±98.03 2.86±5.19 71.68±14.61 -
AN 49.75±92.05 2.31±6.96 85.57±16.07 0.37±0.08 AN 30.65±23.71 0.58±0.98 92.47±3.48 0.43±0.08
DSR 282.61±130.70 21.85±17.43 6.40±2.66 97.10±25.04 DSR 47.59±99.20 1.30±4.72 88.44±8.96 0.36±0.07
CC 35.57±113.74 2.12±11.40 93.59±16.90 - CC 36.40±76.87 0.79±3.47 91.23±8.64 -
OUR 18.51±20.37 0.38±1.34 96.53±1.98 0.43±0.09 OUR 41.44±74.93 1.03±3.56 87.92±11.02 0.36±0.07

hips

nrICP 59.22±49.65 2.39±3.91 76.95±14.85 -

one leg loose

nrICP 54.98±64.48 1.74±3.31 81.73±11.45 -
AN 21.16±16.45 0.33±0.60 96.06±1.58 0.27±0.05 AN 31.92±35.99 0.68±1.77 91.35±6.00 0.38±0.07
DSR 17.33±14.65 0.29±0.62 97.11±1.10 0.28±0.04 DSR 23.53±24.66 0.41±0.80 94.93±3.59 0.43±0.09
CC 41.57±138.23 2.19±12.00 93.30±16.63 - CC 23.90±31.93 0.51±1.85 94.61±11.02 -
OUR 14.76±12.21 0.23±0.51 97.83±0.77 0.25±0.04 OUR 18.40±15.28 0.29±0.53 96.92±1.61 0.41±0.07

jiggle on toes

nrICP 128.60±194.22 7.46±16.20 59.47±25.80 -

punching

nrICP 117.92±175.81 8.29±18.23 65.40±19.74 -
AN 35.43±72.20 1.34±5.59 90.04±9.74 0.31±0.05 AN 43.01±64.98 1.70±6.07 87.19±9.49 0.36±0.06
DSR 29.01±47.00 0.95±3.74 92.70±7.63 0.38±0.05 DSR 204.86±141.43 13.04±15.68 15.99±4.52 39.66±12.26
CC 26.26±69.02 0.91±5.71 94.86±10.98 - CC 21.13±17.43 0.41±0.89 95.94±2.14 -
OUR 16.45±14.24 0.28±0.69 97.38±1.31 0.30±0.05 OUR 21.88±24.82 0.50±1.44 95.51±2.90 0.32±0.06

jumping jacks

nrICP 187.37±240.34 11.78±20.47 46.37±28.06 -

running on spot

nrICP 103.57±129.95 5.57±12.83 65.36±15.24 -
AN 51.76±60.73 1.95±4.67 81.68±10.34 0.52±0.08 AN 39.77±46.21 1.18±4.33 88.93±4.76 0.49±0.09
DSR 35.25±55.18 1.07±4.01 90.60±5.07 0.43±0.05 DSR 43.93±58.32 1.57±4.44 86.86±8.58 0.45±0.05
CC 32.74±31.65 0.70±1.68 91.47±6.25 - CC 26.64±20.92 0.52±1.25 94.38±3.04 -
OUR 27.98±38.15 0.67±2.55 93.65±3.15 0.41±0.08 OUR 21.28±18.99 0.39±1.39 96.07±1.64 0.32±0.05

knees

nrICP 116.26±157.30 5.22±10.39 61.25±20.85 -

shake arms

nrICP 88.38±158.81 5.40±14.90 75.74±18.18 -
AN 43.33±81.94 1.02±3.72 89.00±5.32 0.40±0.09 AN 28.13±31.89 0.81±2.35 92.92±4.44 0.34±0.06
DSR 24.76±22.94 0.43±0.79 94.25±2.69 0.47±0.11 DSR 25.99±27.03 0.77±1.85 93.67±3.30 0.50±0.12
CC 30.38±86.52 1.14±7.12 94.47±13.35 - CC 21.82±18.50 0.51±1.02 95.61±2.01 -
OUR 23.45±19.49 0.40±0.74 95.23±2.37 0.52±0.12 OUR 17.29±19.21 0.41±1.34 96.97±1.31 0.36±0.08

