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Abstract

In this supplemental document, we provide additional in-
formation about our Dynamic Surface Function Networks.
Specifically, we detail the training procedure and weight-
ings of the energy terms presented in the main paper (see
Sec. A). In Fig. 4, we provide additional qualitative results
and zoom-ins, to show the expressiveness of the proposed
method. Additional comparisons and experiments are pre-
sented in Sec. B.

A. Implementation Details

A.1l. Network Architecture

The dynamic surface function is represented as a multi-
layer perceptron (MLP). In our experiments, we use an 8-
layer MLP with ReLU activation functions for the interme-
diate layer (each intermediate layer has a feature dimen-
sion of 256). The final output layer uses a tanh activa-
tion function, allowing us to specify a maximal amplitude
of the offset surface (in our experiments 25cm). The net-
work architecture is inspired by Mildenhall et al. [7], us-
ing the positional encoding for the sample point coordinate
input. To represent pose-dependent deformations, we con-
dition the dynamic surface function network also on pose
parameters. Specifically, we compute the ’pose feature’
F = [Fy,...,Fa3) € R?®*9 where Fj, = (R — Id) is
the feature component of a body part % (the root part is not
included). This pose feature is describing the global pose
of a human. Since most deformations are local (e.g., the
pose of the leg does not influence the surface of an arm), we
compute a local pose conditioning of a sample point based
on the linear blend-skinning weights of SMPL. Specifically,
we enable the pose conditioning of the corresponding joints
defined by the SMPL skinning weights, as well as for the
adjacent nodes (2-ring neighborhood, i.e., parent and grand-
parent node, as well as child and grandchild node):

F = (lbsy - Ni) - F,

where Ibs € R?? are the skinning weights of a sample point,
N € R?3%23 the 2-ring adjacency matrix.
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Figure 1: We exclude the hands and feet from optimization.

Note, during training we augment the pose conditioning
F with noise to control overfitting. Specifically, we apply
additive normal distributed noise with a standard deviation
of 0.1.

A.2. Optimization

Optimizer settings The energy function is optimized in
two stages. First, we fit the SMPL template to match the
observations sequentially. We apply the L-BFGS [5] opti-
mizer with line search, history size of 20 and 20 maximum
iterations. We observe that using Adam [4] at this stage is
not efficient, since it struggles to reconstruct rotations in the
axis-angle form. The optimization is executed for 15 passes
through the dataset with a fixed learning rate of 0.1 and then
for another 15 passes with the learning rate linearly decreas-
ing to 0.

During the second stage our objective is to reconstruct all
parameters P jointly (MLP and SMPL parameters). At this
stage, we use a standard Adam optimizer with (0.9, 0.999)
blending weights for the first and second momentum re-
spectively. The optimization is carried out on random sam-
ples from the sequence with the first 100 global passes up-
dated by a static learning rate of 0.00005 and remaining 300
passes by a linearly decaying learning rate. As soon as the
learning rate is starting to decrease, we enable the dynamic
conditioning, to capture the pose specific clothing deforma-
tions from reconstructed subjects.



Energy Term Symbol | Value Space
Sparse OpenPose wop 1500 | normalized image space
Dense Densepose wpp 25 3D space in meters
Dense Projective Wproj 100 3D space in meters
Silhouette wei 50 normalized image space
Surface Smoothness WReg 1500 3D space in meters
Temporal Smoothness | w3 "'/ 100 3D space in meters
Temporal Smoothness | w5 15 rotation matrices

‘ Pair-wise Consistency ‘ we ‘ 15 ‘ 3D space in meters

Table 1: Energy term weights during optimization.

The optimization using ADAM takes approximately 60s
per epoch (200 frames) while the initial fitting with L-BFGS
takes around 700s per epoch.

Loss weights As described in the main paper, our opti-
mization is based on a set of different energy terms. In
Tab. 1, we specify the used weights during optimization.
Note that we optimize in two stages as described above.
For the initial fitting of the SMPL parameters, we increase
the OpenPose weight wo p to 10000 and disable the projec-
tive energy term during the first two optimization iterations
(since the body is not yet roughly aligned with the body
in the image, thus, leading to wrong projective correspon-
dences). The temporal regularizers in this initial fitting pro-
cedure are turned on after the 5th pass. Note that all terms
are normalized by their respective number of residuals (i.e.,
by the number of pixels). We prune projective correspon-
dences based on distance (0.5m) and deviation in normals
(45°).

A.3. Surface Sampling

For rendering, we need to sample the surface. We use the
SMPL triangulation and subdivide it with a 1-to-4 subdivi-
sion scheme (each triangle is subdivided into 4). Based on
these samples and the corresponding topology, we evaluate
the dynamic surface function network to retrieve the actual
surface position. These positions are then sent to the GPU
rasterizer to render the surface, used for the analysis-by-
synthesis process. Note that correspondences from Dense-
Pose [8] lead to additional samples on the surface.

A.4. Baseline Implementation

In the main paper, we discuss results based on the CAPE
cloth model [6]. We leverage our fitting pipeline to opti-
mize the energy with respect to the latent codes of the CAPE
model. Specifically, we take the publicly available check-
points for the male and female subjects (with clothing la-
tent space of size 64, pose condition size of 32 and clothing
type condition size of 32) and define the objective as latent
codes’ optimization for the CAPE decoder. In particular,
we append the losses from the first stage of our optimization

Figure 2: Our model can be extended to reconstruct the sur-
face color. We use an MLP similar to the shape MLP to
predict the color.

procedure to the Tensorflow [ 1] graph of the CAPE decoder,
and initialize the reconstruction process with the parameters
from the SMPL only optimization.

B. Additional Results
B.1. Comparisons

We provide an additional comparison to the incre-
mental reconstruction method DoubleFusion [9] and to
the topology-aware generative clothed human model SM-
PLicit [2]. As can be seen in Fig. 3, our approach is able
to reconstruct more details than DoubleFusion, especially
in the face region and also on the body. In contrast to Dou-
bleFusion, our approach optimizes for a globally consistent
representation that does not overfit to latest observations.
The result produced by SMPLicit depicts a possible gar-
ment configuration for the specimen, however, as a method
based on a generative model it does not match observed data
as closely as an actual reconstruction method.

B.2. Reconstructing Surface Colors

In Fig. 2, we show the result of optimizing an additional
MLP for the surface color. Specifically, we use the same
architecture as the shape MLP and predict color values for
each surface point. The MLP used in this experiment has 6
layers and a latent size of 256. We use 16 frequency bands
for the positional encoding. We use a pretrained shape MLP,
and train the color MLP with an ¢; reconstruction and per-
ceptual losses [3]. This experiment shows, that you can eas-
ily reconstruct the surface appearance of the person within
our framework. Note that the incorporation of the color
to refine the tracking and shape prediction is still open for
follow-up works (i.e., joint optimization of the color and the
shape MLP).



Figure 3: Additional qualitative comparison to DoubleFusion [9] and SMPLicit [2]. DoubleFusion is incrementally fusing
the depth-observations to reconstruct the final body shape, while SMPLicit uses a generative approach to produce an output
garment configuration that is close to the input. In contrast, our method globally optimizes for the actual shape.
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Figure 4: Dynamic Surface Function Networks are able to represent pose dependent wrinkles. Here, we show some sequences
with corresponding close-ups to regions where pose dependent wrinkles occur (arms, upper-body and legs).
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