
VariTex: Variational Neural Face Textures - Supplementary Document

Marcel C. Bühler1 Abhimitra Meka2 Gengyan Li1,2 Thabo Beeler2 Otmar Hilliges1

1ETH Zurich 2Google

https://mcbuehler.github.io/VariTex

This is the supplementary document for VariTex: Varia-

tional Neural Face Textures. We list implementation details

in Sec. 1, complement the experimental setup section from

the main paper in Sec. 2, and discuss supplementary results

and ablations in Sec. 3.

1. Implementation Details

1.1. Architectural Details

We implement VariTex in PyTorch Lightning [9] and use

PyTorch3D [22]. Our pipeline contains four neural net-

works: An encoder that maps RGB images to a latent dis-

tribution; a face texture decoder that generates a neural face

texture; an additive decoder that produces features for re-

gions missing in the 3D face model; and a Feature2Image

(rendering) network. Tables 4, 5, 6, and 7 list their archi-

tectural layers and the number of parameters in each layer.

For brevity, we omit normalization layers, but include their

parameter counts in the totals. All networks use ReLU acti-

vations and batch normalization [13].

1.2. Training Details

Optimization and Hyperparameters. We use Adam [16]

to optimize the network parameters with an empirically de-

termined learning rate of 0.001. We set the exponential de-

cay rates for the first and second moments to 0.9 and 0.999.

The training dataset is randomly divided into batches of size

7. The network trains for 44 epochs over the full training

dataset, which takes approximately 96 hours on an NVIDIA

Quadro RTX 6000/8000 GPU.

Objective Function. For the perceptual loss LV GG (Eq. 2

in the main paper), the function φV GGj
(·) extracts the j-th

feature map from a VGG network [23]. The VGG network

is pretrained on ImageNet [6], and the associated weights

per feature map vj are v = [1

32
, 1

16
, 1

8
, 1

4
, 1]⊤.

We use a two-scale patch discriminator D for photore-

alism [21]. The two scales are a) full scale and b) half the

scale after average pooling across the spatial dimensions.

Unlike the original architecture [21], we do not feed any

segmentation masks and we use least squares as a loss func-

tion. The final loss is computed as the average across both

discriminators.

Augmentation Parameters. We use the following affine

transformations in our augmentation scheme (in Sec. 3.5 in

the main paper): random in-plane rotation (up to ±15◦),

uniformly sampled translation (within 20% of the image

height and width), random scaling between 100% and 120%

of the image size, and random flips along the vertical axis

(p = 0.5).

1.3. Texture Sampling

We sample the texture in the same way as previous

works [24, 25], following the classical computer graphics

pipeline. In particular, we employ the standard rasterization

approach used by traditional renderers.

We project the per-vertex UV coordinates of a face

model mesh [10] into the image space of the desired tar-

get camera. This produces a mapping from image pixels to

UV coordinates Ix,y → UVu,v . We then bilinearly sample

from the neural texture to the image space using this map-

ping. This yields a neural image representing the face: the

face feature image.

2. Detailed Experimental Setup

In this section, we describe data preprocessing, provide

an analysis of the head pose distribution in the training set,

and give more details about the user study.

2.1. Preprocessing

Segmentation Network. We mask the images to the fore-

ground. As there are no ground-truth foreground masks

available for FFHQ [15], we predict them in a preprocess-

ing step. We train a state-of-the-art semantic segmentation

network [4, 5] on CelebAMask-HQ [19]. During training,

we learn to predict all 19 semantic regions in CelebAMask-

HQ, which we aggregate to a single foreground mask. As a

backbone, we use DRN [27] and train it using a batch size

of 12 and a cross-entropy loss for 150 epochs on images

with resolution 512× 512.

https://mcbuehler.github.io/VariTex

