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Preliminaries
For all of our reported datasets in the main paper, we provide additional video material resulting in 14 videos in total.

Analogous to the main paper, the direction of the control input is indicated by a red arrow starting at the poke location l and
the target location is marked by a red dot, if not stated otherwise. For some examples were either the arrow depicting the user
input or the target location are small, we additionally overlay them with larger arrows and dots. We loop each video three
times and replay it with three fps. The file structure of the videos is as follows:

04284-supp
|
+--A-Additional_Visualizations

|
+--A1-Controlled Stochastic

Video Synthesis
|
+--A1.1-Samples_PP.mp4
|
+--A1.2-Samples_Iper.mp4
|
+--A1.3-Samples_Human36m.mp4
|
+--A1.4-Samples_TaiChi.mp4

|
+--A2-Kinematics_Transfer
|
+--A3-Control_Sensitivity
|

+--B-Control Inputs
of Human Users

|
+--B1-Human_Control_PP.mp4
|
+--B2-Human_Control_Iper.mp4
|
+--B3-GUI-Demo_1.mp4
|
+--B3-GUI-Demo_2.mp4
|

+--C-Qualitative Comparison
with Baselines

|
+--C1-Controllable

Video Synthesis
|
+--C1.1-Cmp_Hao_PP.mp4
|
+--C1.2-Cmp_Hao_Iper.mp4



|
+--C2-Stochastic

Video Synthesis
|
+--C2.1-Cmp_IVRNN_PP.mp4
|
+--C2.2-Cmp_IVRNN_Iper.mp4
|

In Section A, we show and discuss qualitative video results of iPOKE on the four considered datasets for the tasks of
controllable stochastic video synthesis (Section A.1) and transfer of kinematics between two unrelated object instances
(Section A.2), which are the two main tasks considered in our paper. Our model iPOKE, however, also allows human users
to animate still images by poking, as demonstrated by examples shown in Section B, which further contains examples of
interactions of our model with human users via a graphical user interface. For the quantitative evaluations conducted in the
main paper, we additionally provide qualitative comparisons in Section C. A derivation of our objective function is given
in Section D. Moreover, we also provide the implementation details of our model in Section E and these of all considered
baselines in Section F. Finally, describe the metrics used for evaluation in more detailed in Section G.

A. Additional Visualizations
Here we show and discuss additional video material showing the results of iPOKE on all considered datasets for our main

task of controllable stochastic video synthesis. Moreover we also provide additional examples of successfully transferred
kinematics from a source sequence to a given still image frame on the iPER [42] dataset.

A.1. Controllable Stochastic Video Synthesis

For each individual dataset presented in the main paper we show a video containing results of iPOKE for multiple object
instances. Within each video, the first column depicts the ground truth video sequences starting with the same image frame
x0 which is used as part of the conditioning for our model. The remaining columns contain five generated video sequences
corresponding to different samples drawn from the residual kinematics prior q(r) for the same conditioning (x0, c). The user
control c is visualized as a red arrow starting at the controlled location l = c3:4 and pointing to the intended target location,
which is depicted by a red dot and plotted after the sequence has ended. As the arrows are sometimes tiny, we additionally
visualize larger arrows indicating the direction of the user control input in the first column as an overlay over the ground truth
sequences. For generating the user control, we used the procedure explained in Section 3.3 in the main paper. Subsequently,
we discuss each video in detail.
A1.1-PokingPlants. For the PokingPlants dataset we show the results of iPOKE for five plants with substantially varying
shapes and appearances in the video sequence A1.1-Samples Plants.mp4. Despite these large variances, iPOKE manages to
generate appealing video sequences showing plausible reactions to the user control c. In all cases, the intended end position of
the controlled object part is reached. The remainder of the object, however, shows unique, plausible motion for each individual
sample from q(r) for the same conditioning. In summary, for the PokingPlants dataset, iPOKE is capable of rendering realistic
video sequences by locally controlling the motion of a given part of the shown object instances. Moreover, diverse, plausible
motion is generated for the remaining object parts.
A1.2-iPER. In the video A1.2-Samples Iper.mp4 we visualize results for the test set of iPER [42], thus showing persons
previously unseen by iPOKE. We clearly see that our model generalizes to unseen appearances. Moreover, iPOKE generates
realistic video sequences showing the poked human body parts approaching their intended target location, while retaining
significant motion variance for these parts not directly affected by the user control c.
A1.3-Human3.6m. To also evaluate the capabilities of iPOKE to generate human motion not contained in iPER, i.e. behavior
such as walking and sitting, we additionally use the Human3.6m [30] dataset. The resulting synthesized output of our model
can be seen in the video samples human36m.mp4. Also in this case, iPOKE achieves to generate realistic looking video
sequences showing such complex human motion for control inputs ranging from very small (e.g. third row) to large (e.g.
second and last rows) control inputs. Unfortunately, iPOKE changes the appearance of the depicted person if the generated
motion is large. However, this is a common issue, when using the Human3.6m test set [53, 70, 76, 24], as the train set only
contains five distinct appearances and, thus, generalization of appearance is very hard to achieve.
A1.4-Tai-Chi To further evaluate the capabilities of iPOKE to synthesize human motion for in-the-wild settings we use
the Tai-Chi dataset [64]. This is a very challenging dataset due to diverse video backgrounds, which also contains motion.



