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A. Open-set semantic segmentation
In this section, we provide these additional details for

Section 5.1:
• Details of each open-set semantic segmentation

datasets.
• Details of open-set semantic segmentation implemen-

tation.
• Open-set semantic segmentation results under various
β and γ, which are hyperparameters of Equation 10.

• Open-set semantic segmentation results under various
T , which is the non-zero element of the prototypes.

A.1. Datasets

StreetHazards dataset [1] contains 5125 images for
training, 1031 images without anomalous objects for vali-
dation, and 1500 images for testing with anomalies. Twelve
classes are involved during training, including sky, road,
street lines, traffic signs, sidewalk, pedestrian, vehicle,
building, wall, pole, fence, and vegetation. We include 250
unique anomaly models of diverse types in the test dataset,
while most of them are large rare transportation machines.

Lost and Found dataset [2] comprises 112 stereo video
sequences with 2104 annotated frames. The whole dataset
is only used for evaluating the anomaly segmentation per-
formance and is not involved in training. 37 different ob-
stacle types are contained and most of them are small items
left on the street.

Road Anomaly dataset [3] is composed of 60 images for
evaluating the anomalous objects. This dataset is no longer
constrained in urban scenarios but contains images of vil-
lages and mountains. Animals, rocks, lost tires, trash cans
are some anomalous examples in this dataset.

A.2. Implementation

For StreetHazards, we train a PSPNet decoder [4] with
a ResNet-101 encoder [5] for 20 epochs with batch size 8.
We train both the encoder and decoder using SGD with the
momentum of 0.9, the learning rate of 2 × 10−2, and the
learning rate decay of 10−4.

For Lost and Found and Road Anomaly, we use the train-
ing set from BDD100k [6] as these two datasets do not con-
tain the training set themselves. The training procedure is
as same as for StreetHazards because the number of training
images in BDD100k is 4116, which is close to the number
of training images in Streethazards.

A.3. Varying β and γ

Equation 10 describes the way of using MMSP to sup-
press the middle response of EDS. Pixels whose EDS score
is smaller than γ are suppressed by MMSP, and β controls
the suppressing effect. The ablation experiment results are
in Table a. Some qualitative results are shown in Fig. a.

From Fig. a we can see that OOD objects are more ob-
vious using Equation 10, but the fact is the mixture of
EDS and MMSP provides similar metrics to EDS alone
according to Table a. This is because: (1) MMSP will
not only suppress in-distribution pixels, but also OOD pix-
els. For example, in (a) of Fig. a, some pixels of the heli-
copter are also suppressed. (2) All three anomaly segmen-
tation related metrics are threshold-independent and used to
measure whether anomalous scores of OOD pixels and in-
distribution pixels are distinguishable, not the absolute dif-
ference value. EDS is already able to differentiate OOD
pixels and in-distribution as shown in the Fig. 4 of our
manuscript. However, the mixture map of EDS and MMSP
can give labelers a better view and tells them the location
of OOD objects, so they can make annotations more eas-
ily and pass them to our next incremental few-shot learning
module.

A.4. Varying the non-zero element T of prototypes

T is the non-zero element of all prototypes as discussed
in Section 4.2. It controls the positions of all prototypes in
the metric space. Here we vary T , while the loss function is
hybrid loss and the unknown identification criterion is EDS.
The result is Table b. We find that different T has similar
close-set mIoU indicating that T has little influence on the
close-set segmentation. The most related metric among all
anomaly segmentation metrics is FPR95, meaning that the



γ β AUPR↑ AUROC↑ FPR95↓ mIoU↑
× × 14.7 93.7 17.3

53.9

0.9

20

12.4 93.0 15.9
0.8 14.1 93.5 18.0
0.7 14.6 93.6 17.5
0.6 14.7 93.7 17.3
0.5 14.7 93.7 17.2

0.8
5 12.0 93.2 17.9
20 14.1 93.5 18.0
50 14.4 93.4 18.6

Table a. Ablation experiment results of β and γ. The unknown
identification criterion of the first row is EDS without MMSP. In
our experiments, mIoU values are same because the close-set seg-
mentation submodule is not influenced by Equation 10. It is shown
that β and γ do not have huge impact on the performance.

(a) (b) (c)

(d) (e) (f)

Figure a. Visualization results of different β and γ. (a) β =
50, γ = 0.9. (b) β = 50, γ = 0.7. (c) β = 50, γ = 0.5. (d)
β = 5, γ = 0.8. (e) β = 20, γ = 0.8. (f) EDS only. From
these visualization results we can see that MMSP can suppress the
middle response of EDS.

appropriate T can reduce the false-positive detection.

T AUPR↑ AUROC↑ FPR95↓ mIoU↑
1 14.2 88.1 35.1 53.6
2 14.9 92.2 22.0 54.1
3 14.7 93.7 17.3 53.9
4 15.0 93.9 17.4 53.9
5 14.1 93.4 19.0 53.8
6 13.7 93.6 21.4 53.8

Table b. Ablation experiment results of T . We find the DMLNet
has nice anomaly segmentation performance when T = 3 and
T = 4.

B. Incremental few-shot learning
In this section, we provide the following details for Sec-

tion 5.2:

• Details of the network architecture and training imple-
mentation.

• Incremental few-shot learning results of the novel pro-
totype method (NPM) under various λnovel of the

Equation 12.
• Incremental learning under the few-shot and non-few-

shot condition.
• Incremental learning using the pseudo labels and

ground truth labels.

B.1. Implementation

The DMLNet we adopt for incremental few-shot learn-
ing is based on DeeplabV3+ [7], as shown in Fig. b.

