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Figure 1. (a) State-of-the-art text recognition framework [16] (b) Character sequence prediction designed through iterative feedback net-
work, that fuses previously predicted character sequences with rich visual features for subsequent prediction.

A. Relative Performance Gain

We introduce a meta-framework that could be incorporated on the top of most of the SOTA text recognition frameworks.
Along with seminal work like ASTER by Shi et al. [16], we consider some latest text recognition frameworks like Show,
Attend and Read (SAR) [12] and SCATTER [14] as our baseline, upon which we validate our iterative framework. SAR
extends the work of Shi e al. using 2D attention mechanism to eliminate the rectification network. On the other side, SCAT-
TER additionally couples multiple BLSTM encoders for richer context modelling, followed by a gating mechanism to balance
between context rich information and backbone CNN features. Here, we additionally add the results using lexicons for dif-
ferent datasets under both for DS and CS setups. Furthermore, we add graphs to focus on by what margin our framework can
provide gain over respective baseline SOTA frameworks under both DS and CS setups. Moreover, recognising rarely/unseen
words being the major focus of this work, it can seen clearly seen that we achieve a rather significant performance gain on
both STR (5-7%) and HTR (10-12%) tasks under DS set up. Nevertheless, we obtain a reasonable gain under CS set up
unanimously over all the studied baseline SOTA frameworks.

B. Feedback Module vs Language Model

Instead of the iterative approach towards refining the text prediction, we could have used a Language model (LM) over
the model’s prediction. For a fair comparison, we use a state-of-the-art RNN-LM [7] trained from text corpus (librispeech) at
character level [1] that aims to predict the next likely character. This could be fused with the text recognition decoder using
two popular state-of-the-art methods introduced in [6] that usually integrate external LM for machine-translation and speech
recognition tasks. In Shallow Fusion, weighted sum of predicted scores from text recognition decoder and LM are used for
final prediction. Deep Fusion on the other hand fuses the hidden states of those two together followed by a FC layer. Please
refer to [6] for more details. As seen from Table 3, our method performs better in both CS and DS setups in comparison to
these LM integrations. Integrating external Language Model for discrete word recognition is a separate direction of research
altogether. Even if it is incorporated as an off-the-shelf choice, performance is limited, as claimed in a recent independent



Table 1. Comparison of unconstrained WRA for novel words not encountered during training (DS setup). ¢ = 0 signifies no feedback.

Methods HITSK SVT IC13 | IC15 | SVTP | CUTES0 IAM RIMES
50 1K None None | None None None None L 0 L 0

Shi et al. [16] (t=0) No-Feedback 97.4 93.4 84.3 842 82.6 65.7 744 61.6 71.7 543 734 59.7

Baseline Seq-SCM 97.6 93.7 85.6 84.1 83.7 65.5 75.8 63.4 74.5 57.6 719 63.7

Baseline Deterministic-Feedback 97.7 94.4 87.9 86.8 85.9 70.4 78.6 64.7 76.0 59.9 80.3 69.7

Shi ez al. [16] + CVAE-Feedback (t=1) 97.8 96.2 90.6 88.7 89.3 722 79.6 65.1 78.3 64.5 83.7 70.4

Shi et al. [16] + CVAE-Feedback (t=2) 97.9 96.8 90.8 88.9 89.4 72.6 79.6 66.1 78.4 64.8 83.9 70.5

Shi et al. [16] + CVAE-Feedback (t=3) 97.8 96.4 90.7 88.8 89.5 72.5 79.6 65.8 78.4 64.6 83.6 70.3
Relative Gain (t=0 vs t=2) 0.51 341 6.57 4.71 6.81 6.97 5271 4.51 6.71 10.57 10.57 10.8 1

Show, Attend and Read [12] (t=0) No-Feedback 97.7 93.8 85.8 86.5 84.7 68.4 82.2 71.8 74.9 57.9 71.3 62.8

Show, Attend and Read [12] + CVAE-Feedback (t=2) 98.1 96.9 91.5 90.5 91.2 74.8 87.1 75.0 81.1 68.0 84.9 73.0
1pt Relative Gain (t=0 vs t=2) 041 3.7 571 4.01 6.57 6.47 4.91 3.27 6.27 10.17 7.67 10.2 1

SCATTER [14] (t=0) No-Feedback 97.6 93.5 84.7 86.9 843 71.8 82.6 69.3 75.6 59.0 774 62.9

SCATTER [14] + CVAE-Feedback (t=2) 980 968 911 9.9 | 909 | 777 87.3 72.7 81.5 687 85.0 73.1
1pt Relative Gain (t=0 vs t=2) 041 331 6.47 4.01 6.67 597 4.71 3471 5971 9.71 7.61 1021

1pt

Table 2. Comparison of unconstrained WRA on standard evaluation protocol (CS setup). ¢ = 0 signifies no feedback.