The human motion contained in the Tai-Chi, however, is not as large and diverse as for the iPER and Human3.6m datasets.
Nevertheless, our model is able to synthesize realistic looking sequences as visualized in A1.4-Samples Tai-Chi.mp4.

A.2. Kinematics Transfer

In the video A2-Kinematics Transfer Iper.mp4 we show the ability of iPOKE to transfer kinematics from a source sequence
(top row) to an image showing a person of arbitrary appearance exhibiting a similar starting posture (mid row). For comparison,
we synthesized sequences in which we induce random object kinematics by sampling from our residual kinematics prior
q(r) (bottom row). For a further description on transfer of kinematics, cf. the respective paragraph in Section 4.2 in the
main paper. The implications arising from observing these video examples are twofold: Firstly we can see that our model,
due to its conditionally invertible nature, is capable of transferring kinematics from a given sequence to a still image in a
fine-grained manner, as subtle details of the motion shown in the source sequence are preserved. Secondly, these experiments
show that our residual kinematics representation r is indeed independent of the conditioning factors (x0, c) as i) our model
only transfers kinematics from the source sequence to the target image and not the appearance of the depicted person and
ii) the sequences obtained from drawing random samples from q(r) exhibit significantly different motion compared to the
corresponding transferred sequences except for the controlled location, which is correctly approaching its target location in
both cases. Thus, these two factors, are not influenced by the residual kinematics representation but only the kinematics of
the body parts not directly influenced by the controlled location, due to this independence. This empirical evidence of the
independence of r from (x0, c) is further backed by theoretical arguments which are discussed in Section D.

A.3. Control Sensitivity

In this paragraph, we directly verify that iPOKE also generates plausible object responses to control inputs c at the same
pixel location c3:4 with different shift vectors c1:2 for a given initial image frame x0. To this end, we sample the initial frame
x0 of a sequence X from the iPER [42] test set and simulate a vector c based on the procedure introduced in Sec. 3.3 from
which we only take the respective interaction location c∗3:4. To obtain different shift vectors at this location we randomly
sample L directions from a uniform distribution U(0, 2π) and magnitudes from U(µ|F |,max|F |), where µ|F | and max|F |
denote the mean and maximum optical flow magnitudes in the optical flow map F between x0 and the end frame xT of X .
Thus, we obtain L different control inputs {(cl, x0) : c

l
3:4 = c∗3:4}Ll=1 at the same location for a given x0. Drawing different

residual samples {rl}Ll=1 and applying the forward transformation results in video representations zl = τθ(rl|x0, cl) which
can afterwards be decoded to object responses by our autoencoding framework (cf. Sec. 3.2 and E.1). Each row of the video
A2-Control Sensitivity Iper.mp4 shows such generated object responses of iPOKE for L = 4 different shift vectors for the
same static input image x0 and compares these to the ground truth video starting with x0. From observing these results, we
see that the the poked body part always approaches its intended target location which is defined by the respective shift vector
cl1:2, thus indicating the sensitivity of our model with respect to the control input.