We train the base model on the Cityscapes dataset [8]
containing high quality pixel-level annotations of 5000 im-
ages (2975 and 500 for the training and validation respec-
tively). The labels of 3 classes including car, truck and bus
are set to be 255, so they are ignored during training. We
train the encoder and decoder using SGD with the momen-
tum of 0.9, the learning rate decay of 10−4, and the initial
learning rate of 0.01 and 0.1 respectively for 3 × 104 itera-
tions. The batch size is 8 and the crop size is 762 due to the
GPU memory limitation.

For the novel prototype method (NPM), we do not have
to retrain the model for incremental few-shot learning as
discussed in Section 4.3. For the pseudo label method
(PLM), the architecture of the backbone and final branch
head are demonstrated in Fig. b. When we apply the PLM
for each novel class, we fix the trained backbone and heads
and decrease the initial learning rate to 0.01 and 0.001 for
5 shot and 1 shot respectively. Total iteration numbers are
both 500 for 5 shot and 1 shot but the batch size is 5 and 1
respectively.

B.2. Varying the λnovel of NPM

The λnovel in Equation 12 controls the distance thresh-
old for the novel class classification of NPM. We conduct
the ablation experiments for various λnovel and the results
are in Table c. Large λnovel will cause more false-positive
detection while small λnovel will cause more false-negative
detection for the novel class. λnovel = 1.5 achieves the best
performance according to Table c.

B.3. Few-shot and non-few-shot

In the paper, we increase the knowledge base of the
DMLNet through the incremental few-shot learning mod-
ule. This is because: (1) Few-shot learning requires much
fewer labels compared to non-few-shot learning, while
making segmentation labels is extremely time-consuming.
(2) The training process of the few-shot learning also con-
sumes less time. (3) Incremental few-shot learning is not
well studied so far, and we provide two methods including
PLM and NPM as the baseline in this area.

However, PLM and NPM perform worse than the upper
bound which regards the novel class as one of the original
in-distribution classes and retrain the model using the whole
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Figure b. DMLNet architecture based on DeeplabV3+. This
is the network architecture we adopt for the incremental few-
shot learning module. The backbone and head in Fig. 5 of our
manuscript are demonstrated specifically in this Fig. b.

16+1 setting λnovel mIoU mIoUnovel mIoUold mIoUharm

5 shot
2 67.8 61.9 68.2 64.9

1.5 67.4 64.6 67.6 66.1
1 63.4 41.8 64.7 50.8

1 shot
2 67.1 55.4 67.9 61.0

1.5 66.5 60.1 66.9 63.3
1 62.5 38.0 64.1 47.7

16+3 setting

5 shot
2 55.4 24.1 61.3 34.6

1.5 58.2 26.1 64.2 37.1
1 56.6 20.2 63.4 30.7

1 shot
2 54.6 24.2 60.3 34.6

1.5 56.6 25.9 62.3 36.5
1 55.5 18.9 62.4 29.0

Table c. Ablation experiment results of λnovel. We find that
λnovel = 1.5 has the best performance among all settings.

dataset. As the upper bound is under the non-few-shot con-
dition, there are two possible reasons that make our incre-
mental few-shot learning methods perform worse than the
upper bound. The first one is that the training samples are
insufficient, so the DMLNet cannot extract representative
features. The second one is that our methods themselves
constrain the DMLNet to obtain good performance. There-
fore, we conduct experiments using more training samples
to find out the reason.

From Table 4 of our manuscript, we notice that PLM
have a better performance on the novel class than NPM un-
der 5 shot condition. This is because the network architec-
ture and the metric space of PLM will grow to fit the new
classes. Therefore, PLM is more suitable for the non-few-
shot condition. We conduct ablation experiments of PLM
using a different number of training samples Q. The results
are shown in Table d. We find the performance of PLM im-
proves with more training samples, but the performance still
not reaches the upper bound when using the whole training
set of the Cityscapes dataset. Therefore, both the limited
number of training samples and the PLM itself constrain
the performance under few-shot condition.

16+1 setting mIoU mIoUnovel mIoUold mIoUharm

Q = 1 60.4 64.5 60.1 62.2
Q = 5 64.4 75.7 63.7 69.2
Q = 100 70.7 85.5 69.8 76.9
Q = 1000 71.9 90.1 70.7 79.2
Q = 2975 72.2 91.8 71.0 80.1
All 17 74.9 94.8 - -

Table d. Ablation experiment results of Q. All 17 is the upper
bound. The performance of PLM improves with more training
samples.

B.4. Pseudo label and ground truth label

In the pseudo label method (PLM), the old trained final
branch heads provide the prediction of old classes, and these
predictions combine with the annotation of the new class
to generate the pseudo label of the training sample. In this
way, labelers only need to give annotations for the new class
and do not need to annotate for every pixel of the training
samples. To verify that the PLM is reasonable, we conduct
experiments using the ground truth labels for incremental
learning rather than the pseudo labels. The results are in
Table e. Compared to Table d, we find that the performance
of using pseudo labels is similar to the performance of using
ground truth labels, demonstrating the effectiveness of our
PLM method. Some visualization of pseudo labels is shown
in Fig. c.



16+1 setting mIoU mIoUnovel mIoUold mIoUharm

Q = 1 58.9 60.2 58.8 59.5
Q = 5 61.2 72.3 60.5 65.9
Q = 100 70.2 85.8 69.2 76.6
Q = 1000 72.0 91.8 70.8 79.9
Q = 2975 72.0 91.9 70.8 80.0

Table e. Incremental learning results using the ground truth
under various Q. Compared to Table d, this table shows the in-
cremental learning results using the ground truth labels are similar
to the results using pseudo labels.

Pseudo labels Ground truth labels

Figure c. Pseudo labels and ground truth labels. The labels of
the novel class car are the same, while in other places the ground
truth labels provide more precise details.
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