Method: HIT5K SVT IC13 IC15 SVTP | CUTES0 IAM RIMES
ethods 50 1K None | None | None | None None None L 0 L 0
Shi et al. [16] (t=0) No-Feedback 99.3 98.5 93.2 93.1 91.6 75.9 78.2 79.3 91.2 82.3 93.5 88.9
Baseline Seq-SCM 99.3 98.5 93.2 93.0 91.8 75.8 78.5 79.9 91.8 82.9 93.7 89.3
Baseline Deterministic-Feedback 99.6 98.8 93.5 93.6 92.7 77.1 79.6 65.1 93.1 86.9 94.9 92.0
Shi et al. [16] + CVAE-Feedback (t=1) 99.4 98.6 94.0 93.5 93.1 78.4 80.4 82.5 93.1 86.9 94.9 92.0
Shi et al. [16] + CVAE-Feedback (t=2) 99.6 98.8 94.9 93.7 93.7 78.8 80.9 82.9 93.7 87.5 95.2 92.7
Shi et al. [16] + CVAE-Feedback (t=3) 99.5 98.7 94.6 93.6 93.5 78.5 80.7 82.7 93.6 87.2 94.9 92.4
Relative Gain (t=0 vs t=2) 0.31 0.31 1.71 0.67 211 291 271 3.67 251 521 171 3871
Show, Attend and Read [12] (t=0) No-Feedback 99.4 98.7 94.8 91.2 93.7 78.6 86.0 89.5 92.7 85.9 93.9 90.2
Show, Attend and Read [12] + CVAE-Feedback (t=2) 99.6 98.9 96.3 91.9 954 81.4 88.5 91.0 94.3 89.7 95.2 93.0
1pt Relative Gain (=0 vs t=2) 0.21 0.21 1.51 0.71 171 2.87 257 1.51 1.67 3.81 1.31 2.81
SCATTER [14] (t=0) No-Feedback 99.3 98.5 93.6 92.7 93.8 82.0 86.5 87.0 92.8 86.0 94.0 90.5
SCATTER [14] + CVAE-Feedback (t=2) 99.6 98.8 95.2 93.2 95.7 84.6 88.9 89.7 94.6 90.3 95.6 93.2
1pt Relative Gain (=0 vs t=2) 0.31 0.31 1.61 0.51 1.91 2.617 241 271 1.81 437 .61 271
1pt
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Figure 3. Performance gain in CS setup

work [11]. This can be attributed to the following factors: (i) LM has been used extensively in speech recognition tasks for
refining a model’s prediction, where data is present at the sentence-level, whereas our focus lies in discrete word recognition.
While at sentence level there is enough context to refine word predictions using LM, it cannot harness similar extent of context
information for discrete words. (ii) The language model corpus is significantly different from the one used for training word-



Table 3. Comparative study with different Language Model (LM) integration methods

Conventional Setup & Disjoint Setup
Methods TITSK SVT IC13 IC15 SVTP CUTES80 1AM RIMES
CS DS|CS DS|CS DS |[CS DS|CS DS | CS DS CS DS CS DS
Shietal. [16] 932 843 |93.1 842|916 826|759 657|782 744|793 6168236 544 | 889 597
[16] + Shallow 933 843|929 842 (915 825|759 657|780 745|793 61.6 | 8230 54.3-| 887 597
[16] + Deep 935 856|933 853 (923 851|765 674|789 765|812 629 |83.67 575|899 63.6
[16] + CVAE-Feed. (t=2) | 949 90.8 | 93.7 889 | 93.7 894 | 788 726|809 79.6| 829 66.1 | 875 648 |927 70.5

image recognition system. This leads to a biased incorrectness [7]. (iii)) LM being an independent post processing step, not
only ignores rich visual features from the input image, but is also unaware of the error distribution of the model. On the
contrary, our model revisits the rich visual features iteratively after every prediction, considering the error distribution while
training. Furthermore to align with the evaluation standards for unconstrained word recognition we site all results in our
work using greedy decoding only — no LM based post-processing. By greedy decoding, it means we only take the model’s
output without any post-processing as our final result. We conduct a further experiment to compare with the classic N-Gram
LM model [11] for the CS (DS) setup, this gives 76.2 (66.5)& 82.43 (55.56) on IC15 & IAM respectively, which is again
worse than ours.