B. Control Inputs of Human Users
So far, we have only considered simulated control inputs as described in Section 3.3 in the main paper. However, as our

goal is not only to provide a model for controlled stochastic video synthesis, but also to enable human users to directly animate
a still image frame, we now additionally show the results of our model for inputs of human users for the object categories
of plants on the PP dataset in Sec. B.1 and humans on iPER in Sec. B.2. Each video contains three unique object instances
shown in the rows of the respective video B1-Human Control PP.mp4 B2-Human Control Iper.mp4. In each row, we show the
ground truth sequence on the left, followed by an example using a simulated control input as described in Sec. 3.3 in the main
paper. In the remaining three rows, we show examples of control inputs by human users. The results were obtained via our
graphical user interface (GUI) which is presented in the videos GUI Demo [1,2].mp4 in Section B.3. The GUI will be open
sourced together with the project code upon publication.

B.1. PokingPlants

The three plants in the video B1-Human Control PP.mp4 again show that iPOKE is capable of generating plausible object
kinematics as a reaction to the control. In particular, these examples highlight the accurate object reactions generated by our
model even for fine-grained user control as, for instance, shown in the third column of the first row, where a control input with
a small magnitude at an outer trunk results very subtle motion, leaving most of the controlled plant mainly unaffected. Large
pokes, on the other hand, which are depicted in the remaining columns of the first row, result in large amounts of motion, thus
corresponding to what we humans would expect from such a manipulation. Moreover, the results visualize the generalization
abilities of iPOKE, as not all of these pokes from humans are within the data distribution.



B.2. iPER

The video B2-Human Control Iper.mp4 contains similar results to these discussed in the last section for the iPER dataset. The
synthesized videos are realistic looking for inputs defined by human users and the controlled body parts are accurately moved
to the intended target location. Moreover it is shown that our model learns to separate the pixels comprising the object from
those in the background, as emerging from observing the fourth column in the top row, where a part of the background is
controlled. In this case, our model does not generate human kinematics, but renders a still video sequence, where the entire
person remains unaffected. This is caused by by our training procedure where we explicitly generate control signals in the
background to teach the iPOKE to ignore such inputs. For a detailed description, refer to Section E.3.

B.3. Graphical User Interface

Finally we recorded two videos (B3-GUI Demo [1,2].mp4) showing iPOKE interactively generating kinematics as defined by
humans using our graphical user interface. The videos were recorded without cuts and, thus, clearly indicate the robustness of
iPOKE. Moreover it can be seen that our model is capable of processing multiple control inputs one after another without
generating heavy artifacts or implausible kinematics, thus enabling an interactive experience for human users. We plan to
make this GUI publicly available and will release it together with our code.

C. Qualitative Comparison with Competing Methods

To provide visual evidence for the quantitative evaluation presented in the main paper, we now show visual comparisons to
Hao et al. [27] for the task of controllable video synthesis and to IVRNN [10] for the task of stochastic video synthesis. The
comparisons with these methods are conducted in the iPER and PokingPlants (PP) datasets.

C.1. Controllable Video Synthesis

Similar to Sec. A.1, in C1.1-Comparison Hao PokingPlants.mp4 and C1.2-Comparison Hao Iper.mp4 we show video
generations for iPOKE and compare them to the approach of Hao et al [27] trained on sparse sets of random optical flow
vectors and tracked keypoint representations (cf. Sec. 4.3 in main paper for details.). We observe that iPOKE produces fluent
and realistic object kinematics on both datasets. In contrast, Hao et al. fails to capture and generate the complex, structured
motion depicted in the iPER dataset due to only warping individual frames. We attribute the lower FVD scores obtained by
this method, compared to ours, to this. On the PP dataset, the competing approach produces blurry outputs, as successive
warping cannot represent coherent, fine-grained motion due to noisy optical flow estimates.

