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In this document we include further discussions and
analyses on our methodology. First, we show proof-
of-concept computer vision related applications using
DeePSD. Then, we show some insights on skinning and
blend weights. Next, we provide of additional details of
our proposed network architecture and training. Later, we
discuss model performance in train and test. Finally, we
describe the video material submitted along this document.

1. Computer Vision Applications
We believe one of the strongest real applications for

DeePSD is virtual try-ons. Demand for such application
is already present and companies in the private sector are
pushing towards this direction. We propose a proof-of-
concept application. We use an off-the-shelf CNN to regress
SMPL parameters from images [4]. SMPL parameter pre-
dictions are combined with template outfits to generate a
3D model of the subject with the desired outfit. Fig.1 shows
the results of this experiment (note that some of these out-
fits do not appear in CLOTH3D dataset). In practice, for
virtual try-ons, the methodology to use has to be scalable to
unseen and arbitrary outfits. Thus, methodologies limited
to individual garments encoded as body homotopies are not
suitable [1, 5]. Additionally, we observed how these ap-
proaches suffer from texturing artifacts, which further com-
promises their applicability. Finally, to bring this technol-
ogy to everyone (portable devices), a model with low com-
putational complexity and memory footprint is necessary.
As discussed in the main paper, DeePSD has a size of only
4.4MB and generates animated 3D models, which are ex-
tremely efficient and compatible with all graphics engines.

We also present an additional proof-of-concept computer
vision application for 3D draped human regression from
video using DeePSD. Similar to the virtual try-on applica-
tion, we use a CNN[4] to regress SMPL pose. Then, to
obtain the outfit from the video sequence, we propose the
following approach. First, we use DeePSD to compute out-
fit global descriptors (as defined in the main paper) for each

outfit in the training set. Then, we train a VGG-16 to regress
outfit global descriptors from static frames. Next, in test,
we obtain an estimation of the outfit global descriptor for
each frame of a given sequence. We retrieve the 5 nearest
neighbours from the training set based on global descriptor
Euclidean distance for each frame. We retrieve the outfit
with the most appearances. In case of a tie, we choose the
one with the lowest Euclidean distance. Finally, once an
outfit is retrieved, we combine it with the estimated SMPL
pose using DeePSD to obtain a final 3D draped human pre-
diction. Fig.2 shows some samples obtained using this ap-
proach. Note that, since template outfit is aligned with the
body in canonical pose, we retrieve SMPL shape parame-
ters and gender along with the outfit. As it can be seen,
these predictions benefit from the physical consistency of
DeePSD predictions.

2. Blend Weights
We analyze the blend weights distribution for trouser-

like garments (body homotopies) and skirt-like garments.
Fig. 3 shows the blend weights distribution for SMPL and
two different garments (jumpsuit and dress). Note that we
do not apply direct supervision to blend weights. Thus, the
network predicts blend weights to minimize L2 loss only
on final garment vertices. We can observe how the distribu-
tion of blend weights is very similar to those of SMPL. This
supports the assumption that cloth closely follows body mo-
tion, since the network is able to learn by itself this distribu-
tion in order to minimize Euclidean error. Nonetheless, we
observe a significant difference for skirts, where the pre-
dominant blend weights are the ones corresponding to the
SMPL root joint. Skirts break the aforementioned assump-
tion and the network learns to avoid relying on body motion
by assigning skirts to root joint instead of leg joints.

In the main paper we assume it is known that garment an-
imation on top of a human body cannot be done with skin-
ning alone. First, since cloth behaviour is highly non-linear,
skinning is not able to model it properly. Secondly, since



Figure 1: Virtual try-on. Combining DeePSD with a body
pose and shape recovery CNN we obtain an effectively
working virtual try-on. With the obtained SMPL parame-
ters and a digital wardrobe (3D outfits in canonical pose) it
is possible to generate draped 3D models in the correspond-
ing pose. Images extracted from Human3.6M[3, 2]

Figure 2: Proof-of-concept computer vision application.
We combine an outfit retrieval approach with SMPL param-
eter regression to obtain 3D predictions of draped humans.

Euclidean error Edge Bend Collision
Data 36.73 1.16 0.015 15.4%
Phys 37.67 1.17 0.013 12.9%

Table 1: Results without PSD. First row corresponds to
training with L2 loss on PBS data only. Second row is
trained with L2 combined with Lphys. We observe how
performance is greatly compromised without PSD.