C. Optimal Performance at t=2

In existing literature involving iterative pipelines, one simply stops when the gain diminishes, and is usually found empir-
ically [3, 9, 22]. In our case, performance saturated at ¢,p¢imq; = 2 (degraded by 0.0-0.3% at t=3). A similar phenomenon
where performance degrades in later iterations is also reported in iterative pose-estimations [19] and image generation [9].
We speculate that this could be attributed to the randomness associated with the latent space of VAE, where the feedback
module unknowingly adds noise to the convolutional feature maps.

D. Why is training with less unique words advantageous?

The disjoint training setup serves as an evaluation protocol for testing our model’s accuracy on unseen words. The resulting
superiority of our model in such scenario establishes a confidence of fair result over datasets running low in unique words.
Consequently, any model can be trained by our algorithm using datasets having lesser unique words to deliver a satisfactorily
high accuracy. This in turn alleviates the challenge of acquiring rarely available large datasets (apart from English) for
training text recognition models. Furthermore, even with a small set of unique words, one can generate multiple instances of
the same unique word by asking different people to write the same word, without incurring any additional annotation cost.
For instance the word ‘hello” written by 10 different users would provide 10 different word images, without any extra time
cost on annotating them. This greatly simplifies the collection and annotation processes during dataset formation.

E. Trade-off between increased time cost vs additional performance gain

Any state-of-the-art iterative approaches found in the computer vision literature [19, 3, 9, 22, 13, 9, 4] do incur an extra
computational expenses, be it text rectification [21] or in our case text-recognition. The consensus within the community is
however that the extra computational expenses can be ignored w.r.t the additional performance gain — in our case, this would
be a very significant gain of 5-7% and 10-12% under unseen scenarios in STR and HTR datasets respectively. Of course, one
does need to carefully assess the extra computational burden — this is something we already did in Table 5, and in our case,
the extra time cost is in the milliseconds which is inline with prior works.

F. Probabilistic model being better than deterministic one

One candidate word would have multiple possible erroneous alternatives. As knowledge from such error distributions
needs to be distilled into the feedback module, uncertainty handling is very important yet lacking in any deterministic
pipeline. Furthermore, the feedback module is in a cross-modal setting where information needs to be transferred from
discrete character space to continuous affine transformation parameter space (Section 3.2) of conditioning layer. In such
scenarios, variational models (probabilistic) have generally been proven to be more effective [17, 23, 24] because of the
region estimation of latent space, as opposed to the point estimation used in deterministic methods. Consequently, we em-
ploy a CVAE to explicitly model the prior about possible error distribution which results in a better performance. We have
compared our framework with a deterministic baseline (Deterministic-Feedback), and our probabilistic model outperforms
its deterministic counterpart.



G. Effectiveness of feedback module

A feedback module is central to any iterative framework like ours — it completes the information flow from iteration ¢ — 1
to . In our case, it propagates knowledge of predicted character sequence from an earlier iteration to the next. Our feedback
mechanism is a novel conditional variational autoencoder, which is capable of distilling knowledge from error distributions.

Please note that the feedback module is trained from two data sources - (i) it learns correcting the model’s prediction from
iteration ¢ — 1 to ¢, (ii) Using an auxiliary decoder in the feedback module, we are trying to reconstruct the correct word (e.g.
‘hello’) from its erroneous alternative (‘nello’). This error distribution (e.g. containing {‘hello’, ‘nello’}) is pre-collected
using SOTA methods that basically has the knowledge of which other ways the word ‘hello’ could be wrongly recognised
as, based on its appearance. Thus it imparts a knowledge about the erroneous possible alternatives— such that the model is
inclined to predict "hello’ instead of its erroneous alternatives (e.g. ‘nello’). In other word, we encourage the model ‘not to
do such mistakes’.