C.2. Stochastic Video Synthesis

In C2.1-Comparison IVRNN Plants.mp4 and C2.2-Comparison IVRNN Iper.mp4 we compare video sequences generated
by our model against sequences generated by IVRNN [10], a state-of-the-art approach for unconditional stochastic video
synthesis. We chose this particular competitor as it was the best performing of the competing methods on these two datasets
when considering video quality and diversity together (cf. Tab. 2 in the main paper). In our case, we generate diverse video
sequences depicting different object kinematic realizations inferred by sampling from the residual representation r ∼ q(r) for
different fixed user interactions c on the iPER and PP dataset, thus following a similar setup as in Sec. A.1. For IVRNN [10]
we show different video generations for two conditioning frames preceding the sequence to be generated. Our videos clearly
show that our model iPOKE successfully synthesizes plausible video sequences which closely follow the user interaction
c while, on the other hand, the remaining object parts exhibit a diverse range of motion when varying r. In contrast, the
videos samples of IVRNN hardly show visible differences across different video samples. Moreover, IVRNN fails to capture
fine-grained motion, e.g. of individual leaves, on the PP dataset, thus generating blurry video sequences. This can be explained
by the trade-off between quality and diversity, which IVRNN, as a VAE-based method, suffers from.

D. Derivation and Implications of Learning Objective

D.1. Independence of r and (x0, c)

We intend to learn τ defined in Eq. (4) such that the residual r contains all information about X not present in (x0, c). A
way to achieve this is to force independence between r and the conditioning (x0, c). We now show that a minimizer of
KL[p(r|x0, c)∥q(r)], where q(r) is some prior distribution independent of (x0, c), forces this independence. By the definition



of the Kullback-Leibler-Divergence, we have

KL[p(r|x0, c)∥q(r)] =
∫
r,x0,c

p(r, x0, c) log

(
p(r|x0, c)

q(r)

)
=

∫
r,x0,c

p(r, x0, c) log (p(r|x0, c))−
∫
r

p(r) log (q(r)) . (10)

Following the argument of [63, 2] and using the fact that the Kullback-Leibler-Divergence is always positive, we have

KL[p(r)∥q(r)] ≥ 0 ⇒
∫
r

p(r) log (q(r)) ≤
∫
r

p(r) log (p(r)) , (11)

where p(r) denotes the (unknown) true distribution of r. By inserting (11) into (10), we obtain

KL[p(r|x0, c)∥q(r)] ≥
∫
r,x0,c

p(r, x0, c) log (p(r|x0, c))−
∫
r

p(r) log (p(r))

=

∫
r,x0,c

p(r, x0, c) log

(
p(r|x0, c)

p(r)

)
=

∫
r,x0,c

p(r, x0, c) log

(
p(r, x0, c)

p(r)p(x0, c)

)
= MI [r, (x0, c)] . (12)

As (12) implies, KL[p(r|x0, c)∥q(r)] ≥ MI [r, (x0, c)] is an upper bound on the mutual information MI [r, (x0, c)] and, thus,
its minimizer also forces independence of r and (x0, c).

D.2. Derivation of Objective Function

Again, we start with the definition of the Kullback-Leibler-Divergence and follow [63]

KL[p(r|x0, c)∥q(r)] =
∫
r

p(r|x0, c) log

(
p(r|x0, c)

q(r)

)
=

∫
X

p
(
τ−1
θ (X|x0, c)|x0, c

)
· | det Jτ−1

θ
(X|x0, c)| · log

(
p
(
τ−1
θ (X|x0, c)|x0, c

)
q
(
τ−1
θ (X|x0, c)

) )
, (13)

where we have made a change of integration variable from r to X . Further, by rearranging Eq. (6), we have

p(τ−1
θ (X|x0, c)|x0, c) =

p(X|x0, c)

|det Jτ−1
θ

(X|x0, c)|
. (14)

