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Algorithm 1 Supernet Training with Weight Entanglement
Input:

Training epochs N , search spaceA, supernetN , initial
supernet weights WA, train dataset Dtrain, loss func-
tion Loss

Output: Well-trained supernet
1: for i = 1 to N do
2: for data, labels in Dtrain do
3: Random sample one transformer architecture α =

(α(1), ...α(i), ...α(l)) from the space A
4: Obtain the corresponding weights w =

(w(1), ...w(i), ...w(l)) from WA, where l is
the maximum depth

5: Compute the gradients ∇w based on Loss, data,
labels

6: Update the corresponding part of w in WA while
freeze the rest part of the superet N

7: end for
8: end for

A. Appendix

A.1. Search Pipeline

This section presents the details of supernet training and
evolutionary algorithm. Alg. 1 elaborates the procedure of
supernet training with weight entanglement. In each itera-
tion, we will first randomly sample one transformer archi-
tecture α. Then we obtain its weights from the supernet’s
weights WA and compute loss using the subnet N (α,w).
At last, we update the corresponding weights in WA while
freezing the rest. Alg. 2 shows the evolution search in our
method. For crossover, two randomly selected candidate
architectures are picked from the top candidates first. Then
we uniformly choose one block from them in each layer
to generate a new architecture. For mutation, a candidate
mutates its depth with probability Pd first. Then it mutates
each block with a probability of Pm to produce a new archi-
tecture. New produced architectures that do not satisfy the
constraints will not be added to the next generation.

Algorithm 2 Evolution Search
Input:

Search space A, supernet N , supernet weights WA,
population size P , resources constraints C, number of
generation iteration T , validation dataset Dval, muta-
tion probability of depth Pd, mutation probability of
each layer Pm

Output: The most promising transformer α∗

1: G(0) := Random sample P transformer architectures
{α1, α2, · · ·αP } from A with the constrain C

2: while search step t ∈ (0, T ) do
3: while αi ∈ G(t) do
4: Obtain the corresponding weightWαi

from the su-
pernet weights WA

5: Obtain the accuracy of the subnet N (αi,Wαi
) on

Dval

6: end while
7: Gtopk := the Top K candidates by accuracy order;
8: Gcrossover := Crossover(Gtopk, S, C)
9: Gmutation := Mutation(Gtopk, Pd, Pm, S, C)

10: G(t+1) = Gcrossover ∪Gmutation

11: end while

A.2. Structures of AutoFormers

Fig. 1 plots the transformer architectures searched by
our AutoFormer method. We observe an interesting phe-
nomenon that the shallow transformer blocks prefer to large
Q-K-V dimensions and small MLP ratios, while the deep
blocks tend to have small Q-K-V dimensions with large
MLP ratios.

A.3. Additional Analysis and Details

Ranking Correlation Analysis. We conduct experiments
to show the ranking capability of the supernet trained with
weight entanglement. Tab. 1 shows that the performance
of subnets with inherited weights and weights trained from-
scratch are very close even comparable. More importantly,
they also have the same relative performance order, which
indicates the subnet with inherited weights is a good perfor-
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Figure 1. Architectures of AutoFormer-T/S/B. Different widths of blocks sketch different selected choices. The blue and purple blocks
represent MLP blocks and multi-head self-attention layers, respectively. Shortcuts are omitted between blocks.



mance proxy of real performance.
Transfer Learning Details. For the experiment on 384

×384 resolution, we fine-tune the searched AutoFormer-S
model using AdamW optimizer, initial learning rate 10−6,
30 epochs, batch size 64, minimal learning 10−7, cosine
scheduler, weight decay 5 × 10−2, no warmup and the
same data augmentation as AutoFormer supernet training.
For downstream tasks, similar to DeiT [7], we interpo-
late the images to 384 ×384 for Cars [2], Flowers [4] and
Pets [5], while using 224 ×224 for CIFAR-10 and CIFAR-
100 [3]. We use SGD optimizer with learning rate 10−2,
batch size 64, weight decay 10−8, 1000 epochs for CIFAR-
10, CIFAR-100 and Cars. We use AdamW optimizer, ini-
tial learning rate 5 × 10−4, minimal learning 10−6, cosine
scheduler, batch size 64, weight decay 10−8, 1000 epochs
for Flowers and Pets.

Comparison with HAT and BigNAS. The table below
shows the results when applying BigNAS [10] and HAT [8]
to our search space. When compared with BigNAS, we find
that the sandwich training and inplace distillation lead to
poor convergence of the vision transformer supernet. Aut-
oFormer without these strategies outperforms BigNAS by
5.0% or 1.1% top-1 accuracy using inherited or retrained
weights, with less than half search cost in total. Similarly,
AutoFormer surpasses HAT by 1.2% or 0.5%, while being
1.6× faster since it does not need any retraining.

Search Inherited Retrain Params FLOPs Total Cost
Method (%) (%) (M) (G) (GPU days)

HAT 80.5 81.2 22.8 5.0G 50
BigNAS 76.7 80.6 22.9 4.9G 72

AutoFormer 81.7 81.7 22.9 4.9G 32

Classification Head. In the original ViT model [1], a
[class] embedding is injected into the patch embeddings to
learn the representation of an image. For classification, ViT
only uses the output embeddings of [class] token as the in-
put of the final multilayer perceptron, while leaving the out-
put embeddings of image patches unused. Inspired by the
widely used Gloval Average Pooling operation in convolu-
tional neural networks, we use the average of embedding
of all patches as the input of the classification head. We
surprisingly find that using such a scheme can further en-
hance the performance of AutoFormer. In particular, under
the same model size constraint (≤23M), it has a 0.3% im-
provement from 81.4% to 81.7% in terms of top-1 accuracy
on ImageNet with Gloval Average Pooling.

Position Embedding. ViT [1] explores different posi-
tion embedding methods for vision transformer, including
no position embedding, 1-dimensional position embedding,
2-dimensional position embedding and relative position em-
bedding. The authors find that 1-dimensional position em-
bedding is the best choice. By contrast, we implement an-
other version of relative position embedding by extending
[6] from 1-D to 2-D inputs. More specifically, two different

Model Model Size Inherited Rank Retrain Rank∗

Subnet 1 22.1M 80.2% 1 80.4% 1
Subnet 2 23.1M 80.7% 2 80.8% 2
Subnet 3 21.4M 81.1% 3 81.1% 3
Subnet 4 24.4M 81.5% 4 81.6% 4
Subnet 5 22.9M 81.7% 5 81.7% 5

Table 1. Performance of five randomly sampled architectures from
the supernet-small space with similar model sizes. We rank their
performance with the weights inherited from the supernet and
trained from scratch. The columns ‘Rank’ and ‘Rank∗’ mean the
rankings of subnets with weights inherited from supernets and re-
training, respecitively

sets of embeddings are learned for horizontal and vertical
relation, respectively. Each of them has the same size as the
Q-K-V dimension (Dh). We find that such relative position
embedding is able to improve the performance of subnets
by around 0.6%. Recent study [9] also has similar observa-
tion suggesting that relative position embedding enhances
the performance of vision transformer.
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