Please refer to Section section 3.2 for detailed descriptions. We conducted a series of ablative experiments to verify the
effectiveness of the feedback module in Section 4.3 & Table 4. We have mostly evaluated its effectiveness by (i) altering the
designs of the autoencoder (Tab. 3), and removing the error distribution (Tab. 4), and (ii) comparing to a language model
alternative.

H. Reason behind obtaining much better performance for unseen words

One needs to be careful to understand that the definition of “unseen” word is different from “unseen” as used in zero
shot recognition. In particular, say for example one word ‘kingdom’ had never been encountered by the model during
training. Since any sequence-to-sequence learning model has a significant extent of vocabulary dependency, recognising un-
seen character sequence is comparatively difficult for the model than if the word had appeared during training. Furthermore,
the word *kingdom’ might be unknown, but not the individual characters ‘k’, ‘i, ‘n, ‘g, ‘d, ‘o, ‘m’. The
model has the knowledge of individual character from training. In other words, “unseen” words are the “difficult cases”, but
this is not analogous to the notion of “unseen class” of zero-shot learning. Rather our model learns the fine-grained character
details better, and due to its iterative design along with knowledge gathered from error distribution — it can predict better via
rectification for those “difficult cases”.

I. Mechanism for ‘unseen’ words

In short, our model assumes words as character sequences, and it follows that “unseen” words are sequences that were
not observed during training (while the individual character themselves would have). The iterative design coupled with
knowledge distilled from error distributions, gives our model the best chance of finding the right combinations even if they are
“unseen”. In other words, through iterative look-back mechanism the model is encouraged to become less biased/overfitted
on the trained character sequence. Instead it should rely on fine-grained character level details for correct prediction.

J. Where output of 74 should be modulated:

Interesting point! We do not have any explicit labels to modulate the feature-map, rather this is implicitly learned via
back-propagating gradients based on loss (Eq. 4) computed at following (i+1) prediction. Similar ideas can be found in the
rectification network of [16]

K. Comparison with RandText by Yue er al. [20]:

Please note that while unseen words in Yue et al. [20] consists of random character sequences with no context informa-
tion, ours is more generic and realistic [18] i.e., consisting of unseen plausible words. Additionally our motivation is very
different from [20]. While we try to rectify false predictions by re-visiting the visual feature and modelling textual error
distribution, [20] balances the available contextual and positional information dynamically in a single pass. Neither the code
or RandText dataset was unavailable.

L. Is gain due to extra computation?

We additionally validated this point by replacing the backbone feature extractor in [16, 12, 14] with ResNet-101 to match
the Flops of their feedback counterpart. The resulting heavier variants reached 54.3%(65.9%) [16], 58.6%(69.5%) [12] and
59.7%(72.3%) [14] in DS setting for IAM(IC15) respectively. This proves that our performance gain was not tied to extra
computations.



M. Design specific novelty of CVAE:

Unlike [17] and [23], ours is a (a) cross-modal VAE that transfers knowledge from discrete character space to continuous
feature-map space, (b) modified design (L397-431) that enables learning from textual error distribution — both contributions
being specifically designed for text recognition.

N. No leakage of information through error distribution

In the DS setup, SOTA [15, 5, 2, 16] methods (used to collect the error distribution) are re-trained using a subset of the
training set. The subset is created by removing all words (having same character sequence) occurring in the evaluation set to
ensure no “leak” of information under DS setup through error distribution. This ensures that the error distribution produced
by other SOTA methods, which also do not see the words occurred in the evaluation set in the training phase.

0. Comparison with SOTA:

We follow the training setup in [16, 12, 14]. Accordingly, training set of SAR [12] consists of [8], [10], SynthAdd, and
public real dataset. SCATTER [14] uses [8], [10] and SynthAdd. For fairness, we compare with any SOTA after adding our
feedback module.

P. More insights about comparison with LM model trained on librispeech:

Replacing librispeech with words from word-image recognition datasets scored 83.2%(76.3%) and 54.7%(66.2%), using
[16]+Deep Fusion in the CS and DS settings on IAM (IC15) dataset respectively. This drop is for the limited vocabulary of
words in word-image datasets, when compared to librispeech (testing-words excluded), specially for DS setup. We already
have a stronger LM competitor.
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