Inserting (14) into (13) yields

KL[p(r|x0, c)∥q(r)] =
∫
X

p(X|x0, c) log

(
p(X|x0, c)

q
(
τ−1
θ (X|x0, c)

)
| det J

τ−1
θ

(X|x0, c)|

)

= EX

[
log p(X|x0, c)− log

(
q
(
τ−1
θ (X|x0, c)

))
− log

(
|det Jτ−1

θ
(X|x0, c)|

) ]
. (15)

If we now choose q(r) = N (0, I) and insert this into (15), we obtain our final objective by taking the expectation over (x0, c),
as

KL[p(r|x0, c)∥q(r)] = EX,x0,c

[1
2
∥τ−1

θ (X|x0, c)∥22 − log
(
|det Jτ−1

θ
(X|x0, c)|

) ]
+H

∝ EX,x0,c

[
∥τ−1

θ (X|x0, c)∥22 − log
(
|det Jτ−1

θ
(X|x0, c)|

) ]
, (16)

where the constant entropy of the data H = EX,x0,c [log p(X|x0, c)] can be neglected for optimizing τθ.
Summarizing the derived results, we can see, that minimizing KL[p(r|x0, c)∥q(r)] not only yields a probabilistic generative



model capturing the data distribution, but also forces independence between the latent variable r and the conditioning (x0, c).
Interestingly, we can compare our model with cVAE-based models [38, 2, 61, 65] which have to balance between two
contradicting loss terms where one ensures good reconstruction properties and the other induces independence between the
latent variable and the conditioning. Thus, these models face the trade-off mentioned in the main paper. As derived above,
minimizing KL[p(r|x0, c)∥q(r)] induces both these properties without forcing the model to balance between them (for a
broader discussion, see [63]).

E. Implementation Details of iPOKE
In this Section, we provide detailed information regarding our employed model architectures and losses as well as

specifications of the models’ hyperparameters. Our model is implemented using PyTorch [57]. The corresponding code is
available at https://bit.ly/36h8OKr.

E.1. Video Autoencoding Framework

We now provide details regarding the video autoencoding framework which is used to retain tractable computational cost for
training our conditionally invertible model τθ (cf Section 3.2 in the main paper). The autoencoding framework is trained prior
to optimizing τθ. In the following we will first describe how to train this model, before its implementation details are given.
Model Overview and Losses.
Model Overview. As stated in the main paper, we pre-train a video-autoencoder to obtain a compact, information-preserving
video encoding z = E(X) ∈ Rh×w×d as fixed input for our invertible model τθ, where E is a 3D-ResNet-encoder [28].
While training the autoencoding framework, z = ẑ0 constitutes the initial hidden state of the latent GRU [12] predicting the
(temporally) subsequent states ẑi = GRU(ẑi−1) , i = 1, . . . T which are mapped back into the image domain by using a
2D-decoder, thus yielding the individual images frames x̂i = D(zi) of a predicted sequence X̂ . The autoencoding framework
is visualized together with our invertible model in Fig. 2.
Training the Autoencoder. Here we explain the individual terms of the overall loss function of this model (9) in more detail.
The first term, Lrec, is an average reconstruction loss between the individual image frames of the ground-truth and predicted
sequences, consisting of an L1-loss in the pixel space and a perceptual loss ℓϕ [20, 33].

Lrec =
1

T

[
T∑

i=1

∥ xi − x̂i ∥1 +

T∑
i=1

ℓϕ(xi, x̂i)

]
(17)

Moreover, we follow previous work [13, 73] and employ a spatial discriminator DS and a temporal discriminator DT . Both
discriminators are optimized using the hinge formulation [41, 7]. For stabilizing the GAN training, gradient penalty [52, 26] is
used for the temporal discriminator. Additionally, we add a feature matching loss [72] for each individual discriminator, thus
yielding the adversarial objectives