light hopping loose

nrICP 41.15±29.98 1.29±2.24 87.08±6.84 -

shake hips

nrICP 86.76±156.94 5.00±14.35 76.47±17.42 -
AN 21.46±21.06 0.39±1.14 95.83±2.04 0.28±0.05 AN 28.27±28.74 0.71±1.77 92.46±5.48 0.29±0.05
DSR 21.81±20.35 0.51±1.18 95.48±2.91 0.40±0.05 DSR 92.23±158.27 5.22±13.78 75.27±19.64 1.28±0.37
CC 25.61±53.71 0.82±4.13 94.66±12.36 - CC 49.93±160.68 3.21±15.05 91.60±19.67 -
OUR 16.12±12.56 0.27±0.54 97.56±0.96 0.32±0.06 OUR 17.60±16.05 0.29±0.89 96.90±1.73 0.28±0.05

light hopping stiff

nrICP 33.16±24.91 0.93±1.80 91.11±3.93 -

shake shoulders

nrICP 53.85±42.97 1.90±2.84 79.19±11.83 -
AN 17.30±15.16 0.25±0.62 97.05±1.25 0.28±0.05 AN 22.48±17.33 0.39±0.68 95.63±1.78 0.29±0.05
DSR 58.32±36.51 2.05±2.81 77.38±14.48 4.11±2.07 DSR 22.27±18.30 0.43±0.78 95.48±2.30 0.31±0.04
CC 25.50±79.93 1.14±7.54 95.63±13.47 - CC 19.67±14.47 0.31±0.51 96.63±1.08 -
OUR 12.21±9.95 0.16±0.30 98.40±0.39 0.27±0.05 OUR 18.08±14.37 0.32±0.58 96.97±1.19 0.30±0.05

MEAN

nrICP 79.78±118.46 4.09±10.17 74.79±15.90 -
AN 31.74±43.46 0.90±2.95 91.88±5.84 0.34±0.06
DSR 68.79±61.04 3.76±5.19 78.00±6.25 11.21±2.89
CC 29.57±65.26 1.12±5.26 94.35±9.82 -
OUR 19.81±22.19 0.38±1.17 96.17±2.31 0.34±0.06



Table 7. Comparison of OUR to SotA methods on correspon-
dence accuracy and reconstruction quality on a collapsing rub-
ber horse used to stress test our method and on an additional
similar sequence depicting a collapsing camel. Our method is
the most accurate and also yields the same reconstruction quality
as AN.

sequence model msL2 ↓ mr ↓ mAUC ↑ CD ↓

horse collapse

nrICP 54.32±46.49 3.88±5.47 78.36±13.66 -
AN 62.38±79.58 4.91±9.05 74.81±18.23 0.13±0.01
DSR 49.00±60.40 3.25±6.18 81.73±14.42 0.18±0.02
CC 56.51±78.80 3.89±7.49 77.97±19.67 -
OUR 23.82±39.39 1.11±3.48 93.32±6.48 0.13±0.01

camel collapse

nrICP 40.68±36.05 2.76±3.69 86.60±9.77 -
AN 43.78±61.53 3.05±6.11 85.05±12.47 0.16±0.01
DSR 67.16±96.21 5.12±8.99 75.66±19.57 0.25±0.02
CC 349.08±371.70 33.96±37.24 48.85±48.25 -
OUR 19.25±28.05 0.81±2.09 95.72±3.89 0.15±0.01

MEAN

nrICP 47.50±41.27 3.32±4.58 82.48±11.72 -
AN 53.08±70.56 3.98±7.58 79.93±15.35 0.14±0.01
DSR 58.08±78.31 4.19±7.59 78.70±17.00 0.21±0.02
CC 202.80±225.25 18.93±22.37 63.41±33.96 -
OUR 21.54±33.72 0.96±2.79 94.52±5.19 0.14±0.01