SMPL itself has PSD, it would be impossible to achieve
physically consistent predictions without PSD as well in the
outfit. Nonetheless, to further prove this, we perform two
additional experiments with no PSD (no Ddata nor Dphys).
Tab. 1 shows the obtained results. In the first experiment
we train only with L2 loss against PBS data. On the second
one, we apply both, L2 and Lphys losses. As it can be seen,
the capacity of the model is highly compromised and, thus,
Euclidean error is much higher than DeePSD. Then, we ob-
serve that applying physical consistency loss has almost no
effect, yielding a very high number of collisions. Nonethe-
less, since templates already have cloth consistency (edge
and bend), we see how linear transformations (skinning) are
able to maintain such constraints.

3. Network Architecture and Training

In this section with further detail network architecture
and training process. Note that code is provided along with
supplementary material to ease reproducibility and under-
standing of the model. In the main paper we describe the
input as T ∈ RN×3. We empirically observed an slight
increase in performance by concatenating vertex normals
to each vertex. Therefore, the final input is defined as
T ∈ RN×6. Then, Φ is defined as 4 layers of graph con-
volutions with a perceptive field of K = 1 each and dimen-
sionalities 32, 64, 128 and 256. Then, Φ also includes a
fully-connected layer to compute global descriptor with di-
mensionality 256. Global descriptor is concatenated with
each vertex local descriptor to form per-vertex feature vec-
tors with F = 512. Then, Ω, Ψ and χ are composed of 4
fully-connected layers each, applied to vertices (vertices are
samples). Then, Ω has dimensionalities 128, 64, 32 and 24.
Ψ and χ have a similar architecture with dimensionalities
256, 256, 256 and P × 3 (where P = 128 is the dimen-
sionality of the high-level pose embedding Θ). Finally, the
MLP used for obtaining Θ from θ is composed of 4 fully-
connected layers with 256 dimensions each, except the out-
put layer, with dimensionality P = 128. We empirically
observed that normalizing Θ as Θ̄i = Θi/

∑
k Θk heavily

increases training stability.
We implemented our model using TensorFlow. We train

each model for 10 epochs. Starting with a batch size of 4
and doubling it every 2 epochs. We use Adam optimizer



Figure 3: Blend weights comparison after training. First row: SMPL. Middle row: trouser-like. Last row: skirt-like.

with an initial learning rate of 0.001. As stated in the main
paper, it is not useful to train χ before the rest of the model
has achieved convergence. Thus, we train χ independently
during 10 epochs after training the rest of the model (Φ, Ω
and Ψ). Regarding Ω without direct supervision, it will con-
verge to the weights presented in Sec. 2 of this document.
Nonetheless, we empirically observed that it is not always
guaranteed, most likely due to sensitivity to initialization,
batch order or data bias. Thus, during the first epoch only,
we apply a L2 loss based on a prior distribution. This prior
relies again on the assumption that cloth follows the body.
Then, Ω uses the nearest body vertex (in canonical pose)
blend weights as labels. This ensures a correct initialization
and slightly speeds up convergence. We further comple-
ment this prior with a prior on deformations. We assume
that deformations are small. Again, for the first epoch only,
we apply an L2 regularization on PSD.

4. Performance
We train our model in a GTX1080Ti for 10 epochs, tak-

ing around 8-16 hours (unsupervised losses are computa-
tionally expensive). Our model has a size of 4.4Mb. For
deployment, we run the model once per outfit to obtain ani-
mated 3D models in standard format. This format is highly
computationally efficient due to exhaustive optimization of
current graphics engines and GPUs. The only extra com-
putational cost is obtaining the high-level pose embedding.
Since an MLP is the most basic deep-learning model, it
is unlikely to find a more efficient deep-based approach
for 3D animation. In practice, we get 3-6ms per sample
and around 0.1ms for batched samples, depending on ver-
tex count, within TensorFlow pipeline. Proper integration
into commercial graphics engine might further increase ef-
ficiency.

5. Video
We complement the supplementary material with a

video. In this video we briefly describe the main character-
istics of our methodology and discuss its benefits. Addition-

ally, we show qualitative results in unseen pose sequences.
Note how our approach is able to keep temporal consistency
despise not being trained specifically for it.
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