LDS
=

1

T
·

T∑
i=1

[DS(x̂i)− ℓFS
(xi, x̂i)] , (18)

and
LDT

= DT (X̂) + ℓFT
(X, X̂) (19)

for the generator, where ℓFT
and ℓFS

denote additional feature matching losses [72].
The counterfighting loss objective for the temporal discriminator can be written as

LDT ,D = ρ(1−DT (X)) + λgp ∥ ∇DT (X) ∥22 +ρ(1 +DT (X̂)) , (20)

where ∥ ∇DT (X) ∥22 denotes the gradient penalty [52, 26] with λgp as its weighting factor and ρ the ReLU activation function.
For the spatial discriminator, the objective can be formulated as

LDS ,D =
1

T

T∑
i=1

[ρ(1−DS(xi)) + ρ(1 +DS(x̂i))] . (21)

Implementation details.
Encoder E. The encoder E is a 3D-ResNet built up of layers following the structure proposed by [28]. GroupNorm [78]

https://bit.ly/36h8OKr


is used as a normalization layer. The number of subsequently applied layers varies with the spatial size of the input video
sequence X , such that a latent encoding z of spatial size h = w = 8 is obtained in all cases. The number of channels d of z is
chosen as d = 32 for the iPER [42] and Tai-Chi [64] datasets and d = 64 for the PP and Human3.6m [30] datasets.
GRU. We use a convolutional-GRU with 4 hidden layers. The number of channels remains the same for each hidden layer.
Within each GRU cell, we use common convolutions with kernel size 3× 3. As stated above, z initializes the hidden state for
all hidden layers of the GRU model. Subsequent hidden states are re-fed into the network until the intended sequence length is
obtained. The input state is a learned constant of the same shape than the hidden state for all time steps.
Decoder D. The decoder is of a sequence of ELU-activated [14] 2D-ResNet blocks [28] consisting of convolutions with 3× 3
kernels, where all but the first ResNet blocks upsample their input feature maps by a factor of two until the intended output
resolution is reached. If upsampling is applied, the first convolution and the skip connection of the respective ResNet-block are
replaced by a transposed convolution. Spectral normalization is applied to each of the convolutional layers contained in the
decoder. Further, we use a SPADE-normalization layer which gets the start frame x0 the respective sequence as input after
each upsampling ResNet block.
Discriminators. For the static discriminator, a patch discriminator [31] is used and for the temporal discriminator a 3D
ResNet-18 [28]. Both discriminators use GroupNorm [78] as a normalization layer.
Training Details. We train our model to reconstruct videos of sequence length T = 10 comprising images of spatial size
64 × 64 for comparison with the stochastic video synthesis baselines and 128 × 128 for all other experiments which are
considered within the main paper. When training on sequences of spatial size 64 × 64, we use batch size 16 on a single
NVIDIA RTX 2080 TI, whereas in the latter case, we use a single NIVDIA A100 with batch size 20. In both cases, all
hyperparameters which are subsequently reported were also equally. The models are trained using Adam [35] with a learning
rate of 2 · 10−4, β1 = 0.5, β2 = 0.9, weight decay of 10−5, and exponential learning rate decay. The weighting factor of the
gradient penalty for DT is chosen as λgp = 1.2.

E.2. Conditional Invertible Neural Network

In the following, we provide additional implementation details for our conditional invertible model τθ and the encoders Φc and
Φx0 processing the individual components of (x0, c).
Encoders Φc and Φx0 . To obtain descriptive representations capturing all details regarding the two conditioning variables c
and x0 we pretrain the respective encoders Φc and Φx0

. We train Φx0
and a subsequent decoder to reconstruct image frames

by using a combination of a standard L1 reconstruction loss and an additional perceptual loss as a training objective. Φc is
also combined with a decoder at training time and gets a simulated user control c (cf. Section 3.3) and the related source
image frame x0 as inputs. The obtained model is trained to reconstruct the entire flow field between x0 and xT . Again, a
combination of L1 and an additional perceptual loss is used as loss function. In both cases, the decoders are used only for
training and discarded afterwards.
Conditional INN τθ.
Model Architecture. The cINN is implemened as a convolutional normalizing flow model [60, 47, 37, 56]. As stated in the
main paper, it is built up of K subsequently arranged flow blocks, where the k-th block comprises Nk sub-blocks, followed by
a modified glow block [37], consisting of ActNorm [37], affine coupling [18] and shuffling layers1. In each sub=block, we
employ masked convolutions [48], which subdivide a convolutional kernel into four systematically rotated, efficiently invertible
sub-kernels, whose Jacobian is tractable. These properties are crucial when training normalizing flow model [60, 47, 37, 56],
as they guarantee tractable training times and efficient sampling from q(r). Moreover, masked convolutions result in the same
receptive field than common convolutions and, thus, show improved expressivity compared to widely used architectures such
as affine coupling layers [17, 18]. The flow overall architecture and the sub-blocks are visualized in Figure 2 in the main paper.
For more details regarding masked convolutions, we refer the reader to [48].
Within all models and datasets , we use K = 15 flow blocks. The number Nk of sub-blocks contained in the the k-th flow
block decreases with increasing k. The individual number of sub blocks per flow block can be summarized by the following
vector

N1:K = [10, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1]

where the k-th component of N1:K denotes the number of sub-blocks within flow block k.
Training Details. We train our cINN model using Adam [36] optimizer with parameters β1 = 0.9, β2 = 0.999 and weight
decay of 10−5. The learning rate is annealed from zero to 10−3 for the first 500 train steps and linearly decrease afterwards,
until training ends. We train the cINN models on a single NVIDIA A100 using batches comprising 40 individual training

1We modify these blocks by using shuffling layers instead of invertible 1× 1 convolutions, as originally proposed in glow [37].



examples.

E.3. Further Training Details of iPOKE

Foreground-Background-Separation We do not only train our model to infer the implications of a localized poke onto the
entire object, we also intend to learn iPOKE such that it only generates object kinematics for control inputs actually acting at
the object itself. Hence a poking of a pixel in background areas unrelated to the object should be ignored. We now present an
additional training strategy ensuring this property.
We assume parts of the background of the videos within the train set to be static and the foreground to obtain a sufficient
amount of motion, indicated by a specific magnitude of optical flow. Thus, during training, we only consider those locations
with an optical flow magnitude larger than the mean of magnitudes of the flow map F for sampling the controlled location
l = c3:4 for a user control with the depicted object. However, as we also want our model to separate the pixels on the object
surface from those in the background, we sample the twelfth of all controlled locations in each epoch out of background pixels
and construct artificial user controls by sampling the magnitudes and angles at these locations from the locations within the
foreground. If our model gets such an artificial poke as input, it is trained to reconstruct a still sequence obtained by repeating
the source image x0 T times. This strategy is applied both to train the autoencoding framework described in Sec. E.1 and the
cINN model τθ. Thus, the model learns to separate the pixels comprising the object from those in the background, as indicated
by the video examples in Section B, where we show examples for such artificial user controls.

F. Implementation Details of Baselines
Video Prediction Models. For comparison, we implemented the competing stochastic video prediction baselines [40, 10, 24]
based on the officially provided code from Github 234. As no pretrained models are available for the utilized datasets, we trained
models from scratch for all competitors except for SRVP [24], which provide a pretrained model for the Human3.6m [30]
dataset. All models are trained to predict sequences of length 10 and spatial size 64× 64 based on two context frames. For
models trained from scratch, we used the hyperparameters proposed in the respective publications. For SAVP [40] we further
tried all individual hyperparameter-settings which are available in the official code repository4, but could not manage to obtain
any visual diversity.
Controlled Video Synthesis Models. Both controllable video synthesis baselines we compare iPOKE with [27, 6] are
implemented based on the official code repositories56 and the provided hyperparameters for generating videos of spatial size
128× 128 on all used datasets. For [27], due to the lack of pretrained weights, we trained the new models on the considered
datasets, contrasting II2V [6], where we entirely used the available pretrained models.
For the method of Hao et al [27] we follow their proposed procedure to predict videos [x0, . . . , xT ] of length T : we first
sample k flow vectors between x0 and x1. We then extend these initial vectors to discrete trajectories of length T − 1 in the
image space by tracking the initial points using consecutive flow vectors between xi and xi+1. Videos are finally obtained by
successively warping x0 using the shift vectors from the trajectories. We follow the official protocol from [27] and set k = 5.
The motion trajectories are generated from the same optical flow which was used to train our own model.
For the model trained on ground truth keypoints on the iPER dataset, we constructed the motion trajectories based on the shifts
between the individual keypoints of the source frame and all remaining frames of the considered video sequence.
Variational Counterpart of iPOKE. We here report the implementation details of the cVAE-based counterpart of iPOKE,
which we compared our model to in the ablation study in Section 4.3. The model is composed of the individual parts of the
autoencoding framework of iPOKE as described in Sec. E.1. Thus, the cVAE-grounded baseline consists of a 3D-Encoder, a
convolutional GRU and a 2D-decoder following the respective architectures presented in Section E.1. Additionally, we use
two encoders to individually encode the components of the conditioning (x0, c) with the same architecture than Φx0 and Φc as
described in Section E.2. All these components of the overall model have the same inputs and outputs as the corresponding
components of iPOKE. The differences between the two models are i) the regularization of the video encoding z towards the
standard normal prior by using the reparameterization trick [38], as usually done in cVAEs [38, 61], instead of using a cINN
operating on the latent level, and ii) the initialization of the hidden state of the latent GRU, which are here the stacked features
of the reparametrized video encoding and the representations of the source image x0 and the user control c. For iPOKE, in

2https://github.com/edouardelasalles/srvp
3https://github.com/facebookresearch/improved vrnn
4https://github.com/alexlee-gk/video prediction
5https://github.com/zekunhao1995/ControllableVideoGen
6https://github.com/CompVis/interactive-image2video-synthesis



contrast, the initial hidden state is only the video representation z = τθ(r|x0, c).
The losses for the model are exactly similar to those of our video autoencoding framework as summarized in Eq. (9), except for
an additional KL-loss ensuring the mentioned regularization of the video representation towards the standard normal. We tried
different options for the weighting factor λKL of this KL-term, as its choice has a major influence on the performance of the
trained model and, thus, needs to be selected carefully [11, 83]. The best performance was obtained by choosing λKL = 0.1.
Additionally, to avoid posterior collapse [46], we use KL-annealing for 5 epochs, before the final value of λKL is reached.
Similar to our proposed autoencoding model for iPOKE, the VAE-baseline is trained using Adam [36] with a learning rate of
2 · 10−4, β1 = 0.5, β2 = 0.9, weight decay of 10−5, and exponential learning rate decay. All remaining hyperparameters
were chosen to be equal to those of the corresponding iPOKE-model for video sequences of spatial size 64× 64.

G. Evaluation Details
Motion Consistency. To compute the FVD-score [68] for a given model, we generated 1000 video sequences and sampled
1000 random videos of the same length from the ground truth data. Both the real and the generated examples are the input to
the I3D [8] model which was pretrained on the Kinetics [9] dataset. Subsequently their distributions in the I3D feature space
are compared resulting in the reported FVD-scores. For all models we concatenate the last conditioning frame (for our model
the input frame) with the generated sequence.
Synthesis Quality. All reported accuracy metrics are based on 1000 predicted video sequences and the corresponding ground
truth videos. As these metrics are calculated based on individual image frames, we compare each frame of a generated
sequence with its corresponding frame in the ground truth sequence, resulting in T scores for a predicted video of length T ,
which are subsequently averaged to obtain a scalar value per sequence.
Motion Diversity. To evaluate the diversity for each model, we generated 5 realizations for each video resulting in 5× 1000
videos. The diversity is then computed between the different realizations of the video using LPIPS[82] and MSE in the pixel
space. We did not notice any change in numbers when using more realizations.


